
Session 3: Working with Text Data

2021 July 19

Dr. Richard M. Crowley

 rcrowley@smu.edu.sg

http://rmc.link/

1

mailto:rcrowley@smu.edu.sg
http://rmc.link/

Main application

2 . 1

Application 1: Analyze 1 annual report

▪ Citigroup in 2014

▪ Import text

▪ Pattern matching

▪ Counts

▪ Sentiment

▪ Grammar parsing

▪ Grammar

▪ Named entities

We will expand to the full year of annual reports in Session 4

2 . 2

▪ Unlike SEC filings, FASB speeches are not nicely

indexed

▪ Use python + Beautiful Soup to determine

where speeches are located on the FASB

webpage

Application 2: Scraping data from FASB

▪ Idea: Scrape FASB speeches

2 . 3

Getting started with text

3 . 1

Special characters in python

▪ \t is tab

▪ \r is newline (files from Macs)

▪ \r\n is newline (files from Windows)

▪ \n is newline (files from *nix-based systems)

▪ This is the usual convention used in data sets

▪ \' is an explicit single quote – it always works

▪ E.g., '\'Single\'' works, though so would "'Single'"

▪ \" is an explicit double quote – it always works

▪ E.g., "\"Double\"" works, though so would '"Double"'

▪ \\ is a backslash

▪ Since \ is used to denote special characters, it would be ambiguous to allow a single backslash

In some contexts, the following are also special: . ^ $ * + ? {} [] | ()

3 . 2

Defining a string

1. Use single quotes

2. Use double quotes

print('This is a string')

This is a string

print("This is also a string")

This is also a string

3 . 3

Defining a string

3. Multi-line strings: Triple quoting with either ''' or """

4. Multi-line strings: use a \n instead

print("""This is a multi-line

string since it has triple quotes""")

This is a multi-line
string since it has triple quotes

print('This is also two lines\nsince it has a newline')

This is also two lines
since it has a newline

3 . 4

Importing a single text file

▪ Two ways to read a file:

▪ A more proper variant:

▪ The finally: part ensures the file is closed even if there is an error reading it

#1: Open the file, read it, close it

f = open('../Data/0001104659-14-015152.txt', 'rt')

text = f.read()

f.close()

f = open('../Data/0001104659-14-015152.txt', 'rt')

try:

 text = f.read()

finally:

 f.close()

3 . 5

Importing a single text file

▪ Guarantees the file gets closed properly

▪ A bit more readable as well

▪ This is the preferred approach when possible

#2: Using a context manager (e.g., a with statement) [Better approach!]

with open('../Data/0001104659-14-015152.txt', 'rt') as f:

 text = f.read()

3 . 6

Finding text by location

▪ What is the wrap.fill() above? It is from python’s built-in textwrap library

print(text[9895:9929])

Citis net income was $13.5 billion

print(wrap.fill(text[28899:29052]))

Net income decreased 14%, mainly driven by lower revenues and lower loan loss
reserve releases, partially offset by lower net credit losses and expenses.

import textwrap

wrap = textwrap.Textwrap(width=80)

3 . 7

Commonly used text functions

1. Convert anything to a string with str()

2. Combining text with +

x = 72

x_string = str(x)

x_string

'72'

'Hello' + ' ' + 'world'

'Hello world'

3 . 8

Commonly used text functions

3. Casing text with .lower(), .upper(), and .title()

print('soon TO be UPPERCASE'.upper())

SOON TO BE UPPERCASE

print('SOON tO be lowercase'.lower())

soon to be lowercase

print('soon to be titlecase'.title())

Soon To Be Titlecase

3 . 9

Commonly used text functions

4. Checking if text contains something particular

x = 'What is in this string?'

[x.startswith('What'), x.startswith('this')]

[True, False]

[x.endswith('string?'), x.endswith('string')]

[True, False]

['this' in x, 'ing' in x, 'zzz' in x]

[True, True, False]

In python, in is an operator much like > or <. It indicates if the LHS is contained in the

RHS, working on strings or lists!

3 . 10

Commonly used text functions

5. Finding where the content is

▪ ‘.find()’ returns -1 if your query isn’t found

▪ ‘.index()’ works the same as .find(), except it gives an error if your query isn’t found

x = 'What is in this string?'

[x.find('this'), x.find('ing'), x.find('zzz')]

[11, 19, -1]

for y in ['this', 'ing', 'zzz']:

 try:

 print(x.index(y))

 except:

 print('Error!')

11
19
Error!

3 . 11

Commonly used text functions

6. Counting the number of occurrences of a word or phrase

▪ Can only check 1 phrase at a time

▪ There are more efficient ways to check this for a list of words

print('Mentions of SEC: ' + str(text.count('SEC')))

Mentions of SEC: 33

print('Mentions of FASB: ' + str(text.count('FASB')))

Mentions of FASB: 33

print('Mentions of Citi: ' + str(text.count('Citi')))

Mentions of Citi: 2248

3 . 12

Commonly used text functions

7. Splitting strings

8. Joining strings together

x = '1,2,3,4,5'.split(',')

print(x)

['1', '2', '3', '4', '5']

print(' & '.join(x))

1 & 2 & 3 & 4 & 5

Joining strings is very useful when working with a list of data

3 . 13

Commonly used text functions

9. Replacing string content

x = 'I like mee goreng with mutton and mee goreng with chicken'

print(x.replace('mee', 'nasi'))

I like nasi goreng with mutton and nasi goreng with chicken

print(x.replace('mee', 'nasi', 1))

I like nasi goreng with mutton and mee goreng with chicken

.replace() has two required arguments (what to replace, replacement), and an

optional argument (how many times to replace, default: infinite)

3 . 14

Commonly used text functions

10. Removing blank content

▪ Nice functions for keeping text clean

11. Padding strings

▪ This is particularly useful when working with databases that zero-pad keys

x = ' this is awkwardly padded '

print([x.strip(), x.lstrip(), x.rstrip()])

['this is awkwardly padded', 'this is awkwardly padded ', ' this is awkwardly padded']

gvkey = 1024

gvkey = str(gvkey).zfill(6)

print(gvkey)

001024

3 . 15

Commonly used text functions

12. Checking if strings are a certain type

▪ If you want a match on an explicit set of characters, using a regular expression is likely more intuitive

output = '\t'.join(['input', 'alnum', 'alpha', 'decimal', 'digit', 'numeric', 'ascii'])

for x in ['ABC123', 'AAABBB', '12345', '12345²', '12345½', '123.1', '£12.0']:

 output += '\n' + '\t'.join(map(str,[x, x.isalnum(), x.isalpha(), x.isdecimal(), x.isdigit(), x.isnumeric(), x.isascii()]))

print(output)

input alnum alpha decimal digit numeric ascii
ABC123 True False False False False True
AAABBB True True False False False True
12345 True False True True True True
12345² True False False True True False
12345½ True False False False True False
123.1 False False False False False True
£12.0 False False False False False False

3 . 16

Addendum: Using R

▪ The function from ’s package works well.

▪ For string manipulation, I recommend using the library

▪ The functions have more readable syntax and are -friendly

read_file() tidyverse readr

library(tidyverse)

Read text from a .txt file using read_file()

doc <- read_file("../../Data/0001104659-14-015152.txt")

str_wrap is from stringr from tidyverse

cat(str_wrap(substring(doc,1,500), 80))

UNITED STATES SECURITIES AND EXCHANGE COMMISSION WASHINGTON, D.C. 20549 FORM
10-K ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE
ACT OF 1934 For the fiscal year ended December 31, 2013 Commission file number
1-9924 Citigroup Inc. (Exact name of registrant as specified in its charter)
Securities registered pursuant to Section 12(b) of the Act: See Exhibit 99.01
Securities registered pursuant to Section 12(g) of the Act: none Indicate by
check mark if the registrant is a

stringr

dplyr

3 . 17

https://www.rdocumentation.org/packages/readr/versions/1.3.1/topics/read_file
https://www.tidyverse.org/
https://readr.tidyverse.org/
https://stringr.tidyverse.org/
https://dplyr.tidyverse.org/index.html

Exercise

▪ Focuses on useful functions applied to to:

▪ A paragraph from a JPMorgan 10-K

▪ Some illustrative text

Do Set 1 in the Session 3-Exercises file

3 . 18

Regular expressions

4 . 1

A motivating example

▪ Suppose you want to find all emails mentions in the 10-K

▪ Emails follow a consistent pattern:

1. A local name

2. An @ sign

3. A domain, which will have at least 1 . in it

▪ Local names can have almost any character in them, except whitespace

▪ In python regular expressions, we match this with \S+

▪ Domain names should usually be alphanumeric with 1 or more . in them

▪ In python regular expressions, we match this with [\w-]++\.[.\w-]+

import re

re.findall('\S+@[\w-]+\.[.\w-]+', text)

['shareholder@computershare.com', 'shareholder@computershare.com', 'docserve@citi.com', 'shareholderrelations@citi.com']

4 . 2

Breaking down the example

▪ @ was itself – it isn’t a special character

▪ \. is a literal period

▪ \S is a special character

▪ It matches any character that is not whitespace

▪ + is used to indicate that we want at least 1 of the pattern immediately preceding the +

▪ Regular expressions are greedy by default, meaning they will choose the longest matching text

▪ Square brackets, [], ask for any of the included elements

▪ You don’t need to escape most special characters in these

▪ Exception: ^ if it is the first character

▪ Optional for now: --, &&, ~~, || – these may need escaping in a future version of python and will raise

a warning (FutureWarning) if not escaped

4 . 3

Breaking down the example

▪ Let’s examine the output shareholder@computershare.com

▪ Our regex was \S+\@[\w-]+\.[.\w-]+

▪ Matching regex components to output:

▪ \S+ shareholder

▪ @ @

▪ [\w-]+ computershare

▪ \\. .

▪ [.\w-]+ com

4 . 4

Calling regexes

▪ 3 most useful functions to call regexes

1.

▪ Finds all occurences of your pattern and provides them back in a list

▪ If you just want the count, apply len() to the list

2.

▪ Use this for complex substitutions that are too much for .replace()

3.

▪ Use this for complex splits that are too much for .split()

re.findall()

re.sub()

re.split()

4 . 5

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

Useful components

▪ . matches anything

▪ \w matches all characters that could be in a word

▪ Except - and including _

▪ \S matches any non-whitespace characters

▪ \s matches any whitespace characters

▪ \b matches the start or end of a word

▪ It is the boundary between \S and \s

▪ Useful for matching whole words

▪ \B matches anything except the end of a word

▪ ^ or \A match the beginning of a string

▪ Note: in multiline mode, ^ become the beginning of a line

▪ $ or \Z match the end of a string

▪ Note: in multiline mode, $ become the end of a line

4 . 6

Useful patterns

▪ [] matches anything inside of it, like an “or” for regex

▪ [^] matches anything except for what is inside it

▪ Quantity specification (they always try to get the most text possible)

▪ x? looks for 0 or 1 of x

▪ x* looks for 0 or more of x

▪ x+ looks for 1 or more of x

▪ x{n} looks for n (a number) of x

▪ x{n, } looks for at least n of x

▪ x{n,m} looks for at least n and at most m of x

▪ To make any of the above non-greedy, append a ? to them, like x+?

4 . 7

Complex patterns: Groups

▪ () can be used to make groups

▪ You can call for explicit matches of groups using a slash number:

▪ ([0-9]).+\\1 Will match a number, followed by anything up until it hits that number again

▪ By default, groups are capturing, meaning that the regex will only return the group text

▪ There are two solutions:

1. Put a group around the whole regex

2. If you don’t need to reference the group, use a non-capturing group with (?:)

re.findall('([0-9]).+\\1', '12asda2asd')

['2']

re.findall('(([0-9]).+\\2)', '12asda2asd')

[('2asda2', '2')]

re.findall('(?:12|sd)a', '12asda2asd')

['12a', 'sda']

4 . 8

Complex patterns: Looking assertions

▪ Sometimes you want text that was preceded or followed by something, but don’t want that something in the

output

▪ (?=...) provides a lookahead where the ... must be next in the string, but won’t output

▪ (?!...) provides a negative lookahead; if the ... is next in the string, the match won’t count

▪ (?<=...) provides a lookbehind, while (?<!...) provides a negative lookbehind

re.findall('(?<=\.)[0-9]+', '1 2.3 4. 5 6.78')

['3', '78']

4 . 9

Positives

▪ Very flexible, can match almost any pattern

▪ E.g., finding the MD&A of a 10-K

▪ Allows us to find text directly rather than just

indices

▪ Built in to python already

Negatives

▪ Regexes can be quite slow to run

▪ Complex regexes are hard to read

Pros and cons of regexes

4 . 10

Extra info

▪ Regexes can run in other modes rather than just the default

▪ These can be passed using the re flags parameter, or by using shorthand in your regex itself

▪ Ignore case with re.IGNORECASE or (?i)

▪ Convert UTF to ASCII for matching with re.ASCII or (?a)

▪ Run regexes across multiple lines using re.MULTILINE or (?m)

▪ Make . match newlines using re.DOTALL or (?s)

▪ Write better documented regular expressions using re.VERBOSE or (?x)

Full documentation here

4 . 11

https://docs.python.org/3/library/re.html

Addendum: Using R

▪ The same library from earlier handles these well as well

▪ Note that while the overall pattern structure is the same in R…

▪ The special characters are o�en different

▪ There’s a

▪

stringr

nice cheat sheet here

More detailed documentation here

4 . 12

https://stringr.tidyverse.org/
https://github.com/rstudio/cheatsheets/raw/master/strings.pdf
https://cran.r-project.org/web/packages/stringr/vignettes/regular-expressions.html

Exercise

▪ Focuses on extracting content using regexes

▪ Data: The same paragraph from a JPMorgan 10-K

Do Set 2 in the Session 3-Exercises file

4 . 13

Using NLP parsers

5 . 1

NLTK

▪ stands for Natural Language Toolkit

▪ It provides a bunch of handy things for text analytics

1. Corpora that are used in research and algorithm development

▪ Tagged corpora are particularly valuable

2. Models for things like dependency parsing

3. Useful functions for working with text

NLTK

5 . 2

https://www.nltk.org/

Setting up NLTK

▪ When using a resource from , we will o�en have install needed datasets

▪ For instance, to run the word tokenizer on the next slide, we will need to install punkt

▪ We can install this using:

▪ We will also need the following:

NLTK

nltk.download('punkt')

nltk.download('stopwords')

5 . 3

https://www.nltk.org/

Tokenizing

tokens = nltk.tokenize.word_tokenize(text)

print(tokens[0:50])

['UNITED', 'STATES', 'SECURITIES', 'AND', 'EXCHANGE', 'COMMISSION', 'WASHINGTON', ',', 'D.C.', '20549', 'FORM', '10-K', 'AN

['UNITED', 'STATES', 'SECURITIES', 'AND', 'EXCHANGE', 'COMMISSION', 'WASHINGTON', ',', 'D.C.', '20549']
['FORM', '10-K', 'ANNUAL', 'REPORT', 'PURSUANT', 'TO', 'SECTION', '13', 'OR', '15']
['(', 'd', ')', 'OF', 'THE', 'SECURITIES', 'EXCHANGE', 'ACT', 'OF', '1934']
['For', 'the', 'fiscal', 'year', 'ended', 'December', '31', ',', '2013', 'Commission']
['file', 'number', '1-9924', 'Citigroup', 'Inc.', '(', 'Exact', 'name', 'of', 'registrant', 'as', 'specified', 'in', 'its'

5 . 4

Stop words

▪ There are words in text that are grammatically needed, but o�en provide little information

▪ E.g.: the, of, an

▪ We will manually remove ‘no’ and ‘not’ from the stopword list, however

▪ These are potentially useful in our context

If you get an error that you are missing 'stopwords', run: nltk.download('stopwords')

stop_words = set(nltk.corpus.stopwords.words("english"))

stop_words.remove('no')

stop_words.remove('not')

filtered_tokens = [t.lower() for t in tokens if t.lower() not in stop_words]

print(stop_words)

{'until', 'shouldn', 'have', 'few', 're', 'ma', 'does', 'their', 'am', 'these', "that'll", 'hasn', 'them', "wouldn't", 'the

5 . 5

Stemming and lemmatization

▪ Stemming and lemmatization are ways to cut down on the amount of unique words in a data set

▪ Stemming just normalizes words by removing suffixes

▪ O�en this works correctly

▪ Sometimes words behave a bit oddly in English and this doesn’t work

▪ E.g., ‘are’ is the 3rd person plural form of ‘is’

▪ Stemming can be done using

▪ Lemmatization is the same concept, but based on grammar parsing

▪ It is more accurate than stemming, but slower

▪ Lemmatization can be done using

nltk.stem.PorterStemmer()

nltk.stem.wordnet.WordNetLemmatizer()

We will look at an example of this in Session 4

5 . 6

https://www.nltk.org/howto/stem.html
https://www.nltk.org/_modules/nltk/stem/wordnet.html

How does dictionary sentiment work

1. Sentiment dictionaries provide a list of words

2. You add up the number of times the words in your text are in the dictionary

3. Sometimes there is some normalization applied

▪ Divide by the number of words

▪ Optional: apply TF-IDF weighting

We need a reliable way to count a lot of words

5 . 7

Counting words

▪ Next, we’ll do a quick sentiment measure

▪ First, we need to import the dictionary

▪ We will also take this time to sum up the total number of words we have

with open('../../Data/S3_LM_Neg.csv', 'rt') as f:

 neg = [x.strip().lower() for x in f.readlines()]

print(neg[0:5])

['abandon', 'abandoned', 'abandoning', 'abandonment', 'abandonments']

n_tokens = len(filtered_tokens)

5 . 8

Counters

▪ To count our document and make it easier to calculate score on, we will use

▪ This is like a dictionary, except it automatically counts the input list and it returns 0 for missing items.

▪ Counters are a great general-purpose tool for counting things

▪ To determine the amount of sentiment we can just add up the counts

Counter()

from collections import Counter

token_count = Counter(filtered_tokens)

print(token_count.most_common(10))

[(',', 7263), ('.', 4454), ('(', 1224), (')', 1224), ('citi', 798), ('$', 770), ('2013', 737), ('credit', 660), ('citis', 6

neg_sentiment = 0

for w in neg:

 neg_sentiment += token_count[w]

print(neg_sentiment / n_tokens)

0.026602464533499015

5 . 9

https://docs.python.org/3/library/collections.html

SpaCy

▪ SpaCy provides a machine-learning based approach to many of the things NLTK does

▪ SpaCy is also perhaps a bit more user-friendly

import spacy

python -m spacy download en_core_web_sm

nlp = spacy.load("en_core_web_sm")

pipes enabled by default: tok2vec, tagger, parser, ner, attribute_ruler, lemmatizer]

doc = nlp(text)

5 . 10

Parse trees in SpaCy

▪ SpaCy has a visualization module called displaCy

▪ With this, we can quickly see how a sentence is structured

▪ To run it in a Jupyter notebook, use the below code:

sent = nlp("""Citi intends to release a revised Quarterly Financial Data

Supplement reflecting this realignment prior to the release of first quarter of

2014 earnings information.""")

spacy.displacy.render(sent, style="dep", jupyter=True, options={'compact':True})

Take a look at the code file to see the output

5 . 11

NER: Named Entity Recognition

▪ During the nlp() call earlier, spaCy automatically did named entity recognition’

▪ Using an ML algorithm + the dependency tree, it tries to determine any proper nouns in the document

▪ It also tries to label them

▪ You can visualize these as well with displayCy

spacy.displacy.render(sent, style="ent", jupyter=True)

5 . 12

Parsing HTML

6 . 1

Overview

▪ As this part is code-heavy, we will do it in Jupyter

▪ The main idea is:

1. Grab the main page of the website using

2. Structure it with so we can traverse the page

3. Grab the links to and names of standards, along with the publication years

4. Traverse the links

5. Extract the pdf locations from the traversed pages

6. Grab the pdf files

requests

beautifulsoup4

6 . 2

https://docs.python-requests.org/en/master/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

Addendum: Using R

▪ HTML files

▪ You can load from a URL using or

▪ You can use or to parse out specific pieces of html files

▪ JSON files

▪ You can process JSON data using

▪ PDF files

▪ Use to extract text into a vector of pages of text

▪ Use to extract tables straight from PDF files!

▪ This is very painful to code by hand without this package

▪ The package itself is a bit difficult to install, requiring Java and , though

httr RCurl

XML rvest

jsonlite

pdftools

tabulizer

rJava

6 . 3

https://cran.r-project.org/web/packages/httr/index.html
https://cran.r-project.org/web/packages/RCurl/index.html
https://cran.r-project.org/web/packages/XML/index.html
https://github.com/hadley/rvest
https://github.com/jeroen/jsonlite
https://cran.r-project.org/web/packages/pdftools/index.html
https://github.com/ropensci/tabulizer
http://rforge.net/rJava/

Conclusion

7 . 1

Wrap-up

▪ Python has good support for text built in

▪ Strong, versatile, and built in, but rather slow

▪ A good solution to simpler problems

▪ These help us to easily process more complicated text

Text functions

Pattern matching with regular expression

Libraries: NLTK, spaCy, Beautiful Soup

7 . 2

Python

▪ beautifulsoup4

▪ nltk

▪ numpy

▪ requests

▪ spacy

R

▪ kableExtra

▪ knitr

▪ reticulate

▪ revealjs

Packages used for these slides

7 . 3

