
Session 2: Machine learning Drop-ins

and Ensembling

2021 July 12

Dr. Richard M. Crowley
 rcrowley@smu.edu.sg

http://rmc.link/

1

mailto:rcrowley@smu.edu.sg
http://rmc.link/

Main applications

2 . 1

Applications

1. Predicting future stock return volatility based on 10-K filing discussion

▪ We will apply SVR to this

2. Predicting 10-K/A irregularities using finance, textual style, and topics

▪ We will apply SVM (SVC), XGBoost, and ensembling to this

1. Gain familiarity with using pure machine learning approaches

2. Try out a non-linear approach

3. Understand what ensembling is and why it is useful in some applications

Continue from Session 1

Goals

2 . 2

Dependent Variable

▪ Future stock return volatility

Independent Variables

▪ A set of 31 measures of what was discussed in a

firm’s annual report

Application 1: Linear problem (Recap)

▪ Idea: Discussion of risks, such as as foreign currency risks, operating risks, or legal risks should provide

insight on the volatility of future outcomes for the firm.

▪ Testing: Predicting future stock return volatility based on 10-K filing discussion

This test mirrors Bao and Datta (2014 MS)

2 . 3

Dependent Variable

Intentional misreporting as stated in 10-K/A filings

Independent Variables

▪ 17 Financial measures

▪ 20 Style characteristics

▪ 31 10-K discussion topics

Application 2: Binary problem (Recap)

▪ Idea: Using the same data as in Application 1, can we predict instances of intentional misreporting?

▪ Testing: Predicting 10-K/A irregularities using finance, textual style, and topics

This test mirrors a subset of Brown, Crowley and Elliott (2020 JAR)

2 . 4

SVM: Support Vector Machine

3 . 1

▪ Note how in this example. the points that

matter are those that are on the error

boundaries

▪ The rest of the points aren’t affecting the

outcome much

▪ You could shi� them around on their

respective side of the line with minimal

impact

What is SVM?

▪ SVM-type algorithms generally focus on separability under some tolerance for error

▪ This is quite different from our regression approaches

▪ Regression focuses on minimizing an error function

Simpler case: Binary Classification

From the sklearn documentation

3 . 2

https://scikit-learn.org/stable/modules/svm.html

1. Non-linear kernels

▪ SVM can be linear or non-linear

▪ 3 examples to the right,

2. Different objective function than regression

▪ Fits better with classification, conceptually

3. Can work with non-numeric data (text, images,

graphs)

What are the benefits of SVM?

adapted from the

sklearn documentation

3 . 3

https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html

What are the costs of SVM?

1. Doesn’t work well on noisy data

2. Can be slow to train on datasets with many observations

3. Difficult to interpret model when using a non-linear classifier

4. Can be difficult to pick an optimal kernel

3 . 4

Binary classification

▪ Fast linear model:

▪

▪ General model:

▪

Regression

▪ Fast linear model:

▪

▪ General model:

▪

Implementing SVM in python

▪ For this we will use again

▪ To keep things simple and interpretable, we will use linear kernels in these examples

▪ Both linear methods have a hyperparameter C which controls the amount of regularization (inversely)

▪ We can tune this using sklearn as well!

sklearn

sklearn.svm.LinearSVC()

sklearn.svm.SVC()

sklearn.svm.LinearSVR()

sklearn.svm.SVR()

3 . 5

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

Why are there two ways each to run a linear SVM model?

▪ The two ways use different backends

▪ The LinearSV_ methods use a backend called liblinear

▪ The SV_ methods use a backend called libsvm

▪ Liblinear is faster but only supports linear kernels

▪ Time to run is roughly linear in the number of observations

▪ Libsvm is fast on small samples, but time increase for additional observations is polynomial

▪ The results aren’t quite the same across backends

▪ Liblinear uses a penalized intercept

▪ Liblinear optimizes a “squared hinge” loss function

▪ Libsvm optimizes “hinge” loss

Both developed out of National Taiwan University, and both maintained by the same

professor

3 . 6

Implementing LinearSVC for irregularity detection

▪ To train a simple linear SVM classifier, we can call pretty much the same way that we

used earlier

▪ Note: The dual=False option is to maintain efficiency when the number of observations is great than

the number of variables

▪ No regression table built in, but we can visualize it with coefplot()

svm.LinearSVC()

linear_model.Lasso()

model_svc = svm.LinearSVC(C=1, dual=False)

model_svc.fit(train_X_logistic, train_Y_logistic)

coefplot(vars_logistic, model_svc.coef_)

3 . 7

https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html

Visualizing LinearSVC for irregularity detection

coefplot(vars_logistic, model_svc.coef_) metrics.plot_roc_curve(model_svc, test_X_logistic,

 test_Y_logistic)

3 . 8

Optimizing the C parameter

C_range = np.logspace(-2, 6, 9)

param_grid = dict(C=C_range)

cv = model_selection.StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=1)

grid_svc = model_selection.GridSearchCV(svm.LinearSVC(dual=False), param_grid=param_grid, cv=cv)

grid_svc.fit(train_X_logistic, train_Y_logistic)

GridSearchCV(cv=StratifiedShuffleSplit(n_splits=5, random_state=1, test_size=0.2,
train_size=None),
estimator=LinearSVC(dual=False),
param_grid={'C': array([1.e-02, 1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04, 1.e+05,
1.e+06])})

print("The best parameters are %s with a score of %0.2f"

 % (grid_svc.best_params_, grid_svc.best_score_))

3 . 9

Comparison pre- vs post-optimization: ROC

Unoptimized Optimized

metrics.plot_roc_curve(model_svc, test_X_logistic,

 test_Y_logistic)

metrics.plot_roc_curve(grid_svc, test_X_logistic,

 test_Y_logistic)

3 . 10

Comparison pre- vs post-optimization: Coefficients

Unoptimized Optimized

coefplot(vars_logistic, model_svc.coef_) coefplot(vars_logistic,

 grid_svc.best_estimator_.coef_)

3 . 11

Visualizing with UMAP

▪ UMAP stands for Uniform Manifold Approximation and Projection for Dimension Reduction

▪ From Leland, Healy and Melville (2018) (2k+ cites already)

▪ It is useful for dimensionality reduction, like PCA

▪ We will use it to reduce 68 dimensions down to 2

▪ It is useful for plotting 2 dimensional representations of high dimensional data by maintaining local distance

structures, like t-SNE

▪ Unlike t-SNE, it is efficient to run

What is UMAP?

UMAP essentially uses Reimannian manifolds and tries to maintain geodesic distance

around a point – it is well supported theoretically

3 . 12

Visualizing what SVM is doing using UMAP

train_Yhat_logistic = logistic(grid_svc.decision_function(train_X_logistic))

umap_compare_svm(train_X_logistic, train_Yhat_logistic, train_Y_logistic,

 clip=[[0.25, 0.3], [0, 1]], binary=5, title="Full sample")

The data is really noisy

3 . 13

Visualizing what SVM is doing using UMAP

umap_compare_svm(train_X_logistic, train_Yhat_logistic, train_Y_logistic, clip=[[0.25, 0.3], [0, 1]], cmap='coolwarm', binary=

 subset=((train_Y_logistic==1) | (np.random.rand(len(train_Y_logistic))<0.05)),

 title="Performance on actual irregularities (Large) and random sample of non-irregularities")

Type I errors are pretty minimal – the algorithm is rarely very off

3 . 14

Visualizing what SVM is doing using UMAP

umap_compare_svm(train_X_logistic, train_Yhat_logistic, train_Y_logistic, clip=[[0.25, 0.3], [0, 1]], cmap='coolwarm', binary=

 subset=((train_Y_logistic==0) & (np.random.rand(len(train_Y_logistic))<0.05)),

 title="Performance on a random sample of non-irregularities")

There are definitely some combinations of parameters that are consistently leading to

Type II errors

3 . 15

SVM for regression: SVR

model_svr = svm.LinearSVR(C=1, dual=False,

 loss='squared_epsilon_insensitive')

model_svr.fit(train_X_linear, np.ravel(train_Y_linear))

C_range = np.logspace(-4, 6, 11)

param_grid = dict(C=C_range)

cv = model_selection.KFold(n_splits=5)

grid_svr = model_selection.GridSearchCV(

 svm.LinearSVR(dual=False,

 loss="squared_epsilon_insensitive"),

 param_grid=param_grid, cv=cv)

grid_svr.fit(train_X_linear, np.ravel(train_Y_linear))

GridSearchCV(cv=KFold(n_splits=5, random_state=None, sh
estimator=LinearSVR(dual=False,
loss='squared_epsilon_
param_grid={'C': array([1.e-04, 1.e-03, 1
1.e+04, 1.e+05, 1.e+06])})

print("The best parameters are %s with a score of %0.2f"

 % (grid_svr.best_params_, grid_svr.best_score_))

3 . 16

SVR coefficients

coefplot(vars_linear, model_svr.coef_) coefplot(vars_linear, grid_svr.best_estimator_.coef_)

3 . 17

Visualizing SVR with UMAP

train_Yhat_linear = model_svr.predict(train_X_linear)

umap_compare_svm(train_X_linear, train_Yhat_linear, train_Y_linear, clip=[[0, 2], [0, 2]])

Here we see some clusters that are indeed higher in volatility being picked up correctly by

SVM

3 . 18

Addendum: Using R

▪ SVM is easy to implement using the svm() function from

▪ The package also implements SVM, focusing largely on kern-based ML algorithms

e1071

kernlab

3 . 19

https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/kernlab/index.html

xGBoost: Extreme Gradient Boosting

4 . 1

What is XGBoost

▪ eXtreme Gradient Boosting

▪ A simple explanation:

1. Start with 1 or more decision trees & check error

2. Make more decision trees & check error

3. Use the difference in error to guess a another model

4. Repeat #2 and #3 until the model’s error is stable

4 . 2

XGBoost: Foundations

▪ XGBoost has its roots in AdaBoost (Adaptive Boosting)

▪ Adaboost uses a sequence of weak learners to build a model

▪ Combats against overfitting, and the sequence of individually weak models converges to be a strong

learner

▪ The convergence part is mathematically proven!

▪ XGBoost isn’t as theoretically founded as Adaboost’

▪ It trades off some mathematical rigor for flexibility and empirical performance

4 . 3

Benefits of XGBoost

▪ Tree based

▪ Inherently non-parametric (no assumptions on data distribution)

▪ Non-linear but still somewhat interpretable

▪ Robust to noise

▪ Can handle missing or categorical variables

▪ Robust to overfitting (somewhat)

▪ Implements gradient descent to sequentially grow trees

▪ Parallelizable (so it can be computed efficiently)

▪ Supports regularization

As compared to other tree algorithms

4 . 4

Drawbacks of XGBoost

▪ This makes it difficult to train a model well

▪ But it is hard to beat a well trained XGBoost model with anything else we have discussed thus far

▪ It may technically be interpretable, but interpreting a big model is still difficult

▪ Like most tree-based methods, it struggles with extrapolation that is outside the bounds of its input data.

So

many

hyperparameters.

4 . 5

XGBoost in economics

▪ What is the problem?

▪ Predicting one-day mortality to show whether air pollution leads to more deaths in vulnerable

populations

▪ The focus of the papers is largely on causality

▪ The treatment is based on wind direction

▪ Wind direction associated with above median pollution conditional on fixed effects

▪ County, year-month, and state-month FEs

Deryugina, Heutal, Miller, Molitor and Reif (2019 AER)

4 . 6

Why use XGBoost here?

▪ To “thoroughly investigate heterogeneity in vulnerability to dying from acute air pollution exposure”

▪ Following a particular method from Chernozhukov, Demirer, Duflo, and Fernandez-Val (2018)

▪ We won’t focus on the method today, just the XGBoost implementation

▪ We will focus on the general method in Session 5

▪ Technically, the CDDF methodology works with any ML classifier

▪ Cites Einav et al. (2018 Science) on the efficacy of XGBoost for mortality for medicare populations

▪ 2 issues

1. Low probability of dying on any given day

▪ Solution: Downsample the data to artificially increase the probability of dying

2. 20 billion observations in the sample…

▪ Simpler fixed effects + partitioning the data (250 times) + averaging

▪ This is solvable now in XGBoost with larger than memory computation

4 . 7

Results

4 . 8

Implementing XGBoost in python: Setup

▪ The package has two different interfaces for running models

▪ The default version (which invokes) needs us to convert data

▪ There is also an sklearn compatible version that is useful for running cross validation

▪ This uses the same matrices we used for SVM as input

xgboost

xgb.train()

dtrain = xgb.DMatrix(train_X_logistic, label=train_Y_logistic, feature_names=vars_logistic)

dtest = xgb.DMatrix(test_X_logistic, label=test_Y_logistic, feature_names=vars_logistic)

4 . 9

https://github.com/dmlc/xgboost
https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.train

XGBoost parameters

param = {

 'booster': 'gbtree', # default -- tree based

 'nthread': 8, # number of threads to use for parallel processing

 'objective': 'binary:logistic', # binary, output probabilities

 'eval_metric': 'auc', # maximize ROC AUC

 'eta': 0.3, # shrinkage; [0, 1], default 0.3

 'max_depth': 6, # maximum depth of each tree; default 6

 'gamma': 0.1, # set above 0 to prune trees, [0, inf], default 0

 'min_child_weight': 1, # higher leads to more pruning of tress, [0, inf], default 1

 'subsample': 0.8, # Randomly subsample rows if in (0, 1), default 1

 'colsample_bytree': 0.8, # Randomly subsample variables if in (0, 1), default 1

 'random_state': 70

}

num_round = 30

4 . 10

Running XGBoost

▪ We use to fit the modelxgb.train()

model_xgb_logistic = xgb.train(param, dtrain, num_round)

test_Yhat_xgb_logistic = model_xgb_logistic.predict(dtest

auc = metrics.roc_auc_score(test_Y_logistic, test_Yhat_xgb

print('AUC is {}'.format(auc))

fpr, tpr, thresholds = metrics.roc_curve(test_Y_logistic,

display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_au

display.plot() 4 . 11

https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.train

Analyzing the model: Importance plot

▪ The importance plot shows which variables have the greatest impact on the model

▪ A higher number = more important

▪ In this case, we see a mix of sentiment, financial, topic, and grammatical measures in the top 5 measures

fig, ax = plt.subplots(figsize=(8,16))

xgb.plot_importance(model_xgb_logistic, ax=ax)

4 . 12

Analyzing the model: Seeing the trees

One of 30 trees in the model

4 . 13

Aside: Exporting trees

If you have installed, you can use that to export pictures of each tree in the modelgraphviz

If you want to view every tree contained in your final model, the below code will dump a PNG file of each tree

into a "trees/" directory in the same folder as this file.

num_trees = len(model_xgb_logistic.get_dump())

for tree_index in range(0, num_trees):

 dot = xgb.to_graphviz(model_xgb_logistic, num_trees=tree_index)

 dot.format = 'png'

 dot.render("xgb_trees/tree{}".format(tree_index))

4 . 14

https://graphviz.readthedocs.io/en/stable/manual.html

Aside: Parameter optimization

▪ Parameter optimization for a model with so many parameters is tricky

▪ A fully worked out version is included in the jupyter notebook for this session

▪ It starts from the same parameters we used for our model

▪ It then does a grid search to optimize:

▪ max_depth and min_child_weight

▪ max_depth and min_child_weight

▪ eta

▪ gamma

▪ subsample and colsample_bytree

▪ subsample and colsample_bytree

▪ Number of rounds

The example is less exhuastive than you should be for a research paper – use finer grids,

but it will take much longer to run

4 . 15

Addendum: Using R

▪ The same package, works for this in R

▪ The level of support across R and python is the same

▪ Instead of using for hyperparameter tuning, you can use or

xgboost

sklearn caret parsnip

4 . 16

https://github.com/dmlc/xgboost
https://scikit-learn.org/stable/
http://topepo.github.io/caret/index.html
https://tidymodels.github.io/parsnip/

Ensembling

5 . 1

What are ensembles?

▪ Ensembles are models made out of models

▪ Ex.: You train 3 models using different techniques, and each seems to work well in certain cases and poorly in

others

▪ If you use the models in isolation, then any of them would do an OK (but not great) job

▪ If you make a model using all three, you can get better performance if their strengths all shine through

▪ Ensembles range from simple to complex

▪ Simple: a (weighted) average of a few model’s predictions

5 . 2

When are ensembles useful?

1. You have multiple models that are all decent, but none are great

▪ And, ideally, the models’ predictions are not highly correlated

5 . 3

When are ensembles useful?

2. You have a really good model and a bunch of mediocre models

▪ And, ideally the mediocre models are not highly correlated

5 . 4

When are ensembles useful?

3. You really need to get just a bit more accuracy/less error out of the model, and you have some other models

lying around

4. You want a more stable model

▪ It helps to stabilize predictions by limiting the effect of errors or outliers produced by any one model on

your prediction

▪ Think: Diversification

5 . 5

A simple ensemble (averaging)

▪ For continuous predictions, simple averaging is viable

▪ O�en you may want to weight the best model a bit higher

▪ For binary or categorical predictions, consider averaging ranks

▪ i.e., instead of using a probability from a logit, use ranks 1, 2, 3, etc.

▪ Ranks average a bit better, as scores on binary models (particularly when evaluated with measures like

AUC) can have extremely different variances across models

▪ In which case the ensemble is really just the most volatile model’s prediction…

▪ Not much of an ensemble

5 . 6

A more complex ensemble (voting model)

▪ If you have a model the is very good at predicting a binary outcome, ensembling can still help

▪ This is particularly true when you have other models that capture different aspects of the problem

▪ Let the other models vote against the best model, and use their prediction if they are above some threshold

of agreement

5 . 7

A lot more complex ensemble

▪ Stacking models (2 layers)

1. Train models on subsets (folds) of the training data

2. Make predictions for each model on the folds it wasn’t applied to

3. Train a new model that takes those predictions as inputs (and optionally the dataset as well)

▪ Blending (similar to stacking)

▪ Like stacking, but using predictions on a hold out sample instead of folds (and thus all models are using

the same data for predictions)

5 . 8

A simple averaging ensemble of our models

test_X_ens = pd.DataFrame({'XGBoost': final.predict_proba(test_X_logistic)[:,1],

 'LinearSVC': logistic(grid_svc.decision_function(test_X_logistic)),

 'EN': reg_EN.predict_proba(test_X_logistic)[:,1],

 'lasso': reg_lasso.predict_proba(test_X_logistic)[:,1],

 'logistic': fit_logit.predict(test[vars_logistic])})

rank_X_ens = test_X_ens.rank()

arank_X_ens = rank_X_ens.XGBoost + rank_X_ens.LinearSVC + rank_X_ens.EN + rank_X_ens.lasso + rank_X_ens.logistic

auc = metrics.roc_auc_score(test_Y_logistic, arank_X_ens)

fpr, tpr, thresholds = metrics.roc_curve(test_Y_logistic, arank_X_ens)

display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=auc)

display.plot()

5 . 9

Practicalities

▪ Methods like stacking or blending are much more complex than a simple averaging or voting based

ensemble

▪ But in practice they perform slightly better

▪ As such, we may not prefer the complex ensemble in practice, unless we only care about accuracy

Recall the tradeoff between complexity and accuracy!

Example: In 2009, Netflix awarded a $1M prize to the BellKor’s Pragmatic Chaos team for

beating Netflix’s own user preference algorithm by >10%. The alogorithm was so

complex that Netflix . It instead used a simpler algorithm with an 8%

improvement.

never used it

5 . 10

https://www.wired.com/2012/04/netflix-prize-costs/

[Geoff Hinton’s] Dark knowledge

▪ Complex ensembles work well

▪ Complex ensembles are exceedingly computationally intensive

▪ This is bad for running on small or constrained devices (like phones)

▪ We can (almost) always create a simple model that approximates the complex model

▪ Interpret the above literally – we can train a model to fit the model

Dark knowledge

5 . 11

Dark knowledge

▪ Train the simple model not on the actual DV from the training data, but on the best algorithm’s (so�ened)

prediction for the training data

▪ Somewhat surprisingly, this new, simple algorithm can work almost as well as the full thing!

5 . 12

An example of this dark knowledge

▪ Google’s full model for interpreting human speech is >100GB

▪ As of October 2019

▪ In Google’s Pixel 4 phone, they have human speech interpretation running locally on the phone

▪ Not in the cloud like it works on any other Android phone

▪ They can approximate the output of the complex speech model using a 0.5GB model

▪ 0.5GB isn’t small, but it’s small enough to run on a phone

How did they do this?

5 . 13

Learning more about Ensembling

▪

▪

▪ For more details on dark knowledge, applications, and the so�ening transform

▪ His interesting (though highly technical)

▪

▪ A short guide on stacking with nice visualizations

▪

▪ A comprehensive list of ensembling methods with some code samples and applications discussed

▪

▪ Nicely covers bagging and boosting (two other techniques)

Scikit-learn’s documentation on ensemble methods it supports

Geoff Hinton’s Dark Knowledge slides

Reddit AMA

A Kaggler’s Guide to Model Stacking in Practice

Kaggle Ensembling Guide

Ensemble Learning to Improve Machine Learning Results

There are many ways to ensemble, and there is no specific guide as to what is best. It may

prove useful in the group project, however.

5 . 14

https://scikit-learn.org/stable/modules/ensemble.html
http://www.ttic.edu/dl/dark14.pdf
https://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/
http://blog.kaggle.com/2016/12/27/a-kagglers-guide-to-model-stacking-in-practice/
https://mlwave.com/kaggle-ensembling-guide/
https://blog.statsbot.co/ensemble-learning-d1dcd548e936

Addendum: Using R

▪ There are a couple interesting packages in R for ensembling:

▪ The package aims to automate building ensembles

▪ Think of it like an automated cross-validation for ensemble construction

▪ The package allows you to specify an ensemble and train the underlying models together

▪ You can also roll your own ensemble as we did in the example earlier

Superlearner

EnsembleML

5 . 15

https://github.com/ecpolley/SuperLearner
https://github.com/nagdevAmruthnath/EnsembleML

Conclusion

6 . 1

Exercise

1. Import a file from one of your papers using Pandas:

▪ csv file using

▪ Stata using

▪ SAS using

2. Pick a regression to replicate

▪ Ideally one without fixed effects (or where they are not critical)

▪ Or one hot encode the fixed effects using

3. Define a variable that is a list of every IV and control in the regression

4. Replicate some or all of the following analyses, using the code from the jupyter notebooks

▪ Logistic regression, LASSO, elastic net, SVM (SVC or SVR), XGBoost

▪ If you are replicating a linear model, replace reg:logistic with reg:linear

pd.read_csv()

pd.read_stata()

pd.read_sas()

pd.get_dummies()

6 . 2

https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_stata.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_sas.html
https://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html

Wrap-up

▪ A flexible model for classification

▪ Good when our interest is in getting the most observations correctly classified

▪ An extremely flexible and efficient non-linear algorithm

▪ Very capable for classification or in-sample regression

▪ Able to solve a wide variety of problems

▪ Combining algorithms to produce a more stable (and sometimes more accurate) model

SVM

XGBoost

Ensembling

6 . 3

Python

▪ matplotlib

▪ numpy

▪ pandas

▪ scikit-learn

▪ statsmodels

▪ umap-learn

▪ xgboost

R

▪ kableExtra

▪ knitr

▪ reticulate

▪ revealjs

Packages used for these slides

6 . 4

References

▪ Bao, Yang, and Anindya Datta. “Simultaneously discovering and quantifying risk types from textual risk

disclosures.” Management Science 60, no. 6 (2014): 1371-1391.

▪ Brown, Nerissa C., Richard M. Crowley, and W. Brooke Elliott. “What are you saying? Using topic to detect

financial misreporting.” Journal of Accounting Research 58, no. 1 (2020): 237-291.

▪ Chernozhukov, Victor, Mert Demirer, Esther Duflo, and Ivan Fernandez-Val. Generic machine learning

inference on heterogenous treatment effects in randomized experiments. No. w24678. National Bureau of

Economic Research, 2018

▪ Deryugina, Tatyana, Garth Heutel, Nolan H. Miller, David Molitor, and Julian Reif. “The mortality and medical

costs of air pollution: Evidence from changes in wind direction.” American Economic Review 109, no. 12

(2019): 4178-4219.

▪ Einav, Liran, Amy Finkelstein, Sendhil Mullainathan, and Ziad Obermeyer. “Predictive modeling of US health

care spending in late life.” Science 360, no. 6396 (2018): 1462-1465.

▪ McInnes, Leland, John Healy, and James Melville. “Umap: Uniform manifold approximation and projection

for dimension reduction.” arXiv preprint arXiv:1802.03426 (2018).

6 . 5

Custom code

Side-by-side plot of UMAP coloring by predictions and actual values

Cut down version of umap.plot.points to remove dependencies on datashader, bokeh, holoviews, scikit-image, and colorcet
def umap_compare_svm(X, Yhat, Y, clip = None, cmap='viridis', subset=None, binary=False, title=None):
 reducer = umap.UMAP()
 umap_object = reducer.fit(X)
 embed = _get_embedding(umap_object)
 if clip is not None:
 Yhat = np.clip(Yhat, clip[0][0], clip[0][1])
 Y = np.clip(Y, clip[1][0], clip[1][1])

 fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8,4))
 if subset is not None:
 embed_X = embed[subset,0]
 embed_Y = embed[subset,1]
 Y = np.array(Y[subset])
 X = np.array(X[subset])
 Yhat = np.array(Yhat[subset])
 else:
 embed_X = embed[:, 0]
 embed_Y = embed[:, 1]

 point_size = 100.0 / np.sqrt(len(embed_X))

 if binary:
 point_size = point_size * (1 + Y * binary)

 # color by values for Yhat
 points = ax1.scatter(embed_X, embed_Y, s=point_size, c=Yhat, cmap=cmap)
 fig.colorbar(points, ax=ax1, orientation='horizontal')

 ax1.set(xticks=[], yticks=[])
 ax1.set_title("Predicted values")

 # color by values for Y
 points = ax2.scatter(embed_X, embed_Y, s=point_size, c=Y, cmap=cmap)

 fig.colorbar(points, ax=ax2, orientation='horizontal')

 ax2.set(xticks=[], yticks=[])
 ax2.set_title("Actual values")

 if title is not None:
 fig.suptitle(title)

 if clip is not None:
 foot = 'Predicted values winsorized to [{}, {}]; Actual values winsorized to [{}, {}]'.format(clip[0][0], clip[0][1], clip[1][0], clip[1][1])
 plt.figtext(0.2, 0.3, foot, horizontalalignment='left')

 return (ax1, ax2)

6 . 6

Custom code

Replication of R's coefplot function for use with sklearn's linear and logistic LASSO
def coefplot(names, coef, title=None):
 # Make sure coef is list, cast to list if needed.
 if isinstance(coef, np.ndarray):
 if len(coef.shape) > 1:
 coef = list(coef[0])
 else:
 coef = list(coef)

 # Drop unneeded vars
 data = []
 for i in range(0, len(coef)):
 if coef[i] != 0:
 data.append([names[i], coef[i]])
 data.sort(key=lambda x: x[1])

 # Add in a key for the plot axis
 data = [data[i] + [i+1] for i in range(0,len(data))]

 fig, ax = plt.subplots(figsize=(6,0.25*len(data)+0.25), constrained_layout=True)

 ax.scatter([i[1] for i in data], [i[2] for i in data])

 ax.grid(axis='y')
 ax.set(xlabel="Fitted value", ylabel="Residual", title=(title if title is not None else "Coefficient Plot"))

 ax.axvline(x=0, linestyle='dotted')
 ax.set_yticks([i[2] for i in data])
 ax.set_yticklabels([i[0] for i in data])

 return ax

6 . 7

Custom code

Helper functions

Logistic function in numpy
def logistic(x):
 return 1 / (1 + np.exp(-1 * x))

From umap.plot source code on Github
def _get_embedding(umap_object):
 if hasattr(umap_object, "embedding_"):
 return umap_object.embedding_
 elif hasattr(umap_object, "embedding"):
 return umap_object.embedding
 else:
 raise ValueError("Could not find embedding attribute of umap_object")

6 . 8

