Sessmn 1: Statistical and Machine
Learning Regression

2021 July 12

Dr. Richard M. Crowley
rcrowley@smu.edu.sg
http://rmc.link/

mailto:rcrowley@smu.edu.sg
http://rmc.link/

A quick overview of the course

L]

Goals: Day 1

All about econometrics

1. Traditional econometrics on panel data in python
= Tying back to using Pandas
* Linear and logistic (among many others)
2. Machine learning approaches to econometrics
= LASSO
= Elastic Net
= SVM
= XGBoost
Combining the above

Goals: Day 2

All about text data

1. Working with text in python
= Importing
= Pattern matching (regular expressions)
2. Using Parsers
= Natural language using NLTK and spaCy
= Web pages using Beautiful Soup
3. Text classification
= Supervised using textbooks
 Embedding methods
= Unsupervised using LDA
4. Dimensionality reduction
= t-SNE and UMAP

Goals: Day 3

More advanced/modern concepts

1. Bias in algorithms or data

= Using Shapley additive explanations (SHAP)
2. Causal ML

* Double/debiased/Neyman ML
3. Neural networks

= Various network structures

* |ntroduction to Keras

» Leveraging pre-built models

(g
c
0
o
©
O
[=
Q.
©
k=
©
=

Application 1: Linear problem

= |dea: Discussion of risks, such as as foreign currency risks, operating risks, or legal risks should provide
insight on the volatility of future outcomes for the firm.
» Testing: Predicting future stock return volatility based on 10-K filing discussion

Dependent Variable Independent Variables

= Future stock return volatility = Aset of 31 measures of what was discussed in a
firm’s annual report

This test mirrors Bao and Datta (2014 MS)

§
{

ET et i

T T W e

C - ” R a5 B i
L
r T e .
' 4 5ia
4 Lt

Application 2: Binary problem

» |dea: Using the same data as in Application 1, can we predict instances of intentional misreporting?
» Testing: Predicting 10-K/A irregularities using finance, textual style, and topics

Dependent Variable Independent Variables

Intentional misreporting as stated in 10-K/A filings = 17 Financial measures
= 20 Style characteristics
= 31 10-K discussion topics

This test mirrors a subset of Brown, Crowley and Elliott (2020 JAR)

§
{

ET et i

T T W e

= ” I 2 B > i
-
r Tk o
' Ry
i K

c
9
)

(4v)

p -

(qv)

Q.

Q

-
al

Importing data in Pandas

= We can use pandas to import the data set
= Notes:
1. pandas is traditionally imported as pd using import pandas as pd
2.pd.read csv () isabletoread csv files *as well as compressed csv files
= Thisis very useful!
= Compressing a csv file can save 50-90% of the storage space of the file

Idf = pd.read csv('../../Data/Sl data.csv.gz') A

Q = Note:

~N

. = SAS, python pandas, and Rcan all handle .csv.gz and .csv.zipfiles
= Statais a bit tedious here, requiring uncompressing first

1 \

k" ‘L

= Either use your file manager or using Stata’s unzipfile command

https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html

I df.shape

l## (14301, 198)

I df .describe () .to html ()

Examining the data

gvkey

Firm

sic

year

logtotasset

rsst_acc

chg_re

14301.000000

1.430100e+04

14301.000000

14301.000000

14301.000000

14301.000000

14301.(

38272.730159

7.100841e+05

4628.199636

2001.717362

5.507901

0.014126

0.0063"

39101.761060

3.745443e+05

1973.464631

1.729618

1.905595

0.386033

0.0711:

1004.000000

2.000000e+01

100.000000

1999.000000

-0.796288

-27.752728

-0.9328

9225.000000

3.546550e+05

3330.000000

2000.000000

4.115454

-0.053155

-0.0129

24708.000000

8.686110e+05

3841.000000

2002.000000

5.370675

0.021280

0.0051¢

62811.000000

1.002531e+06

5900.000000

2003.000000

6.729078

0.091943

0.0301(

230796.000000

1.261482e+06

9997.000000

2004.000000

12.397614

22.244062

0.8337¢

Other preparation

* For convenience later, we can store the variable names we will use for regressions into lists
= Note the use of a list comprehension for the topic measures

= There are 31 measures in the data, but the name is all of the form Topic # n oI

vars financial = ['logtotasset', 'rsst acc', 'chg recv', 'chg inv', 'soft assets', 'pct chg cashsales', 'chg roa',
'lssuance', 'oplease dum', 'book mkt', 'lag sdvol', 'merger', 'bigNaudit', 'midNaudit', 'cffin',
'exfin', 'restruct']

vars style 'bullets', 'headerlen', 'newlines', 'alltags', 'processedsize', 'sentlen u', 'wordlen s', 'paralen s',
'repetitious p', 'sentlen s', 'typetoken', 'clindex', 'fog', 'active p', 'passive p', 'lm negative p',
'Im positive p', 'allcaps', 'exclamationpoints', 'questionmarks']

vars_ topic '"Topic ' + str(i+l) + ' ' for i in range (0, 31)]

Validating predictive analyses

» |deal:
= Withhold the last year (or a few) of data when building the model
» Check performance on hold out sample
» Thisis out of sample testing
= Ensure that the data is independent across time!

Training window Testing window

Date of data <€— — — —>»
'\\“

Date became
known < >

. N
= Sometimes acceptable:

= Withhold a random sample of data when building the model

= Check performance on hold out sample

= Potential problems with correlations between hold out sample and training sample
k_".n

Training vs. testing split

= Asimple approach is to split by time
= Check which years are in the data using . unique ()

Check the years in the data
df['year'] .unique ()

I## array ([2002, 2003, 2004, 1999, 2000, 2001], dtype=int64)

= Split out the last year as the testing sample
» This can be done using a simple conditional
* Final yearis 2004, so...
= Testing: df.year == 2004
= Training: df.year < 2004

Subset the final year to be the testing year
train = df[df.year < 2004]

test = df[df.year == 2004]

print (df.shape, train.shape, test.shape)

I## (14301, 198) (11478, 198) (2823, 198)

= Note that the number of rows in df is the same as the sum of rows in train and test

Aside: Random testing sample

= Scikit-learn (sklearn) can handle this robustly
= Scikit-learn is a package focused on simple machine learning methods

= Since random sampling is common in ML, Scikit-learn provides multiple ways to handle this.
* Thefunctionis sklearn.model selection.train test split()

Yl = df['sdvoll'] i'
X1 = df.drop(columns=['sdvoll'])

test size specifies the percent of the files to hold for testing
X train, X test, Y train, Y test = model selection.train test split(X1l, Y1, test size=0.2)

print (X train.shape, X test.shape, Y train.shape, Y test.shape)

I## (11440, 197) (2861, 197) (11440,) (28061,)

= Optionally you can stratify across classes in your data using the strati fy= parameter
7 N\
(. \
N]

_ \ -/
LN a
‘ O — N\
OSSN :

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

c
o
i e
e
>
a
£
¥y
c
=
)
(Vg
Q
-
oo
)
-
9
o
E
(p)
6o
=
c
c
-
o

Package: Statsmodels

The statsmodels package provides a suit of basic regression functions
It supports most standard statistical approaches

= OLS, Logit, GLM, Probit, Poisson, ARIMA, etc.

It includes some other interesting functions as well, such as:

* Imputation methods (e.g., MICE), GAMs, Quantile regression, Markov switching, etc.
There are 2 interfaces to the package:

1. statsmodels.formula.api (usually imported as smf) - pandas-friendly
2. statsmodels.api (usually imported as sm) - requires data to be formatted differently

<7

https://www.statsmodels.org/stable/index.html

Linear regression (OLS)

» Unlike most statistical software, regressions in stat smodel s require multiple steps.

| Step 1: specify the regression structure

Imodel = smf.ols (formula='sdvoll ~ logtotasset + fog', data=train) P

» Note the use of ~ as the equals sign in the equation

NN

I fitl = model.fit ()

https://www.statsmodels.org/stable/index.html

Linear regression (OLS)

Step 3: Output the results (optional)

I fitl.summary ()

OLS Regression Results

Dep. Variable: sdvoll R-squared: 0.201
Model: OLS Adj. R-squared: 0.201
Method: Least Squares F-statistic: 1445.
Date: Mon, 12 Jul 2021 Prob (F-statistic): 0.00
Time: 02:31:18 Log-Likelihood: 247817.
No. Observations: 11478 AlC: -4.957e+04
Df Residuals: 11475 BIC: -4.955e+04
Df Model: 2
Covariance Type: nonrobust

coef stderr t P>|t| [0.025 0.975]

Intercept 0.0523 0.004 14.869 0.000 0.045 0.059
logtotasset -0.0073 0.000 -52.769 0.000 -0.008 -0.007
fog 0.0019 0.000 9.627 0.000 0.002 0.002
Omnibus: 8713.393 Durbin-Watson: 1.394

Tricks with statsmodels

#1. Using a function in an equation

model = smf.ols(formula='sdvoll ~ np.log(asset) + fog', data=train)
fitl = model.fit ()

#2. Defining your function in a variable

formula = 'sdvoll ~ logtotasset + fog'

model = smf.ols (formula=formula, data=train)
fitl = model.fit ()

formula 'sdvoll ~

model = smf.ols(formula=formula, data=train)

fit ols = model.fit ()

fit ols.summary ()

"+ ' + '.join(vars topic[O0:

OLS Regression Results

Dep. Variable: sdvoll R-squared: 0.161
Model: OLS Adj. R-squared: 0.159
Method: Least Squares F-statistic: 73.45
= = Date: Mon, 12 Jul 2021 Prob (F-statistic): 0.00
Time: 02:31:19 Log-Likelihood: 24508.
No. Observations: 11478 AlC: -4.895e+04
Df Residuals: 11447 BIC: -4.873e+04
Df Model: 30
Covariance Type: nonrobust
coef stderr t P>t| [0.025 0.975]
Intercept 0.0458 0.000 171.114 0.000 0.045 0.046
Topic_1_n_ol 1.1709 0.340 3.440 0.001 0.504 1.838

k_ N\

Estout/Outreg2 style tables in Python

= To combine multiple regressions into one using statsmodels, you can use the stargazer package

I Stargazer ([fitl, fit ols]) A
Dependent variable:sdvoll

(1) (2)
Intercept 0.052" 0.046
(0.004) (0.000)
N Topic_10_n_ol 0.672°
N (0.207)
Topic_11_n_ol -1.218
(0.259)
Topic_12_n_ol -0.031
(0.295)
Topic_13_n_ol 0.537
(0.811)
\ ‘ Topic_14_n_ol -1.982°

a7

= Same idea as with OLS, replacing smf.ols () withsmf.logit ()

formula = 'Restate Int ~ ' + ' + '.join(vars topic[0:-1]) # Drop the final value to avoid multicollinearity

model = smf.logit (formula=formula, data=train)
fit logit = model.fit ()

#4# Current function value: 0.060121

Optimization terminated successfully.
Iterations 16

Iiﬁt;;ogit.summary() i:

)

k_ T/

Logit Regression Results

Dep. Variable: Restate_Int No. Observations: 11478
Model: Logit Df Residuals: 11447
Method: MLE Df Model: 30
Date: Mon, 12 Jul 2021 Pseudo R-squ.: 0.02432
Time: 02:31:20 Log-Likelihood: -690.07
converged: True LL-Null: -7107.27

nonrobust

Covariance Type:

N

LLR p-value:

0.2651

https://www.statsmodels.org/stable/generated/statsmodels.formula.api.ols.html#statsmodels.formula.api.ols
https://www.statsmodels.org/stable/generated/statsmodels.formula.api.logit.html#statsmodels.formula.api.logit

Q
®
C
(qv)
-
-
O
-
QL
(@B
Q
2
)
O
=
Q
-
Q.
(o))
C
o
-
(7))
(qv)
()
=

Getting predictions

= Most regression structures in python provide a . predict () method for predicting in or out of sample

Residual train = train.sdvoll - Y hat train

Iﬁ’hattraln = fit ols.predict (train)

Linear predictive power

= 2 methods that are often used are:
= RMSE: Root Mean Squared Error
= MAE: Mean Absolute Error

N

rmse = metrics.mean squared error (train.sdvoll, Y_hat_té%. mae = metrics.mean absolute error (train.sdvoll, Y_hat_té%
squared=False)

print ('"MAE: {:.4f}'.format (mae))
print ('RMSE: {:.4f}'.format (rmse))

Ii## MAE: 0.0191
l## RMSE: 0.0286

Logistic predictive power

= For logistic regression, ROC AUC is a good measure

Y hat train = fit logit.predict(train) i’ "
_ _ . True Positive Probability

D
True Negative Probability

AUC = Pr(Probability | =)

auc = metrics.roc_auc_score(train.Restate Int, Y hat trai:

print ('ROC AUC: {:.4f}'.format (auc))

l## ROC AUC: 0.6538

Visualizing AUC with the ROC curve

* sklearn makes it easy to output a ROC curve as well

Full code to replicate -- first two lines are same as prior slide
Y hat train = fit logit.predict (train)
auc = metrics.roc_auc_score(train.Restate Int, Y hat train)

fpr, tpr, thresholds = metrics.roc curve (train.Restate Int, Y hat train)
display = metrics.RocCurveDisplay (fpr=fpr, tpr=tpr, roc auc=auc)
display.plot ()

0.6

Tue Positive Rate

0.0 4 —— AUC=078

0.0 02 0.4 06 08 10
False Positive Rate

https://scikit-learn.org/stable/

Out of sample AUC

= Allwe needtodoisswapin test for train!

Logit, out-of-sample
Y hat test = fit logit.predict (test)
auc = metrics.roc_auc_score(test.Restate Int, Y hat test)

fpr, tpr, thresholds = metrics.roc curve (test.Restate Int, Y hat test)
display = metrics.RocCurveDisplay (fpr=fpr, tpr=tpr, roc auc=auc)
display.plot ()

0.6

Tue Positive Rate

0.0 4 —— AUC =051

0.0 02 0.4 06 08 10
False Positive Rate

(7))
s
o
3=
Q
d
Q
o
LL.

1 or 2 fixed effect

* statsmodels doesn’t support fixed effects, but you can add variables as categorical using C ()

Defining the function in a variable e
formula = 'sdvoll ~ logtotasset + fog + C(year)'

model = smf.ols (formula=formula, data=train)
fitl fe = model.fit()
fitl fe.summary ()

OLS Regression Results

Dep. Variable: sdvoll R-squared: 0.288
Model: OLS Adj. R-squared: 0.288
N\ Method: Least Squares F-statistic: 774.0
N Date: Mon, 12 Jul2021 Prob (F-statistic): 0.00
Time: 02:31:22 Log-Likelihood: 25449,
No. Observations: 11478 AIC: -5.088e+04
Df Residuals: 11471 BIC: -5.083e+04
Df Model: 6
Covariance Type: nonrobust
coef stderr t P>t| [0.025 0.975]
‘ Intercept 0.0406 0.003 12.097 0.000 0.034 0.047

k_ N\

https://www.statsmodels.org/stable/index.html

3 or more fixed effects

= statsmodels cannot handle HDFE

= This has been an open issue since 2015...
» Usethe l1inearmodels package instead!

| What can linearmodels do?

Cando Cannot do

N
- N = Anything OLS = Anything that isn’t explicitly linear
. » Fixed effects

* Random effects

= HDFE/Absorbing

= Fama-MacBeth

= 2SLS, GM, etc.
= 3SLS, SUR, GMM system

| [——_—

https://www.statsmodels.org/stable/index.html
https://bashtage.github.io/linearmodels/

Adding in HDFE

= Use linearmodels.iv.absorbing.AbsorbingLS () toinclude HDFE
= Syntaxis a bit difficult - need to supply data as 3 data frames or matrices

X = train[["logtotasset", "fog"]]

y = train["sdvoll"]

absorb = train[["year", "gvkey"]].copy() # include as many FEs as needed here
absorb['year'] = absorb['year'].astype('category')

absorb['gvkey'] = absorb['gvkey'].astype ('category')

model = linearmodels.iv.absorbing.AbsorbingLS(y, X, absorb=absorb)

model.fit ()

Absorbing LS Estimation Summary

Dep. Variable: sdvoll R-squared: 0.8268
Estimator: Absorbing LS Adj. R-squared: 0.7290
No. Observations: 11478 F-statistic: 95.219

Date: Mon, Jul 12 2021 P-value (F-stat): 0.0000
Time: 02:31:23 Distribution: chi2(2)
Cov. Estimator: robust R-squared (No Effects): 0.0168

Varaibles Absorbed: 4142.0
Parameter Estimates

Parameter Std.Err. T-stat P-value Lower CI Upper Ci
logtotasset -0.0062 0.0007 -8.8599 0.0000 -0.0076 -0.0048
fog 0.0007 0.0002 3.8611 0.0001 0.0003 0.0010

https://bashtage.github.io/linearmodels/iv/absorbing/linearmodels.iv.absorbing.AbsorbingLS.html#linearmodels.iv.absorbing.AbsorbingLS

N = o o N o 1 o f o

= D e D) b D), ek D)) s e
SO0 200D a0 =202 D000 O0D0 =2 20O -
O OO0 a 00000 = w000 w0
2= OO0 =2 a0 Q020000 2202020
O OO0 - —
oo Qe QOO -

O ed O h s
A o
202000 w0000 00 000 w00 —
el s sl)l el sl i
O DaD a9 D02 0D00—=2—-a=2000 =22 00

- . - o 00 e Y = o T
- 2w OO0 =« «au 0DO00 4 w000 —waawDO
et D Dt DO et et et O et et QO e DO O s OO OO
S e T B = T =) — > oo o
—_ = OO0 s =m0 = =m0 s 0w OO0 000 —
B2 O D a 0002w DO 20000 220
O OO0 a0 a0 00
=000 =23 =000 2200022 200000000
NS o BT o PR = T b e B e L i o e i g e o g

COO0O0 4 -0 -4 0D a0 000 22O a0
Ot O Q00 bt = Ot et D OO D s
s T OO0 = O e O = 0= .

— ot OO

OO0 w0000 o

s D0 oD O

CO0 00— =0 = -=000
oo

OO0 = = O0O00 a0 00 -

OO0 = = = O a2 OO

L 100
L

Vs
Q
S
)
)
)
>
S
a0
Vs
=
=8|
O
.
()
e
)
@)
)
5
C
q0)
=
+
=
(4]
O
o+

© m— =i
S =]
t _ L e B SSSE —
S 0 es s h D D ks i O O 00 0 0 O -
a e Q0000 » =0l 000 = =0 a0
= T
e S —_0 a2 000 = =
a —_ o O A i o
> 8] | i
a r DO 00 a2 =« O 2 O a00
D) etk ek DO ot = OO O —m - OO O e —
a OO0 0 a2 000 22 adD ald a0 oo
C e = OO0 = =000 = = O 0O = Qoo
=} ey Dl e OO
* —— . : — | i o T D e) el R e) Y
— Y s
(= M- =
OO0 O a0 2000000 a0 00 » OO
OO0 0000 - O O000 ——m0O
OO0 0 200020 aDOCo
L R = L = B o
- c oo o =
OO0 00 a2 03 a2l 200020020000

N
—
)
O
O
&
.
©
0
-
“r
—
= o
el
=
=
Q
O
=
>
=
(@
e
=
)
Q
@)
S
N
)
N
©
@)
N
©
)
0N

So Stata is more flexible for HDFE models

—_— D D0 —m O 00 —
COOD0 = = =20 = w0 00000 2000w wo
OO .
- 000 =0 =20 00 =00
ey - R S T 1 T,
. - =Bl B = B o B o VA o =
O D e)Y e D R G O S D)
OC a0 a0 a0 0C =002 —-000 O
=
O = =m0 =a0 =0
A e B e i =]
oo oo O - (= BRI T o S =
T == R e o e JAF e P e SRR B e i =
—_ a0 a2l = O - O
O o O - o L= o B = 1 o= B o)
o = o
i e i e D) . D DO
OO0 = 2O a2 aC
OO OoO

= E.g.,you can’tdo Logit, Poisson, or Cox with i

* linearmodels only handles |

https://github.com/mwburke/stargazer
https://bashtage.github.io/linearmodels/
https://bashtage.github.io/linearmodels/

In R, HDFE regression is handled quite well by fixest

= Supports many structural forms (OLS, Poisson, Logit, Negative binomial)

» Fast - in some case completing in less than 1% of the time needed by Stata

= Also supports clustering of standard errors

= Has a summarization method, etable (), that parallels estout and outreg?

= Su
= Su
= Su

D
D

D

Addendum: Using R

vorts IV/2SLS
norts interactions between fixed effects and other fixed effects or IVs.

norts unbiased staggered DID (following Sun and Abraham (2020 JE))

If you need complicated econometrics, R or Stata is better

https://lrberge.github.io/fixest/

Problems of the prior approach

= For both linear and logistic regression:
= Too many covariates
= Probably high VIFs
= Multicollinearity is quite high
= For logit:
= Convergence is iffy when using sparse datasets or DVs

How can machine learning help?

1. Some methods directly adress the issues of multicollinearity or having too many covariates (via model
selection)
2. Some methods address sparsity well, being robust to binary DVs with sub 10% classes

What is LASSO?

= Least Absolute Shrinkage and Selection Operator
= Least absolute: uses an error term like |€]|
= Shrinkage: it will make coefficients smaller
= Less sensitive > less overfitting issues
= Selection: it will completely remove some variables
» Less variables > less overfitting issues
= Sometimes called L; regularization
= L1 means 1 dimensional distance, i.e., |€|

Great if you have way too many inputs in your model or high multicollinearity

= Note that L' regularization is a standard approach to dealing with inflated VIFs as well!

I ———— |

How does it work?

1
in{ — A
e NI6\2+ 18l;

= Add an additional penalty term that is

increasing in the absolute Value Of eaCh /8 lllustration of LASSO in the coefficient space of a regression
o i« . . Point that minimizes the sum
* Incentivizes lower Bs, shrinking them ofthe MSE and L1 penaly
= The selection is part is explainable Thisis the chasen modet

geometrically in 2D
= |f the MSE level curves hit a corner of the
diamond shaped penalty curve, then a \
/

W Bl
coefficient is set to 0 and dropped >§//
Level curves of the

MSE (standard
Level curves of the regression error).
1 penalty. Smaller B, Smaller curves
curves indicate indicate less error.
higher values of A.

LASSO example: Restaurant pricing

From Chahuneau et al. (2012 EMNLP)

* The paper uses a large data set on menu information from www.allmenus.comto predict:

1. Menu item prices
2. Price range for a restaurant (categorical)
3. Median price and sentiment for a restaurant.
= Uses L7 regularization
* Optimizes MAE and MRE (Mean Relative Error - MAE where each observation’s error is scaled by y;)

City # Restaurants # Menu Items # Reviews

train dev. test train dev. test train dev. test
Boston 930 107 113 | 63422 8,426 8,409 80,309 10,976 11.511
Chicago 804 08 100 | 51480 6,633 6,939 73,251 9,582 10,965
Los Angeles 624 80 68 17,980 2,938 1,592 75,455 13,221 5,716
New York 3,965 473 499 | 365,518 42,315 45,728 326,801 33,929 31799
Philadelphia 1,015 129 117 83.818 11,777 9.295 52,275 7,347 3,790
San Francisco 1.908 235 234 | 103,954 12,871 12,510 499,984 39,378 67,010
Washington, D.C. 773 110 121 47,188 5,957 7,224 7178 11,852 14,129
Total 10,019 1,252 1,252 | 733,360 90917 91697 | 1,179,254 147891 152916

Table 1: Dataset statistics.

Menu pricing

log(price) = a+ - MENU NAMES +~v- MENU DESC +6- METADAT A+
(- MENTIONS +nPR +¢

= MENU NAMES: n-grams (1, 2, 3) of the name of the item on the menu

= MENU DESC": n-grams of item descriptions

= M ETADAT A: “location (city, neighborhood, transit stop), services available (take-out, delivery), wifi,
parking, etc.), and ambience (good for groups, noise level, attire, etc.).” Also included was food type and user
rating (1-5 stars). All of these are one-hot encoded (i.e., turned into indicator variables)

= MENTIONS: n-grams from reviews where the menu item matched best

= PR: The prediction from a model without menu or mention text included

Menu pricing

= The full model has 4,959,488 variables
= There are only 733,360 observations in the data set

How is it possible to run this regression?

= This is another advantage of LASSO
= It’s a bit like running a simulation for variable selection, and thus it can optimize the included coefficients
down to a feasible set
= The LASSO model output retains only 458,462 features - less than 10%!

Final result?

= The final algorithm using LASSO is off by $3.06 USD on average of the actual price (~34%)
= The best non-LASSO algorithm in the paper is off by $3.67 USD on average (~43%)

Some interesting findings by measure category

category Cheapest Most.expensive
Metadata, ambience dive-y upscale; touristy
Menu Desc, cooking panfried; chargrilled flamebroiled
Menu Desc, descriptors old time favorite farmhouse
Menu Desc, “of chicken” slices of chicken cuts of chicken

Menu Desc, “potatoes” real mashed potatoes = smooth mached potatoes

Menu Desc, “roast” and “roasted” roasted chicken roast salmon
b]

Restaurant pricing prediction

= This uses the same data, but tries to predict the restaurant’s category (‘$’ through ‘$$$$’)
» The simple, univariate model achieves only 48.22% accuracy

= ALASSO model including Reviews and restaurant metadata (3,027,943 features, 1,376 retained) achieves
80.36% accuracy

What about other penalty types?

LASSO (Lq) Ridge (L»)

lllustration of LASSO in the coefficient space of a regression lllustration of ridge in the coefficient space of a regression

Point that minimizes the sum

of the MSE and L1 penalty.
This is the chosen model!

Point that minimizes the sum

of the MSE and L? penalty.
This is the chosen model!

/<> By @} By
/Level curves of the Level curves of the
MSE (standard MSE (standard
Level curves of the regression error). Level curves of the regression error).
L' penalty. Smaller B Smaller curves L? penalty. Smaller 3 Smaller curves
curves indicate 2 indicate less error. curves indicate 2 indicate less error.
higher values of A. higher values of A.
. = Decreases coefficient values = Decreases coefficient values

» Makes many of them 0 * |ncreases prediction stability more
* |ncreases prediction stability = Less sensitive to outliers

Combining LASSO and Ridge: Elastic Net

= Elastic Net has both L1 and L4y penalties!
= Allows you to optimize the amount of selection b |
effect you want from LASSO and the amount of

shrinkage from Ridge
= Ageneralization of LASSO and Ridge

--- Ridge
-- Lasso
—— Elastic Net

. 1y 5 2
= A A
min { 13 + Mu 181, + X8I |

.1

c
O
K
wfd
>
ol
.m
O
wn
n
<
-
o)
c
g
c
v
=
s
Q
E

Setting up to use Scikit-Learn

= Scikit-learn, like many machine learning packages, expects separate data sets or matrices for DVs and IVs
= We saw this earlier with 1inearmodels as well
= LASSO, Ridge, and Elastic net are also particular about data format:

| Every input should be normalized to a Z-score!

= Scikit-learn has this all built in, so it will be easy

scaler X = preprocessing.StandardScaler ()
scaler X.fit(train[vars])

Iw@rs = vars topic i’

train X linear = scaler X.transform(train[vars]) i:

‘ I test X linear = scaler X.transform(test[vars])

* sklearn.preprocessing.StandardScaler () defaults to transforming to Z-scores
= Applying . £fit () with data makes it calculate the mean and standard deviation of each column
* Applying . transform () with data applies the Z-score based on the fitted parameters

= Avoids any look-ahead bias in our testing sample!

https://bashtage.github.io/linearmodels/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

A A
Setting up to use Scikit-Learn

scaler Y = preprocessing.StandardScaler ()
scaler Y.fit(np.array(train.sdvoll) .reshape (-1, 1))

train Y linear = scaler Y.transform(np.array(train.sdvoll) .reshape (-1, 1))
test Y linear = scaler Y.transform(np.array(test.sdvoll) .reshape(-1, 1))

= |nputs are required to be 2D matrices by sklearn

* Thenp.array() .reshape (-1, 1) bitisto castthe Pandas series back into a 2D matrix -
np.array () casts the pandas series object to an array (matrix), but itis only 1D
= .reshape (-1, 1) forcesthe matrix to be a column (and thus 2D) instead of a 1D row matrix

https://scikit-learn.org/stable/
https://numpy.org/doc/stable/reference/generated/numpy.array.html

Simple LASSO, linear
= Fitting a LASSO with a pre-specified penalty is quite easy

reg lasso = linear model.Lasso (alpha=0.1)
reg lasso.fit(train X linear, train Y linear)

I## Lasso (alpha=0.1)

= Seeing theresultis not

Coerce the data Custom coefficient plot function

'"\n'.join([str(i) for i in il Icmefplot(vars, reg lasso.coef)
zip (vars, list(reg lasso.coef))]))

('"Topic 1 n oI', 0.0)

('Topic 2 n oI', -0.0)

('Topic 3_n ol', -0.0)

('Topic 4 n oI', 0.0)

('Topic_ 5 n oI', 0.0)

('"Topic 6 n oI', -0.0)

('"Topic 7 n oI', -0.024652670717254)
('"Topic 8 n oI', 0.0)

('Topic_9_n_oI', 0.0025216975893077123)
('Topic 10 n oI', -0.0)

"v-“

Simple LASSO, logistic

* Instead of using sklearn.linear model.Lasso()...

* Usesklearn.linear model.LoglisticRegression ()
= This function has options for L1, Lo, or both penalties together
= Thus, it supports LASSO, Ridge, and Elastic net, respectively

Prep the data

vars = vars topic + vars financial + vars style i:
E scaler X = | preprc?ceSSLDg .StandardScaler ()
scaler X.fit(train[vars])

StandardScaler ()

train X logistic = scaler X.transform(train[vars]) i:
test X logistic = scaler X.transform(test[vars])

train Y logistic = train.Restate Int

test Y logistic = test.Restate Int

Yavme

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Simple LASSO, logistic

reg lasso = linear model.LogisticRegression(penalty='l1l', solver='saga',6K C=0.1)
reg lasso.fit(train X logistic, train Y logistic)

I## LogisticRegression(C=0.1, penalty='ll', solver='saga')

Coerce the data Custom coefficient plot function

print('\n'.join([str (i) for i in i’ Icmefplot(vars, reg lasso.coef)
zip (vars, list(reg lasso.coef [0]))]))

Coefficient Plot

0.025128726785553102)

(@)
~—

'"Topic 2 n ol',

'"Topic 3 n oI',

'"Topic 4 n ol',
opic 5 n ol',
opic 6 n ol',
opic_7 n oIl', .
opic 8 n oI', -0.0001299021019774882) soft_assets A
opic 9 n oI', 0.0) restruct -
opic 10 n oI', 0.0)

Topic 11 n oI', -0.042083026063157634)

"Topic 12 n oI', -0.017223345281073166)

'"Topic 13 n oI', 0.0)

'Topic:14:n:ol', 0.0) Topic_25_n_ol 1

lnntntaccat

(@)

O~ — — — -

Im_negative_p -
processedsize -
Topic_23 n_ol

O 1 OO O O o o |
O O O O

paralen_s A
cffin 1
repetitious_p A

What is cross validation?

= Validation is where you keep part of the training sample as a hold out sample to evaluate and improve your
algorithm against
= This prevents biasing towards the real hold out sample (the testing sample)
= Cross validation takes this further by making a bunch of validation samples,
* An example of 10-fold cross validation:
1. Randomly splits the data into 10 groups
2. Runs the algorithm on 90% of the data (10 — 1 = 9 groups)
3. Determines the best model based on the performance of the group that was left out
4. Repeat steps2and310 — 1 = 9 more times
5. Uses the best overall model across all 10 hold out samples

= S

. | Scikit-learn has this built in!
N\~ N

B\

10-fold CV LASSO, linear

reg lasso = linear model.LassoCV (cv=10)
reg lasso.fit(train X linear, np.ravel(train Y linear))

I:## LassoCV (cv=10)
Ipmint('The alpha that optimizes R"2 is: {}'.format(reg lasso.alpha))
I## The alpha that optimizes R”2 is: 0.018778122679424136

Icmefplot(vars, reg lasso.coef)

How did the optimization work?

I lasso coefpath(reg lasso, train X linear, train_Y_lineaﬁ I lasso_scorepath(reg lasso, errorbars=False)

Coefficient values
Mean Squared error

5-fold CV LASSO, logistic

reg lasso = linear model.LogisticRegressionCV (F Icoefplot(vars, reg lasso.coef)

penalty='1l1"', solver='saga', Cs=10, cv=5, scoring="roc .

reg lasso.fit(train X logistic, train Y logistic)
Coefficient Plot

I ## LogisticRegressionCV (cv=5, penalty='ll', scoring='roc :
Im_negative_p A

. ' o - ' E | processedsize A
Iprlnt ('The C that optimizes ROC AUC 1s: {}'.format (reg %a: Topic_23_n ol -
soft_assets A

restruct
paralen_s A
cffin 1
Topic_25 n_ol -
repetitious_p A
logtotasset -

I## The C that optimizes ROC AUC is: [2.7825594]

0

passive_p A
midNaudit -
wordlen_s A
Topic_4 n_ol
rsst_acc -
Topic_16_n_ol -
Topic_7_n_ol
oplease_dum -
Topic_13 n_ ol
chg_recv A

0 0 g 0 0 ¢ o 00

How did the optimization work?

I lasso coefpath(reg lasso, train X logistic, train_Y_logES' I lasso_scorepath(reg lasso, errorbars=False)

ROC AUC

Coefficient values

Addendum: Using R

R, glmnet can do everything presented in this section and more!
tis also faster in terms of computation time

t can fit any base GLM family in R

= To replicate our linear LASSO:

cviit <- cv.glmnet.fit(train X linear, train Y linear, 10,
plot (cvfit)
coefplot (cvfit, 'lambda.min', 'magnitude')

= To replicate our logistic LASSO:

cvfit <- cv.glmnet.fit(train X logistic, train Y logistic, 10,
'"binomial', "auc")

plot (cvfit)

coefplot (cvfit, 'lambda.min', 'magnitude')

https://cran.r-project.org/web/packages/glmnet/index.html

c
o
i -
)
>\
al
=
e
()
C
=
)
(Vp)
e
Ll
e1)]
c
-
C
()
=
9
(@}
=

10-fold CV elastic net, linear

= Need to specify values to examine for the ratio between L1 and Ly penalty
= 11 ratio=1isalASSO,11 ratio=0isRidge,in between is elastic net

reg EN = linear model.ElasticNetCV(cv=10, 11 ratio=[.1l, .5, .7, .9, .95, .99, 1])
reg EN.fit(train X linear, np.ravel(train Y linear))
I## ElasticNetCV(cv=10, 11 ratio=[0.1, 0.5, 0.7, 0.9, 0.95, 0.99, 1])

Ipmint('Optimal R*2 at 11 ratio of {} and alpha of {:.4f}'.format(reg EN.1l1 ratio ,reg EN.alpha))

I## Optimal R”2 at 11 ratio of 0.5 and alpha of 0.0376

Icmefplot(vars, reg EN.coef)

5-fold CV elastic net, logistic

reg EN = linear model.LogisticRegressionCV ((o
penalty='elasticnet', solver='saga', Cs=5, cv=5,
scoring="roc auc", 11 ratios=[.9%6, .97, .98, .99, 1])

reg EN.fit(train X logistic, train Y logistic)

penalty='elasticnet', scoring='ro

print ('The 11 ratio that optimizes ROC AUC 1is {}'.formdé%
reg EN.11 ratio [0]))

I## LogisticRegressionCV (Cs=5, cv=5, 11 ratios=[0.96, 0.97

I## The 11 ratio that optimizes ROC AUC is 0.96

print ('The C that optimizes ROC AUC is {:.4f}'.format (i’
reg EN.C [0]))

I## The C that optimizes ROC AUC is 1.0000

I coefplot (vars, reg EN.coef)

Coefficient Plot

Im_negative _p A
processedsize A
Topic_23 n_ol
soft_assets A
restruct -
paralen_s -
cffin -
repetitious_p A
Topic_25 n_ol A
logtotasset -
passive_p A
midNaudit
wordlen_s A
rsst_acc -
Topic_4 n_ol
oplease_dum -
Topic_16_n_ol -
chg_recv A
Topic_13 n_ol A
Topic_7 n_ol

Tonic 21 n ol 4

Addendum: Using R

* InR, glmnet can do this too

= lambda=1is LASSO

* lambda=0 is Ridge

= |f lambda is set between 0 and 1, it’s an elastic net!
= Toreplicate our linear LASSO:

cviit <- cv.glmnet.fit(train X linear, train Y linear, 10,

plot (cvfit)
coefplot (cvfit, 'lambda.min', 'magnitude')

= To replicate our logistic LASSO:

cviit <- cv.glmnet.fit(train X logistic, train Y logistic, 10,
'"binomial', "auc")

plot (cvfit)

coefplot (cvfit, 'lambda.min', 'magnitude')

https://cran.r-project.org/web/packages/glmnet/index.html

-'

Comparing logistic model performance

LASSO Elastic net

metrics.plot roc curve(reg lasso, test X logistic, (o metrics.plot roc curve(reg EN, test X logistic,
test Y logistic) test Y logistic)

Tue Positive Rate (Positive label: 1)
Tue Positive Rate (Positive label: 1)

—— LogisticRegressionCV (AUC = 0.66)

—— LogisticRegressionCV (AUC = 0.66)

D4 06 08 10 D4 06 08 10
False Positive Rate (Positive label: 1) False Positive Rate (Positive label: 1)

&
s
)
=
O
c
O
O

12 .1

Wrap-up

Econometrics in python

= Feasible, though perhaps not the most efficient
* R and Stata are both better for this

Machine learning regression in python (Elastic net family)

= Python is better at this

* |n some circumstances, these techniques are
= More econometrically defensible
= More robust
= More accurate

= Ris still better for this

We will see more of these methods where python will be the best choice

Packages used for these slides

Python R

linearmodels kableExtra
matplotlib knitr
numpy reticulate
pandas revealjs
scikit-learn

stargazer

statsmodels

) .
,r,a e Sl @
— },ﬂ-ﬂ-—n—_ “e _...-

P i - - g ___ ey

References

Bao, Yang, and Anindya Datta. “Simultaneously discovering and quantifying risk types from textual risk
disclosures.” Management Science 60, no. 6 (2014): 1371-1391.

Brown, Nerissa C., Richard M. Crowley, and W. Brooke Elliott. “What are you saying? Using topic to detect
financial misreporting.” Journal of Accounting Research 58, no. 1 (2020): 237-291.

Chahuneau, Victor, Kevin Gimpel, Bryan R. Routledge, Lily Scherlis, and Noah A. Smith. “Word salad: Relating
food prices and descriptions.” In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, pp. 1357-1367. 2012.

Sun, Liyang, and Sarah Abraham. “Estimating dynamic treatment effects in event studies with
heterogeneous treatment effects.” Journal of Econometrics (2020).

L
|H"
K iy

Custom code

Replication of R's coefplot function for use with sklearn's linear and logistic LASSO

def coefplot (names, coef, title=None):
Make sure coef 1s 1list, cast to list if needed.
if isinstance(coef, np.ndarray):
if len(coef.shape) > 1:
coef = list (coef[0])
else:
coef = list (coef)

Drop unneeded vars
data = []
for i in range (0, len(coef)):
if coef[i] '= 0:
data.append([names[i], coef[i]])
data.sort (key=lambda x: x[1]

Add in a key for the plot axis
data = [data[i] + [i+l1l] for i in range (0,len(data))]

fig, ax = plt.subplots(figsize=(4,0.25*1len (data)))
ax.scatter([i[1] for i in data], [i[2] for i in datal])

.grid(axis='y")
.set (xlabel="Fitted value", ylabel="Residual", title=(title if title is not None else "Coefficient Plot"))

ax.axvline (x=0, linestyle='dotted')
ax.set yticks([i[2] for i in data])

ax.set yticklabels([i[0] for i in data])

return ax

Custom co

Replication of R's glmnet's function plotting coefficient paths for use with sklearn's linear and logistic LASSO

def lasso coefpath (model, X, Y):
if 'alphas ' in dir (model) :

alphas = reg lasso.alphas

coefs = []

for a in alphas:
temp lasso = linear model.Lasso(alpha=a, warm start=True)
temp lasso.fit (X, Y)
coefs.append(temp lasso.coef)

fig, ax = plt.subplots/()

ax.plot (alphas, coefs)

ax.set xscale('log')

ax.set xlim(ax.get xlim() [::-1])
ax.set xlabel ("alpha")

ax.set ylabel ("Coefficient values")

return ax
elif 'Cs ' in dir(model):

Cs = reg lasso.Cs_

coefs = []

for c in Cs:
temp lasso = linear model.LogisticRegression(penalty='l1l', solver='saga',6 C=c, warm start=True)
temp lasso.fit (X, Y)
coefs.append(temp_lasso.coef_[O])

fig, ax = plt.subplots/()

ax.plot (Cs, coefs)

ax.set xscale('log')

ax.set xlabel ("C")

ax.set ylabel ("Coefficient values")

return ax

else:
print ("Does not match linear model.LassoCV or linear model.LogisticRegressionCV")
return False

Custom code

Replication of R's glmnet's function plotting metric paths for use with sklearn's linear and logistic LASSO

def lasso scorepath (model, errorbars=True) :
if 'alphas ' in dir (model) :
alphas = reg lasso.alphas
mean = np.mean(reg lasso.mse path , axis=l)
std = np.std(reg lasso.mse path , axis=1l)*1.96

fig, ax = plt.subplots/()

if errorbars:
ax.errorbar (alphas, mean, yerr=std, ecolor="lightgray", elinewidth=2, capsize=4, capthick=2)
else:
ax.plot (alphas, mean)
ax.set xscale('log')
ax.set xlabel ("alpha")
ax.set ylabel ("Mean Squared error")

return ax
elif 'Cs ' in dir(model):
Cs = reg lasso.Cs_
mean = np.mean(reg lasso.scores [1], axis=0)
std = np.std(reg lasso.scores [1], axis=0)*1.96

fig, ax = plt.subplots/()

if errorbars:
ax.errorbar (Cs, mean, yerr=std, ecolor="lightgray", elinewidth=2, capsize=4, capthick=2)
else:
ax.plot (Cs, mean)
ax.set xscale('log')
ax.set xlabel ("C")
ax.set ylabel ("ROC AUC")

return ax

else:
print ("Does not match linear model.LassoCV or linear model.LogisticRegressionCV")
return False

