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Main application

2 . 1



▪ Supervised classification

▪ Method from Hassan et al. (2019 QJE)

▪ Unsupervised classification

▪ Word-level: word2vec

▪ Document-level: LDA

Application: Analyzing every annual report from 2014

▪ All 10-K filings in EDGAR in 2014

▪ This keeps the data small enough to keep in memory easily, but large enough to get some power in our

analyses
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Supervised methods
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The Hassan et al. (2019 QJE) approach

▪ Just like how we can used data about a phenomenon to supervise algorithm construction with numeric data

(i.e., regression), Hassan et al. (2019 QJE) suggests a similar idea based on using text to supervise text.

▪ The methodology requires 3 sets of textual information:

1. Data that you want to analyze

2. Data that represents the information you want to quantify the extent of

3. Data that represents the rest of the information, e.g., what you don’t want to quantify

▪ The method is mentioned in the computer science literature in Song and Wu (2008) and Schütze et al. (2008)

There is a simple requirement here: what you want and what the baseline text in your file

is must be sufficiently different
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The study

▪ Data:

1. Conference call transcripts from 2002 to 2016

2. Political text: American Politics Today (Bianco and Canon); articles from NYT, USA Today, WSJ,

Washington Post on “domestic politics”

3. Nonpolitical text: Financial Accounting (Libby, Libby and Short); articles from NYT, USA Today, WSJ,

Washington Post on “performance,” “ownership changes,” and “corporate actions;” the Santa Barbara

Corpus of Spoken American English (excluding politics-related episodes)

Goal: measure political risk

A lot of baseline data is needed! But why?
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Other work needed

1. Cleaning up the data

▪ Removing a lot of bi-grams based on part-of-speech tags that are unlikely

to be relevant

▪ Removing Bi-grams with: i, ve, youve, weve, im, youre, were, id, youd, wed,

thats

▪ Removing “princeton university”

2. Removing 3 synonyms for risk due to contextual differences: questions,

question, venture
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Top political bi-grams (weight)

1. the constitution

2. the states

3. public opinion

4. interest groups

5. of government

Top risk words (frequency)

1. risk

2. risks

3. uncertainty

4. variable

5. chance

What do they do with the data?

▪ They construct a list of bi-grams (2 word phrases) such that

▪ Each bi-gram appears in the political baseline

▪ Each bi-gram never appears in the nonpolitical baseline

▪ They will weight words accordingly

▪ They will measure risk by using these weights paired with phrases where a

synonym for risk is nearby.
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Building the measure

▪ Let  be the set of bi-grams that are non-political

▪ Let  be the set of bi-grams that are political

▪  is a bi-gram in the set of bi-grams in the set 

▪ Let the set  ( ) have  ( ) elements

▪ Let  be the closest risk word to 

▪ Let  be the number of times that  appears in 

Total discussion of politics
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Building the measure

▪ Let  be the set of bi-grams that are non-political

▪ Let  be the set of bi-grams that are political

▪  is a bi-gram in the set of bi-grams in the set , valued by its position in the

document

▪ Let the set  ( ) have  ( ) elements

▪ Let  be the closest risk word to , valued by its position in the document

▪ Let  be the number of times that  appears in 

Total discussion of political risk
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Benefits of the method

1. More complete than a dictionary approach

2. Very clean approach given that political discussion should be fairly different

from other discussion in annual reports

3. Generally applicable for any easy to pick out discussion

▪ So long as you can find training data
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What do we need to know to implement it?

1. How to chunk text into bi-grams

2. How to tokenize text

▪ Done in Session 3 ✓

3. How to count words or phrases

▪ Use a  ✓Counter()

Optional advanced stuff: You can vectorize most of the

calculation and just use matrix algebra with numpy
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Workflow

▪ Set up blacklists

▪ Define the main function for cleaning

word_blacklist = "i i've you've we've i'm you're we're i'd you'd we'd that's".split(' ') 

pattern_blacklist = ["PRP|PRP", "IN|IN", "RB|RB", "WRB|RB", "IN|RB", "RB|IN", 

                     "IN|WRB", "WRB|IN", "DT|IN", "IN|DT", "RB|WRB", "RB|DT", 

                     "DT|RB", "WRB|DT", "DT|WRB", "SYM|SYM"] 

gram_blacklist = 'princeton|university'

def grammer(doc, n, processed_patterns, word_blacklist, gram_blacklist, lower=True, stopwor

    if not stopword: 

        grams = textacy.extract.ngrams(doc, n=n, filter_stops=False, filter_nums=True) 

    else: 

        grams = textacy.extract.ngrams(doc, n=n, filter_stops=True, filter_nums=True) 

    ngrams = Counter() 

    for gram in grams: 

        pos = '|'.join([word.tag_ for word in gram]) 

        if not lower: 

            text = '|'.join([word.text for word in gram]) 

        else: 

            text = '|'.join([word.text for word in gram]).lower() 
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Process a document

▪ We’ll use the same data as Session 3

nlp = spacy.load('en_core_web_sm', disable=['parser', 'ner']) 

nlp.max_length = 10000000 

 

with open('../../Data/0001104659-14-015152.txt', 'rt') as f: 

    text = f.read() 

 

document = nlp(text) 

grams = grammer(document, n=2, processed_patterns=pattern_blacklist, 

                word_blacklist=word_blacklist, 

                gram_blacklist=gram_blacklist) 

 

# Intermediary measures 

gram_count = sum(grams.values()) 

gram_set = set(grams)
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What is this set()?

▪ Sets in python are an interesting and rather useful structure

▪ Like lists, they contain a bunch of objects, such as text in our case

▪ Unlike lists, they do not have an order and cannot contain duplicates

▪ Also unlike lists, they are very fast to query

▪ E.g., if you ask if something is in a very large set, the response is quick

▪ We can apply set functions to them!

▪ set1 & set2 represents the intersection of the two sets

▪ Much faster than [i for i in list1 if i in list2]

▪ set1 | set2 represents the union
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Applying a hypothetical dictionary

▪ The hypothetical weighted dictionary:

▪ Use set intersection to quickly get the overlap:

▪ Determine the aggregate weight of the overlapping text

weights = {'earnings|foreign':0.5, 'currency|foreign':0.4, 'foreign|currencies':0.35, 'fore

           'foreign|currency':0.25, 'foreign|investment':0.2, 'foreign|holdings':0.2} 

weight_set = set(weights)

shared_keys = list(gram_set & weight_set)

ns = len(shared_keys) 

v_weights = np.empty(ns) 

v_counts = np.empty(ns) 

c = 0 

for key in shared_keys: 

    v_weights[c] = weights[key] 

    v_counts[c] = grams[key] 
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Finalize the measure

▪ Note that this exercise shows you how to calculate a simple disclosure score,

not the risk score from Hassan et al. (2019 QJE)

▪ For the risk score, you need to replace the counts by a count of times the

bi-gram was within 10 words of a risk word

measure = spec_weight / gram_count if gram_count > 0 else 0 

measure

## 0.0004479123801082587
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Exercise

▪ This goes through a simplified version of the same calculation

▪ In fact, the exercise is pretty much just cosine-similarity under an  distance

metric

Do Set 1 in the Session 4-Exercises file

15



Unsupervised methods
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A motivating example
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What are unsupervised methods?

▪ Examples of what can be accomplished:

1. Word meaning

▪ Calculate similarity of words

▪ Useful for finding synonyms or comparing text snippets

2. Sentence or phrase meaning

▪ Useful for directly comparing sentence or paragraph similarity

3. Document classification

▪ Useful for clustering documents

4. Content grouping (topic analysis)

▪ Useful for simplistic text summarization in a quantified manner

Unsupervised methods try to find some patterns in data without being told what exactly it

is that they should find
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What are “vector space models”

▪ Different ways of converting some abstract information into numeric information

▪ Focus on maintaining some of the underlying structure of the abstract information

▪ Examples (in chronological order):

▪ Word vectors:

▪

▪

▪ Paragraph/document vectors:

▪

▪ Sentence vectors:

▪

▪ Topic vectors:

▪

Word2vec

GloVe

Doc2Vec

Universal Sentence Encoder

Latent Dirichlet Allocation (LDA)
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Word vectors

▪ Instead of coding individual words, encode word meaning

▪ The idea:

▪ Our old way (encode words as IDs from 1 to N) doesn’t understand relationships such as:

▪ Spatial

▪ Categorical

▪ Grammatical (weakly when using stemming)

▪ Social

▪ etc.

Word vectors try to encapsulate all of the above implicitly, through by encoding words as

a vector based on how features manifest themselves in text
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Word vectors: Simple example

words f_animal f_people f_location

dog 0.5 0.3 -0.3

cat 0.5 0.1 -0.3

Bill 0.1 0.9 -0.4

turkey 0.5 -0.2 -0.3

Turkey -0.5 0.1 0.7

Singapore -0.5 0.1 0.8

▪ The above is a simplified illustrative example

▪ Notice how we can tell apart different animals based on their relationship with people

▪ Notice how we can distinguish turkey (the animal) from Turkey (the country) as well
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What it retains: word2vec
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What it retains: GloVe
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How to build word vectors

▪ In python:

▪  allows you to import pre-trained models

▪ It also allows you to train your own

▪  allows you to use pre-trained models or train your own

▪ In R:

1. Word co-occurrence-based like GloVe

▪ Available from the  package

2. Word order based (using a neural network)

▪ Available from the  package

gensim

tensorflow

text2vec

rword2vec
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How does word order work?

Infer a word’s meaning from the words around it

Refered to as CBOW (continuous bag of words)
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How else can word order work?

Infer a word’s meaning by generating words around it

Refered to as the Skip-gram model
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An example of using word2vec

▪ In the BCE paper from Session 6, word2vec was used to provide assurance that the LDA model works

reasonably well on annual reports

1. We trained a word2vec model on random issues of the Wall Street Journal (247.8M words)

2. The resulting model “understood” words in the context of the WSJ

3. We then ran a psychology experiment (word intrusion task) on the algorithm
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Word intrusion task

▪ The task is to find which word doesn’t belong

▪ Each question consisted of 3 words from 1 topic and 1 intruded from another random topic

▪ Ex.:

▪ Laser, Drug, Viral, Therapeutic

▪ Supply, Steel, Capacity, Losses

▪ Relief, Lousisiana, Cargo, Assisted
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Results
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Loading in word2vec with Gensim

▪ The  package comes with the ability to download word2vec and GloVe vectors from a repository

▪ The code below would allow you to download a model trained on Google News

▪ In this model, each word is represented as a 300-dimensional vector

▪ The model will be stored in ~/gensim_models/

▪ ~ represents your user directory

▪ You can safely delete this directory a�er you are done using it

gensim

import gensim 

import gensim.downloader 

 
base_w2v = gensim.downloader.load('word2vec-google-news-300')

Note: The model it downloads is 1.7GB
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Examining word2vec: Odd one out

base_w2v.doesnt_match(['Queen', 'King', 'Prince', 'Peasant'])

## 'Peasant'

base_w2v.doesnt_match(['Singapore', 'Malyasia', 'Indonesia', 'Germany'])

## 'Germany'

base_w2v.doesnt_match(['Euro', 'USD', 'RMB', 'computer'])

## 'computer'

base_w2v.doesnt_match(['mee goreng', 'char kway teoh', 'laksa', 'hamburger'])

## 'hamburger'
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Examining word2vec: Closest words

base_w2v.most_similar(['Earnings'])

## ('Pro_Forma_EPS', 0.6441532373428345) ('Diluted_EPS', 0.636042058467865)  
##  ('Goodwill_Impairment', 0.6357625126838684) ('Tax_Expense', 0.6289322376251221)  
##  ('Reconciling_Items', 0.6285154819488525) ('Restructuring_Charges', 0.6268271207809448)  
##  ('Backs_FY##', 0.6254147291183472) ('Raises_FY##_EPS', 0.6230234503746033)  
##  ('Restructuring_Charge', 0.6216667294502258) ('FFO_Per_Share', 0.6207219958305359)

base_w2v.most_similar('IASB')

## ('Accounting_Standards_Board', 0.7211726307868958) ('FASB', 0.6697319149971008)  
##  ('IAASB', 0.6319378614425659) ('IAS##', 0.6150702834129333)  
##  ('FASB_IASB', 0.593984842300415) ('Exposure_Draft', 0.5892050266265869)  
##  ('Board_IASB', 0.5818656086921692) ('IFRS', 0.5813880562782288)  
##  ('GNAIE', 0.5802473425865173) ('Solvency_II', 0.574397087097168)
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Examining word2vec: Closest words

base_w2v.most_similar(['KPMG'])

## ('PwC', 0.8044512867927551) ('PricewaterhouseCoopers', 0.8032213449478149)  
##  ('Deloitte', 0.7856791019439697) ('Grant_Thornton', 0.7815379500389099)  
##  ('PriceWaterhouseCoopers', 0.7609084248542786) ('KMPG', 0.7575340270996094)  
##  ('PricewaterhouseCoopers_PwC', 0.7438496351242065) ('Pricewaterhouse_Coopers', 0.7163813710212708)  
##  ('Delloitte', 0.7009097337722778) ('KPMG_LLP', 0.7008424401283264)

base_w2v.most_similar(['Arthur_Andersen'])

## ('Arthur_Andersen_LLP', 0.7720072269439697) ('Peat_Marwick', 0.6542829275131226)  
##  ('Price_Waterhouse', 0.6524070501327515) ('KPMG_Peat_Marwick', 0.6093755960464478)  
##  ('Peat_Marwick_Mitchell', 0.6006763577461243) ('&_Lybrand', 0.5949062705039978)  
##  ('Arthur_Andersen_accounting', 0.559570848941803) ('auditor_Arthur_Andersen', 0.5569155812263489)  
##  ('KPMG', 0.5496521592140198) ('Price_Waterhouse_LLP', 0.5493941903114319)

16 . 18



Examining word2vec: Analogies

▪ Mathematically: 

man : King :: woman : ?

base_w2v.most_similar(positive=['King', 'woman'], negative=['man'])

## ('Queen', 0.5515626668930054) ('Oprah_BFF_Gayle', 0.47597548365592957)  
##  ('Geoffrey_Rush_Exit', 0.46460166573524475) ('Princess', 0.4533674716949463)  
##  ('Yvonne_Stickney', 0.4507041573524475) ('L._Bonauto', 0.4422135353088379)  
##  ('gal_pal_Gayle', 0.4408389925956726) ('Alveda_C.', 0.4402790665626526)  
##  ('Tupou_V.', 0.4373864233493805) ('K._Letourneau', 0.4351031482219696)
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The sleight of hand behind this

▪ Word2Vec implementations usually bar a word in the analogy from being an output

▪ E.g., it will never report man : King :: woman : King

▪ But this is actually the mathematical answer

analogy = base_w2v['King'] + base_w2v['woman'] + base_w2v['man'] 

analogy = analogy / np.linalg.norm(analogy) 

print('King', np.linalg.norm(analogy - base_w2v['King']))

## King 1.9888592

print('Queen', np.linalg.norm(analogy - base_w2v['Queen']))

## Queen 2.7364814
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It’s still pretty good though!

▪ Note that since word2vec’s original answer was Queen, this implies it was second best

▪ If Queen is the closest word to King, then this would be mathematically uninteresting

▪ It’s actually 7th though!

base_w2v.most_similar('King')

## [('Jackson', 0.5326348543167114), ('Prince', 0.5306329727172852), ('Tupou_V.', 0.5292826294898987), ('KIng', 0.522750139236
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What is this good for?

1. You care about the words used, by not stylistic choices

▪ Abstraction

2. You want to crunch down a bunch of words into a smaller number of dimensions without running any bigger

models (like LDA) on the text.

▪ E.g., you can toss the 300 dimensions of the Google News model to a Lasso or Elastic Net model

▪ This is a big improvement over the past method of tossing vectors of word counts at Naive Bayes

3. You want synonyms for a set of words that are selected in a less-researcher-biased fashion

▪ You can even get n-gram synonyms this way

▪ A popular method for augmenting small dictionaries
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Exercise: Trying out word2vec

▪ This set of exercise is to help you understand a bit better about what word2vec is good at

▪ As well as what it isn’t good at

Do Set 2 in the Session 4-Exercises file
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Understanding documents using topic analysis
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What is LDA?

▪ Latent Dirichlet Allocation

▪ One of the most popular methods under the field of topic modeling

▪ LDA is a Bayesian method of assessing the content of a document

▪ LDA assumes there are a set of topics in each document, and that this set follows a Dirichlet prior for each

document

▪ Words within topics also have a Dirichlet prior

More details from the creator

17 . 2

http://www.cs.columbia.edu/~blei/papers/Blei2012.pdf


An example of LDA
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How does it work?

1. Reads all the documents

▪ Calculates counts of each word within the document, tied to a specific ID used across all documents

2. Uses variation in words within and across documents to infer topics

▪ By using a Gibbs sampler to simulate the underlying distributions

▪ An MCMC method  

▪ It’s quite complicated in the background, but it boils down to a system where generating a document follows

a couple rules:

1. Topics in a document follow a multinomial/categorical distribution

2. Words in a topic follow a multinomial/categorical distribution
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Motivating example: Huang et al. 2015 MS

▪ A goal of the paper is to see what analysts discuss in their reports, with a focus on two possibilities

1. Discussing content from conference calls

2. Discussing content that is beyond the scope of conference calls

▪ As expected, there is some variation when both are useful:

▪ If a conference call is more difficult to understand, analysts discussing the same content is more useful

▪ If executives have incentives to withhold information, then information beyond the conference call is more

useful

Analysts discuss both, and both are useful to investors
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Why LDA in this paper: Conference calls

▪ There are a lot of potential things that could be discussed in conference calls

▪ Some are consistently brought up:

▪ Economic conditions

▪ Earnings

▪ Expenses

▪ Product launches

▪ Some can be particular to a specific time and a specific company

▪ Example: comments on why a buggy video game was released ( )

▪ “I don’t expect next-gen performance on last-gen, but I would like to be able to play through the

game.”

▪ If a researcher takes a dictionary approach, they can probably get many of the consistently discussed topics

▪ But they will likely miss the less common or more variable topics

Source
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Why LDA in this paper: Analyst reports

▪ Train LDA on both document types!

▪ Difficult to ensure the same words are used for a dictionary approach

▪ Need to repeat your dictionary creation task for both settings (doubles workload)

The goal is to have a text model that is valid for both document types
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Why LDA in this paper: Other considerations

1. The model is trained per industry

▪ Since relevant topics for analyst reports and conference calls change quite a bit by industry, this allows

them to get a more accurate portrayal of each industry

▪ This adds essentially no extra work for the researcher, other than calling some for loops

▪ Contrast with a dictionary approach, where you would now need to multiple your effort by the number

of industries

2. Not all words are as relevant

▪ LDA provides Bayesian-based probabilistic weights rather than 1/0 indicators
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Implementing LDA
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Implementing LDA in python

▪ The best package for this is 

▪ As long as your data fits in memory comfortably, it is easy to use

▪ If not, you will need to construct a generator to pass to it, which is more complex

▪ The code file for this session has an example of this!

▪ There is also an implementation in 

▪ In terms of computation time, you will likely spend more time prepping your text than running the LDA

model

gensim

sklearn
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Prepping text

▪ We will take a more thorough approach using  for preprocessing

▪ Remove stopwords using ’

▪ Remove numbers, symbols, and punctuation based on a neural network dependency parser

▪ Lemmatize words based on the word and its POS tags

▪ If accuracy is less important or your computer can’t handle ’s approach, another approach is:

▪ Use a regex or NLTK to tokenize into words

▪ Use the stop-words package or NLTK to get a list of stopwords

▪ Filter them out using a list comprehension

doc = [w for w in doc if w not in stopwords]

▪ Apply a word-based lemmatizer from NLTK such as 

spaCy

spaCy

spaCy

WordNet
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Running the LDA model

# docs contains all of our cleaned 10-K filings 

# doc_names contains the filings' accession numbers 

 
# Prepare the needed parts for gensim's LDA implementation 

words = gensim.corpora.Dictionary(docs) 

words.filter_extremes(no_below=50, no_above=0.5) 

words.filter_tokens(bad_ids=[words.token2id['_']])  # '_' is not treated as a symbol by spaCy 

corpus = [words.doc2bow(doc) for doc in docs] 

 
# Free up some memory 

del docs 

 
# Save the intermediate data -- useful if we want to tweak model parameters and re-run later 

with open('../Data/corpus.pkl', 'wb') as f: 

    pickle.dump([corpus, words, doc_names], f, protocol=pickle.HIGHEST_PROTOCOL) 

 
# Run the model 

lda = gensim.models.ldamodel.LdaModel(corpus, id2word=words, num_topics=10, passes=5, 

                                      update_every=5, alpha='auto', eta='auto') 
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Examining the LDA model

1. Load in the LDA model along with the corpus structure and the document names

▪ No need to do this if the model is still in memory

2. Examine a topic

lda = gensim.models.ldamodel.LdaModel.load('../../Data/lda') 

with open('../../Data/corpus.pkl', 'rb') as f: 

    corpus, words, doc_names = pickle.load(f)

# Parameters: topic number, number of words 

lda.show_topic(0, 10)

## [('vehicle', 0.012847863), ('commodity', 0.010794649), ('oil', 0.007663337), ('funds', 0.007322089)]  
##  [('gas', 0.005776752), ('partnerships', 0.0057128207), ('mortgage', 0.0052304408), ('swap', 0.004704417)]  
##  [('futures', 0.0043137535), ('advisor', 0.0043026144)]

Note the weights associated with the words – some words are more meaningful than

others
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Examining the LDA model

3. See the top words in each topic

for i in range(0,10): 

    top = lda.show_topic(i, 10) 

    top_words = [w for w, _ in top ] 

    print('{}: {}'.format(i, ' '.join(top_words)))

## 0: vehicle commodity oil funds gas partnerships mortgage swap futures advisor 
## 1: banking restaurant hotel mortgage fdic borrower lending banks tier residential 
## 2: mining exploration mineral gold manufacture silver land metal tobacco ore 
## 3: gaming television station contents advisor client programming casino fuel broadcast 
## 4: store brand solution mobile contents card online platform channel merchandise 
## 5: mortgage reit borrower residential tenant home reinsurance rating contents banking 
## 6: china client solution prc manufacture manufacturer holdings contents pension raw 
## 7: clinical trial drug patient fda candidate study medical care healthcare 
## 8: gas oil drilling pipeline crude water exploration unitholder drill commodity 
## 9: gas coal fuel plant electric pension utility generation contents transmission
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Examining the LDA model

▪ The  package produces a nice interactive map of the topicspyLDAvis

ldavis = pyLDAvis.gensim_models.prepare(lda, corpus, words, sort_topics=False) 

pyLDAvis.display(ldavis)

Click here to see the output
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Topic labels

▪ For the sake of exposition, I will label the topics as:

0. Investments

1. Loans

2. Mining

3. Media

4. Stores

5. Financial

6. Foreign

7. Medical

8. Oil and gas

9. Utilities
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Applying the LDA topics

▪ The model parameter gamma contains a full matrix of the raw topic amounts per document

▪ We can get this by calling .inference(corpus) on our model

▪ Best to normalize this to get percentages

▪ Next, we can build this into a data frame and merge it with Compustat

gamma, _ = lda.inference(corpus) 

topic_dist = topic_dist = gamma / gamma.sum(axis=1)[:,None] 

topic_dist.shape

topic_names = ['Investments', 'Loans', 'Mining', 'Media', 'Stores', 'Financial', 

               'Foreign', 'Medical', 'Oil and gas', 'Utilities'] 

df = pd.DataFrame(data=topic_dist, columns=topic_names) 

df['Accession'] = doc_names 

df_comp = pd.read_csv('../../Data/S4_Data.csv') 

df = df.join(df_comp, how='left') 

df['industry'] = sic_to_industry(df.regsic)
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Comparing two companies’ 10-Ks

long = pd.melt(df[(df['Accession'] == '0001104659-14-015152') | (df['Accession'] == '0000019617-14-000289')], 

               id_vars='Accession', value_vars=topic_names) 

long['Company'] = np.where( 

    long.Accession == '0001104659-14-015152', 'JPM', 'Citi') 

with sns.plotting_context("notebook", font_scale=1.25): 

    g = sns.catplot(x='variable', y='value', col='Company', 

                    data=long, kind='bar') 

    _ = g.set_xticklabels(rotation=90)
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Topic weights by SIC industry

long = pd.melt(df, id_vars='industry', value_vars=topic_names) 

long = long.groupby(['industry', 'variable']).mean().reset_index() 

with sns.plotting_context("notebook", font_scale=1.25): 

    g = sns.catplot(x='variable', y='value', col='industry', col_wrap=3, 

                    data=long[long.industry != 'NA'], kind='bar') 

    _ = g.set_xticklabels(rotation=90)
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Projecting to 2D with UMAP

▪ Like last session, we will use UMAP to get a sense of how well topic line up with SIC industries
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Projecting to 2D with UMAP

▪ It is also interesting to see how well the topics can be clustered

▪ The below colors UMAP by a k=9 kmeans algorithm applied to the LDA output
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Things to note

▪ There are a number of parameters in this design to optimize

1. The cleaning of the data removed any words in less than 50 documents or more than 50% of documents

▪ This can be tweaked depending on the needs of the model

2. LDA does have hyperparameters that can be specified:  and 

▪ We used ’s auto option to learn it from the data

3. There are also 2 hyperparameters we didn’t touch:  (decay) and  (offset)

▪ These can be tuned as well

▪ Most importantly, you need to decide on the number of topics

▪ There are multiple ways to do this

1. Iteratively conducting in-sample testing of the performance of the model on a regression of interest

(see Brown, Crowley, and Elliott (2020 JAR) for details)

2. Condition number test (see my dissertation for details)

3. A geometric approach to orthogonalizing topics (see my dissertation for details)

4. Based on human-reading of the output – see, e.g., Crowley, Huang, and Lu (2020)

gensim

\tau_
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Addendum: Using R

▪ There are at least four good implementations of LDA in R

1. : A bit of a tweak on the usual LDA model that plays nicely with  and also has an

associated  package for visualization (on Github)

2. : A somewhat rigid package with difficult setup syntax, but it plays nicely with the great 

package for visualizing models. Supported by .

3. : An extensible topic modeling framework that plays nicely with 

4. : An R package to interface with the venerable , capable of more advanced

topic modeling

stm quanteda

stmBrowser

lda LDAvis

quanteda

topicmodels quanteda

mallet MALLET Java package
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Optimizing K-means clustering
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Overview

▪ Kmeans clustering is very fast to run, but suffers from the same issue as LDA:

▪ O�en times the solutions to this are similar to what we discussed for LDA

▪ Hand tuning

▪ In sample performance

▪ However, there is a statistics-based, researcher-bias-free method

You need to specify the number of clusters!

The Gap Statistic
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How does the Gap statistic work?

▪ Let…

▪  be the number of clusters,

▪  the number of simulated samples

▪  be the K-Means inertia score on actual data

▪  be the K-Means inertia score for iteration  with synthetic data

▪  be the average of the s

▪ Select the lowest  such that 

I.e., select the lowest  s.t. the log-scaled error removed by clustering on real data at  is

no worse than 1 SD below the log-scaled error removed at 
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Implementation in python

▪ The code is too long to put in the slides, but it is in the code file

▪ Sketch of the code:

1. Iterate through  values starting at 2

2. Determine performance (inertia) at k with real data

3. Determine performance (inertia) at k with simulated (random) data 10 times

4. Calculate the standard deviation of the log of performance on random data

5. See if the 2x2 difference in log inertia between  and  on real and random data is less than the

standard deviation

▪ If so,  is optimal, stop iterating

▪ If not,  and start again

 for the model presented here
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Optimal clusting

model = cluster.KMeans(n_clusters=30) 

kmeans = model.fit(df[topic_names]) 

df['cluster_opt'] = kmeans.labels_ 

 
umap_color(df[topic_names], df.cluster_opt.astype("category"))
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Example companies in the optimized clusters

df[df.cluster_opt==2][['coname', 'industry']].sample(n=10

##                                    coname         indus
## 1922                CALLIDUS SOFTWARE INC     Public Ad
## 2690             MUNRO DEVELOPMENTS, INC.     Construct
## 5021   RYMAN HOSPITALITY PROPERTIES, INC.         Servi
## 5462                AMPCO PITTSBURGH CORP        Utilit
## 6816               PORTLOGIC SYSTEMS INC.     Public Ad
## 5369                     ONCOTHYREON INC.     Public Ad
## 3083  FORD CREDIT AUTO OWNER TRUST 2010-B         Servi
## 5376                        GSI GROUP INC        Utilit
## 3635                     GLOBALSTAR, INC.  Wholesale Tr
## 5977   AMERICREDIT FINANCIAL SERVICES INC         Servi

df[df.cluster_opt==3][['coname', 'industry']].sample(n=10

##                                                coname  
## 7264                AMERICAN RAILCAR INDUSTRIES, INC.  
## 7307                            PHARMA-BIO SERV, INC.  
## 4740                           TIME WARNER CABLE INC.  
## 3165  REEF OIL & GAS INCOME & DEVELOPMENT FUND III LP  
## 3215                                PNM RESOURCES INC  
## 6278                          AMERICAN GREETINGS CORP  
## 7615                           TIPTREE FINANCIAL INC.  
## 1599                                  ARTHROCARE CORP  
## 3133                             KIEWIT ROYALTY TRUST  
## 1187                MS STRUCTURED TILES SERIES 2006-1  
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Conclusion
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Wrap-up

▪ Good when you only need one class, and that class is:

1. Easy to pick up with some other text as a prior

2. Very different from the baseline text in your documents

▪ Easy to implement

▪ Useful in some context where words matter

▪ Good for getting a simple, quantitative summary of your data

Supervised text classification

Word vectors

LDA
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Python

▪ gensim

▪ matplotlib

▪ numpy

▪ pandas

▪ pyLDAvis

▪ scikit-learn

▪ seaborn

▪ spacy

▪ umap-learn

R

▪ kableExtra

▪ knitr

▪ reticulate

▪ revealjs

Packages used for these slides
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Custom code

# Convert SIC codes to their 2-digit labels 
 
def sic_to_industry(mat): 
    d = {0:'Agriculture', 1:'Mining', 2:'Construction', 3:'Manufacturing', 4:'Utilities', 5:'Wholesale Trade', 
         6:'Retail Trade', 7:'Finance', 8:'Services', 9:'Public Admin', 10:'NA'} 
    mat = np.where((mat >= 100) & (mat <=999), 1, mat) 
    mat = np.where((mat >= 1000) & (mat <=1499), 2, mat) 
    mat = np.where((mat >= 1500) & (mat <=1799), 3, mat) 
    mat = np.where((mat >= 2000) & (mat <=3999), 4, mat) 
    mat = np.where((mat >= 4000) & (mat <=4999), 5, mat) 
    mat = np.where((mat >= 5000) & (mat <=5199), 6, mat) 
    mat = np.where((mat >= 5200) & (mat <=5999), 7, mat) 
    mat = np.where((mat >= 6000) & (mat <=6799), 8, mat) 
    mat = np.where((mat >= 7000) & (mat <=8999), 9, mat) 
    mat = np.where((mat >= 9100) & (mat <=9999), 9, mat) 
    mat = np.where(np.isnan(mat), 10, mat) 
    return [d[i] for i in list(mat)]
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Custom code

# From umap.plot source code on Github 
def _get_embedding(umap_object): 
    if hasattr(umap_object, "embedding_"): 
        return umap_object.embedding_ 
    elif hasattr(umap_object, "embedding"): 
        return umap_object.embedding 
    else: 
        raise ValueError("Could not find embedding attribute of umap_object") 
 
 
# Cut down version of umap.plot.points to remove dependencies on  datashader, bokeh, holoviews, scikit-image, and colorcet 
# Introduces a dependency on seaborn though 
def umap_color(data_map, data_color, cmap='viridis', subset=None, title=None): 
    reducer = umap.UMAP() 
    umap_object = reducer.fit(data_map) 
    embed = _get_embedding(umap_object) 
 
    if subset is not None: 
        embed_X = embed[subset,0] 
        embed_Y = embed[subset,1] 
        data_color = np.array(data_color[subset]) 
    else: 
        embed_X = embed[:, 0] 
        embed_Y = embed[:, 1] 
     
    point_size = 100.0 / np.sqrt(len(embed_X)) 
     
    # color by values 
    fig, ax = plt.subplots(figsize=(12,8)) 
    g = sns.scatterplot(ax=ax, x=embed_X, y=embed_Y, hue=data_color, size=point_size) 
    _ = plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) 
    return g
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