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Application: Analyzing every annual report from 2014

= All 10-K filings in EDGAR in 2014
= This keeps the data small enough to keep in memory easily, but large enough to get some power in our
analyses

= Supervised classification » Unsupervised classification
= Method from Hassan et al. (2019 QJE) = Word-level: word2vec
* Document-level: LDA
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The Hassan et al. (2019 QJE) approach

= Just like how we can used data about a phenomenon to supervise algorithm construction with numeric data
(i.e., regression), Hassan et al. (2019 QJE) suggests a similar idea based on using text to supervise text.
* The methodology requires 3 sets of textual information:
1. Data that you want to analyze
2. Data that represents the information you want to quantify the extent of
3. Data that represents the rest of the information, e.g., what you don’t want to quantify

There is a simple requirement here: what you want and what the baseline text in your file
is must be sufficiently different

* The method is mentioned in the computer science literature in Song and Wu (2008) and Schuitze et al. (2008)




The study

Goal: measure political risk

= Data:
1. Conference call transcripts from 2002 to 2016
2. Political text: American Politics Today (Bianco and Canon); articles from NYT, USA Today, WSJ,
Washington Post on “domestic politics”
3. Nonpolitical text: Financial Accounting (Libby, Libby and Short); articles from NYT, USA Today, WSJ,
Washington Post on “performance,” “ownership changes,” and “corporate actions;” the Santa Barbara
Corpus of Spoken American English (excluding politics-related episodes)

A lot of baseline data is needed! But why?
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Other work needed

1. Cleaning up the data
= Removing a lot of bi-grams based on part-of-speech tags that are unlikely

to be relevant
* Removing Bi-grams with: i, ve, youve, weve, im, youre, were, id, youd, wed,
thats

* Removing “princeton university”
2. Removing 3 synonyms for risk due to contextual differences: questions,

guestion, venture




What do they do with the data?

* They construct a list of bi-grams (2 word phrases) such that
= Each bi-gram appears in the political baseline
» Each bi-gram never appears in the nonpolitical baseline

» They will weight words accordingly

* They will measure risk by using these weights paired with phrases where a
synonym for risk is nearby.

Top political bi-grams (weight) Top risk words (frequency)
1. the constitution 1. risk
2. the states 2. risks
3. public opinion 3. uncertainty
4. interest groups 4. variable

5. of government 5. chance



Building the measure

Let N be the set of bi-grams that are non-political
Let [P be the set of bi-grams that are political
bis a bi-gram in the set of bi-grams in the set B
Let the set B (IP) have B (P) elements

Let 7, be the closest risk word to b

Let fp p be the number of times that b appears in P

Total discussion of politics
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Building the measure

= Let N be the set of bi-grams that are non-political

= Let [P be the set of bi-grams that are political

= bis abi-gram in the set of bi-grams in the set B, valued by its position in the
document

= Let the set B (IP) have B (P) elements

= Let 7y be the closest risk word to b, valued by its position in the document

* Let f5 p be the number of times that b appears in [P

Total discussion of political risk
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Benefits of the method

1. More complete than a dictionary approach

2. Very clean approach given that political discussion should be fairly different
from other discussion in annual reports

3. Generally applicable for any easy to pick out discussion
* So long as you can find training data




What do we need to know to implement it?

1. How to chunk text into bi-grams
2. How to tokenize text
= Donein Session 3V
3. How to count words or phrases
» UseaCounter () VvV

Optional advanced stuff: You can vectorize most of the
calculation and just use matrix algebra with numpy



https://docs.python.org/3/library/collections.html
https://numpy.org/doc/stable/index.html

Workflow

= Set up blacklists

y &

word blacklist = "1 1've you've we've 1'm you're we're 1'd you'd we'd that's".split ('

pattern blacklist = ["PRP|PRP", "IN|IN", "RB|RB", "WRB|RB", "IN|RB", "RB|IN",
"IN|WRB", "WRB|IN", "DT|IN", "IN|DT", "RB|WRB", "RB|DT",
"DT|RB", "WRB|DT", "DT|WRB", "SYM|SYM"]

gram blacklist = 'princeton|university'

» Define the main function for cleaning

def grammer (doc, n, processed patterns, word blacklist, gram blacklist, lower=True, stopﬁgl
if not stopword:

grams = textacy.extract.ngrams (doc, n=n, filter stops=False, filter nums=True)
else:

grams = textacy.extract.ngrams (doc, n=n, filter stops=True, filter nums=True)
ngrams = Counter ()
for gram in grams:

pos = '|'.join([word.tag for word in gram])

if not lower:

text = '"|'.join([word.text for word in gram])
else:

text = '"|'.jJoin([word.text for word in gram]) .lower ()




Process a document

= We’ll use the same data as Session 3

nlp = spacy.load('en core web sm', disable=['parser', 'ner'])
nlp.max length = 10000000

with open('../../Data/0001104659-14-015152.txt"', 'rt') as f:
text = f.read()

document = nlp (text)

grams = grammer (document, n=2, processed patterns=pattern blacklist,
word blacklist=word blacklist,
gram blacklist=gram blacklist)

# Intermediary measures
gram count = sum(grams.values())
gram set = set (grams)




What is this set () ?

Sets in python are an interesting and rather useful structure

Like lists, they contain a bunch of objects, such as text in our case
Unlike lists, they do not have an order and cannot contain duplicates
Also unlike lists, they are very fast to query

= E.g.,ifyou ask if somethingisin a very large set, the response is quick

We can apply set functions to them!
* setl & set?2representsthe intersection of the two sets

= Muchfasterthan [1 for 1 in 1listl if 1 in 1list2]
 setl | set?2representsthe union
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Applying a hypothetical dictionary

* The hypothetical weighted dictionary:

A

'foreign|currencies':0.35, 'fox¢
'"foreign|currency':0.25, 'foreign|investment':0.2, 'foreign|holdings':0.2}

welghts = {'earnings|foreign':0.5, 'currency|foreign':0.4,
welght set = set (welghts)

= Use set intersection to quickly get the overlap:

Ishared_keys = list (gram set & weilight set) s
» Determine the aggregate weight of the overlapping text
ns = len(shared keys) e
v _welghts = np.empty(ns)
v _counts = np.empty (ns)
c =0
for key in shared keys:
v_welghts[c] = weightslkey]

v_counts[c] = grams|[key]




Finalize the measure

measure = spec weight / gram count if gram count > 0 else O
measure

I## 0.00044791238010825877

* Note that this exercise shows you how to calculate a simple disclosure score,
not the risk score from Hassan et al. (2019 QJE)
= Fortherisk score, you need to replace the counts by a count of times the
bi-gram was within 10 words of a risk word




Exercise

DoSetlinthe Session 4-Exercises file

= This goes through a simplified version of the same calculation
= In fact, the exercise is pretty much just cosine-similarity under an L distance

a— metric
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A motivating example

Talk B Books

from books using experimental Al

| i[RI, . A L
Srowse passages

Learn more

=

) =

Mot a traditional search Use natural language Play with it

Use this demo as a creativity tool Speaking to it in sentences will Try our sample queries then try
to explore ideas and discover often get better results than your own. Experiment with
books by getting quotes that keywords. That's because the Al is different wording to see how it

respond to your queries. trained on human conversations. changes the resulis.



https://books.google.com/talktobooks/

What are unsupervised methods?

Unsupervised methods try to find some patterns in data without being told what exactly it
is that they should find

= Examples of what can be accomplished:
1. Word meaning
= Calculate similarity of words
= Useful for finding synonyms or comparing text snippets
2. Sentence or phrase meaning
N = Useful for directly comparing sentence or paragraph similarity

~
. 3. Document classification
’ = Useful for clustering documents

4, Content grouping (topic analysis)
= Useful for simplistic text summarization in a quantified manner




What are “vector space models”

= Different ways of converting some abstract information into numeric information
* Focus on maintaining some of the underlying structure of the abstract information
» Examples (in chronological order):
= Word vectors:
= Word2vec
= GloVe
= Paragraph/document vectors:
= Doc2Vec
= Sentence vectors:
= Universal Sentence Encoder
= Topic vectors:
= Latent Dirichlet Allocation (LDA)

N



https://www.tensorflow.org/tutorials/representation/word2vec
https://nlp.stanford.edu/projects/glove/
https://medium.com/scaleabout/a-gentle-introduction-to-doc2vec-db3e8c0cce5
https://tfhub.dev/google/universal-sentence-encoder/2
https://ai.stanford.edu/~ang/papers/jair03-lda.pdf

Word vectors

» Instead of coding individual words, encode word meaning
* Theidea:
= Ourold way (encode words as IDs from 1 to N) doesn’t understand relationships such as:
= Spatial

Categorical
Grammatical (weakly when using stemming)
Social
etc.

Word vectors try to encapsulate all of the above implicitly, through by encoding words as
a vector based on how features manifest themselves in text

SN




Word vectors: Simple example

words f_ animal f_people f_location
dog 0.5 0.3 -0.3
cat 0.5 0.1 -0.3
Bill 0.1 0.9 -0.4
turkey 0.5 -0.2 -0.3

Turkey -0.5 0.1 0.7

Singapore -0.5 0.1 0.8
= The above is a simplified illustrative example

= Notice how we can tell apart different animals based on their relationship with people
= Notice how we can distinguish turkey (the animal) from Turkey (the country) as well
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What it retains: word2vec
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https://www.tensorflow.org/tutorials/representation/word2vec#visualizing_the_learned_embeddings

What it retains: GloVe
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https://nlp.stanford.edu/projects/glove/

How to build word vectors

= |n python:
* gensimallowsyou toimport pre-trained models

= |t also allows you to train your own
* tensorflow allows you to use pre-trained models or train your own

= |nR:
1. Word co-occurrence-based like GloVe
» Available from the text2vec package
2. Word order based (using a neural network)
* Available from the rword2vec package

<7
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https://radimrehurek.com/gensim/
https://www.tensorflow.org/
http://text2vec.org/
https://github.com/mukul13/rword2vec

All other windows

Example windows

How does word order work?

Infer a word’s meaning from the words around it

CBOW: Continuous bag of words
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| Citigroup's 2014 10K, page 4|

Refered to as CBOW (continuous bag of words)




All other windows

Example windows

How else can word order work?

Infer a word’s meaning by generating words around it

The Skip-gram Model

.
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Refered to as the Skip-gram model

| Citigroup's 2014 10-K, page 4|




An example of using word2vec

* Inthe BCE paper from Session 6, word2vec was used to provide assurance that the LDA model works
reasonably well on annual reports
1. We trained a word2vec model on random issues of the Wall Street Journal (247.8M words)
2. The resulting model “understood” words in the context of the WSJ
3. We then ran a psychology experiment (word intrusion task) on the algorithm

Z

[
oM
Y Y



Word intrusion task

» The task s to find which word doesn’t belong
= Each question consisted of 3 words from 1 topic and 1 intruded from another random topic
= EXx.
= Laser, Drug, Viral, Therapeutic
= Supply, Steel, Capacity, Losses
» Relief, Lousisiana, Cargo, Assisted

IN &¥ ~_”
20°Cc B




% of questions correct

Results

i =— Web corpus
= W5| corpus
= {(-K corpus

55 = Random chance
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Loading in word2vec with Gensim

* The gensim package comes with the ability to download word2vec and GloVe vectors from a repository

* The code below would allow you to download a model trained on Google News
= |n this model, each word is represented as a 300-dimensional vector

base w2v = gensim.downloader.load('word2vec-google-news-300")

import gensim
import gensim.downloader

Note: The model it downloads is 1.7GB

* The model will be stored in ~/gensim models/
= ~ represents your user directory
= You can safely delete this directory after you are done using it



https://radimrehurek.com/gensim/

Examining word2vec: Odd one out

I base w2v.doesnt match(['Queen', 'King', 'Prince', 'Peasant'])

I## 'Peasant'

I base w2v.doesnt match(['Singapore', 'Malyasia', 'Indonesia', 'Germany'])

I## 'Germany'

I base w2v.doesnt match(['Euro', 'USD', 'RMB', 'computer'])

I## 'computer'

Ibase_wZv.doesnt_match ([ 'mee goreng', 'char kway teoh', 'laksa', 'hamburger'])

I ## 'hamburger'




Examining word2vec: Closest words

Ikmse_wZv.most_similar(['Earnings'])

('"Pro Forma EPS', 0.6441532373428345) ('Diluted EPS', 0.636042058467865)

'Goodwill Impairment', 0.6357625126838684) ('Tax Expense', 0.6289322376251221)
'Reconciling Items', 0.6285154819488525) ('Restructuring Charges', 0.6268271207809448)
'Backs FY##', 0.6254147291183472) ('Raises FY## EPS', 0.6230234503746033)
'Restructuring Charge', 0.6216667294502258) ('FFO Per Share', 0.6207219958305359)

(
(
(
(

Ikmse_w2v.most_similar('IASB')

('"Accounting Standards Board', 0.7211726307868958) ('FASB', 0.6697319149971008)
("IAASB', 0.6319378614425659) ('IAS##', 0.6150702834129333)
('"FASB IASB', 0.593984842300415) ('Exposure Draft', 0.5892050266265869)
('Board IASB', 0.5818656086921692) ('IFRS', 0.5813880562782288)
('"GNAIE', 0.5802473425865173) ('Solvency II', 0.574397087097168)




Examining word2vec: Closest words

Ikmse_wZv.most_similar(['KPMG'])

("PwC', 0.8044512867927551) ('PricewaterhouseCoopers', 0.8032213449478149)

'Deloitte’', 0.7856791019439697) ('Grant Thornton', 0.7815379500389099)

'PriceWaterhouseCoopers', 0.7609084248542786) ('KMPG', 0.7575340270996094)
'PricewaterhouseCoopers PwC', 0.7438496351242065) ('Pricewaterhouse Coopers', 0.7163813710212708)
'Delloitte', 0.7009097337722778) ('KPMG LLP', 0.7008424401283264)

(
(
(
(

Ikmse_w2v.most_similar(['Arthur_Andersen'])

("Arthur Andersen LLP', 0.7720072269439697) ('Peat Marwick', 0.6542829275131226)
('"Price Waterhouse', 0.6524070501327515) ('KPMG Peat Marwick', 0.6093755960464478)
('Peat Marwick Mitchell', 0.6006763577461243) ('& Lybrand', 0.5949062705039978)
("Arthur Andersen accounting', 0.559570848941803) ('auditor Arthur Andersen', 0.5569155812263489)
("KPMG', 0.5496521592140198) ('Price Waterhouse LLP', 0.5493941903114319)




Examining word2vec: Analogies
man : King :: woman : 7

= Mathematically: King — man + woman =7

Ikmse_w2v.most_similar(positive=['King', 'woman'], negative=['man'])

("Queen', 0.5515626668930054) ('Oprah BFF Gayle', 0.47597548365592957)
('Geoffrey Rush Exit', 0.46460166573524475) ('Princess', 0.4533674716949463)
'Yvonne Stickney', 0.4507041573524475) ('L. Bonauto', 0.4422135353088379)

(
('gal pal Gayle', 0.4408389925956726) ('Alveda C.', 0.44027906656265206)
('Tupou V.', 0.4373864233493805) ('K. Letourneau', 0.4351031482219696)




The sleight of hand behind this

= Word2Vec implementations usually bar a word in the analogy from being an output
» E.g., it will never report man: King :: woman : King
= But this is actually the mathematical answer

analogy = analogy / np.linalg.norm(analogy)
print ('King', np.linalg.norm(analogy - base w2v['King']))

Iawwlogy = base w2v['King'] + base w2v['woman'] + base w2v['man']

I:## King 1.9888592
Ipmint('Queen', np.linalg.norm(analogy - base w2v['Queen']))

I## Queen 2.7364814




It’s still pretty good though!

= Note that since word2vec’s original answer was Queen, this implies it was second best
» If Queen is the closest word to King, then this would be mathematically uninteresting
» |t’s actually 7th though! '
5

Ikmse_w2v.most_similar('King') i’

I## [ ('Jackson', 0.5326348543167114), ('Prince', 0.5306329727172852), ('Tupou V.', 0.5292826294898987), ('KIng', 0.52275013923¢

16 . 21




What is this good for?

1. You care about the words used, by not stylistic choices
= Abstraction
2. You want to crunch down a bunch of words into a smaller number of dimensions without running any bigger '
S

models (like LDA) on the text.
= E.g.,you can toss the 300 dimensions of the Google News model to a Lasso or Elastic Net model
= Thisis a big improvement over the past method of tossing vectors of word counts at Naive Bayes
3. You want synonyms for a set of words that are selected in a less-researcher-biased fashion
= You can even get n-gram synonyms this way
» A popular method for augmenting small dictionaries

<7

16 .22




Exercise: Trying out word2vec

DoSet2inthe Session 4-Exercises file

= This set of exercise is to help you understand a bit better about what word2vec is good at
= Aswellas whatitisn’t good at

—
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What is LDA?

= Latent Dirichlet Allocation

* One of the most popular methods under the field of topic modeling

» LDAis a Bayesian method of assessing the content of a document

= LDA assumes there are a set of topics in each document, and that this set follows a Dirichlet prior for each
document
= Words within topics also have a Dirichlet prior

More details from the creator



http://www.cs.columbia.edu/~blei/papers/Blei2012.pdf
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An example of LDA
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How does it work?

1. Reads all the documents
= Calculates counts of each word within the document, tied to a specific ID used across all documents
2. Uses variation in words within and across documents to infer topics
* By using a Gibbs sampler to simulate the underlying distributions '
= An MCMC method A
= |t’s quite complicated in the background, but it boils down to a system where generating a document follows
a couple rules:
1. Topics in a document follow a multinomial/categorical distribution
2. Words in a topic follow a multinomial/categorical distribution

<7
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Motivating example: Huang et al. 2015 MS

» Agoal of the paper is to see what analysts discuss in their reports, with a focus on two possibilities
1. Discussing content from conference calls
2. Discussing content that is beyond the scope of conference calls

Analysts discuss both, and both are useful to investors

= As expected, there is some variation when both are useful:
= If a conference call is more difficult to understand, analysts discussing the same content is more useful
= |f executives have incentives to withhold information, then information beyond the conference call is more
useful
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Why LDA in this paper: Conference calls

= There are a lot of potential things that could be discussed in conference calls
= Some are consistently brought up:
= Economic conditions
= Earnings
= Expenses
= Product launches
= Some can be particular to a specific time and a specific company
» Example: comments on why a buggy video game was released (Source)
» “l don’t expect next-gen performance on last-gen, but | would like to be able to play through the
game.”
= If aresearcher takes a dictionary approach, they can probably get many of the consistently discussed topics
= But they will likely miss the less common or more variable topics



https://www.cdprojekt.com/en/wp-content/uploads-en/2020/12/call-transcript_en.pdf
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Why LDA in this paper: Analyst reports

The goalis to have a text model that is valid for both document types

= Train LDA on both document types!
= Difficult to ensure the same words are used for a dictionary approach
* Need to repeat your dictionary creation task for both settings (doubles workload)




Why LDA in this paper: Other considerations

1. The model is trained per industry
= Since relevant topics for analyst reports and conference calls change quite a bit by industry, this allows
them to get a more accurate portrayal of each industry
* This adds essentially no extra work for the researcher, other than calling some for loops

= Contrast with a dictionary approach, where you would now need to multiple your effort by the number
of industries

2. Not all words are as relevant
= LDA provides Bayesian-based probabilistic weights rather than 1/0 indicators
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Implementing LDA in python

» The best package for thisis gensim
* Aslong as your data fits in memory comfortably, it is easy to use
= If not, you will need to construct a generator to pass to it, which is more complex
* The code file for this session has an example of this! '
* Thereis also an implementationin sklearn B

* In terms of computation time, you will likely spend more time prepping your text than running the LDA
model

<7
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https://radimrehurek.com/gensim/
https://scikit-learn.org/stable/

Prepping text

= We will take a more thorough approach using spaCy for preprocessing
Remove stopwords using spaCy’
Remove numbers, symbols, and punctuation based on a neural network dependency parser
_emmatize words based on the word and its POS tags
= |faccuracy is less important or your computer can’t handle spaCy’s approach, another approach is:

= Use aregex or NLTK to tokenize into words

» Usethe stop-words package or NLTK to get a list of stopwords

= Filter them out using a list comprehension
doc = [w for w 1n doc 1f w not i1n stopwords]
= Apply a word-based lemmatizer from NLTK such as WordNet



https://spacy.io/
https://spacy.io/
https://spacy.io/
https://www.nltk.org/_modules/nltk/stem/wordnet.html

Running the LDA model

# docs contains all of our cleaned 10-K filings
# doc names contains the filings' accession numbers

# Prepare the needed parts for gensim's LDA implementation

words = gensim.corpora.Dictionary (docs)

words.filter extremes (no below=50, no above=0.5)

words.filter tokens(bad ids=[words.token2id[' ']]) # ' ' is not treated as a symbol by spaCy

corpus = [words.doc2bow (doc) for doc in docs] -

# Free up some memory
del docs

# Save the intermediate data -- useful if we want to tweak model parameters and re-run later

with open('../Data/corpus.pkl', 'wb') as f:
pickle.dump ([corpus, words, doc names], f, protocol=pickle.HIGHEST PROTOCOL)

# Run the model
lda = gensim.models.ldamodel.LdaModel (corpus, id2word=words, num topics=10, passes=5,
update every=5, alpha='auto', eta='auto')




Examining the LDA model

1. Load in the LDA model along with the corpus structure and the document names
= No need to do this if the model is still in memory

lda = gensim.models.ldamodel.LdaModel.load('../../Data/lda’")
with open('../../Data/corpus.pkl', 'rb') as f:
corpus, words, doc names = pickle.load(f)

2. Examine a topic

# Parameters: topic number, number of words i:
h lda.show topic(0, 10)

('oil', 0.007663337), ('funds', 0.007322089) ]

## [ ('vehicle', 0.012847863), ('commodity', 0.010794649)
## ('mortgage', 0.0052304408), ('swap', 0.004704417)]
#4#

[('gas', 0.005776752), ('partnerships', 0.0057128207)
)

[ ("futures', 0.0043137535), ('advisor', 0.0043026144) ]

Note the weights associated with the words - some words are more meaningful than
others

Seavme



Examining the LDA model

3. See the top words in each topic

for i in range(0,10):
top = lda.show topic (i, 10)
top words = [w for w,  in top ]
print ("{}: {}'.format(i, ' '.join(top words)))

vehicle commodity o0il funds gas partnerships mortgage swap futures advisor

banking restaurant hotel mortgage fdic borrower lending banks tier residential
mining exploration mineral gold manufacture silver land metal tobacco ore

gaming television station contents advisor client programming casino fuel broadcast
store brand solution mobile contents card online platform channel merchandise
mortgage reit borrower residential tenant home reinsurance rating contents banking
china client solution prc manufacture manufacturer holdings contents pension raw
clinical trial drug patient fda candidate study medical care healthcare

gas o1l drilling pipeline crude water exploration unitholder drill commodity

gas coal fuel plant electric pension utility generation contents transmission

0:
1:
2
3:
4
5:
6:
7
8:
9:




Examining the LDA model

* The pyLDAvis package produces a nice interactive map of the topics

ldavis = pyLDAvis.gensim models.prepare(lda, corpus, words, sort topics=False)
pyLDAvis.display(ldavis)

| Click here to see the output
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https://pyldavis.readthedocs.io/en/latest/readme.html
file:///M:/Dropbox/Teaching/Faculty_Training_2021/Slides/Session_4/ldavis.html

Topic labels
= For the sake of exposition, | will label the topics as:
0. Investments
. Loans
. Mining
. Media
. Stores
. Financial
. Foreign
. Medical
. Oil and gas
. Utilities

1l
2
3
4
5
6
7
8
9




Applying the LDA topics

* The model parameter gamma contains a full matrix of the raw topic amounts per document
= We can get this by calling . inference (corpus) onour model
= Best to normalize this to get percentages

topic dist = topic dist = gamma / gamma.sum (axis=1) [:,None]

gamma, = lda.inference (corpus)
topic dist.shape

= Next, we can build this into a data frame and merge it with Compustat

topic names = ['Investments', 'Loans', 'Mining', 'Media', 'Stores', 'Financial',
'"Foreign', 'Medical', 'Oil and gas', 'Utilities']

df = pd.DataFrame (data=topic dist, columns=topic names)

df ['Accession'] = doc names

df comp = pd.read csv('../../Data/S4 Data.csv')

df = df.join(df comp, how='left')

df ['"industry'] = sic_to industry(df.regsic)




Comparing two companies’ 10-Ks

long = pd.melt (df[ (df['Accession'] == '0001104659-14-015152") | (df['Accession'] == '0000019617-14-000289") 1],
id vars='Accession', value vars=topic names)

long['Company'] = np.where (

long.Accession == '0001104659-14-015152"', 'JPM', 'Citi')
with sns.plotting context ("notebook", font scale=1.25):

g = sns.catplot(x='variable', y='value', col='Company',

data=long, kind='bar"')
_ = g.set xticklabels (rotation=90)

Company = Citi Company = |PM

-

Stores

Investments
Stores
Fnancial
0il and gas -
Utilities
Investments
Financial
Medical
Oil and gas -
Utilities

variable variable




Topic weights by SIC industry

long = pd.melt (df, id vars='industry', value vars=topic names)

long = long.groupby (['industry', 'variable']).mean().reset index()
with sns.plotting context ("notebook", font scale=1.25):
g = sns.catplot(x='variable',K y='value', col='industry', col wrap=3,
data=long[long.industry != 'NA'], kind='bar"')

_ = g.set xticklabels (rotation=90)



Projecting to 2D with UMAP

= Like last session, we will use UMAP to get a sense of how well topic line up with SIC industries

Retail Trade

& Services
Wholesale Trade
LEilities
Public in
i

s 113446079130187%6




Projecting to 2D with UMAP

It is also interesting to see how well the topics can be clustered
= The below colors UMAP by a k=9 kmeans algorithm applied to the LDA output

O = O LN LU B = S

e 1134460791301875%60
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Things to note

* There are a number of parameters in this design to optimize
1. The cleaning of the data removed any words in less than 50 documents or more than 50% of documents
= This can be tweaked depending on the needs of the model
2. LDA does have hyperparameters that can be specified: o and n
= We used gensim’s auto option to learn it from the data
3. There are also 2 hyperparameters we didn’t touch: K (decay) and (offset)
* These can be tuned as well
= Most importantly, you need to decide on the number of topics
= There are multiple ways to do this
1. Iteratively conducting in-sample testing of the performance of the model on a regression of interest
(see Brown, Crowley, and Elliott (2020 JAR) for details)
2. Condition number test (see my dissertation for details)
3. A geometric approach to orthogonalizing topics (see my dissertation for details)
4. Based on human-reading of the output - see, e.g., Crowley, Huang, and Lu (2020)

‘



https://radimrehurek.com/gensim/

e

Addendum: Using R
* There are at least four good implementations of LDA in R
1. stm: A bit of a tweak on the usual LDA model that plays nicely with quanteda and also has an

associated stmBrowser package for visualization (on Github)
2. 1da: Asomewhat rigid package with difficult setup syntax, but it plays nicely with the great LDAv1i s

package for visualizing models. Supported by quanteda.
3. topicmodels: An extensible topic modeling framework that plays nicely with quanteda
4. mallet: An R package to interface with the venerable MALLET Java package, capable of more advanced

topic modeling

o)
¥/



https://www.structuraltopicmodel.com/
https://quanteda.io/
https://github.com/mroberts/stmBrowser
https://cran.r-project.org/web/packages/lda/index.html
https://github.com/cpsievert/LDAvis
https://quanteda.io/
https://cran.r-project.org/web/packages/topicmodels/index.html
https://quanteda.io/
https://github.com/mimno/RMallet
http://mallet.cs.umass.edu/
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Overview

= Kmeans clustering is very fast to run, but suffers from the same issue as LDA:
You need to specify the number of clusters!

= Often times the solutions to this are similar to what we discussed for LDA
* Hand tuning

* |n sample performance
= However, there is a statistics-based, researcher-bias-free method

The Gap Statistic




JIII : -
k.

How does the Gap statistic work?

= Let...
= k be the number of clusters,
B the number of simulated samples
Wi be the K-Means inertia score on actual data
WI;",T be the K-Means inertia score for iteration 7 with synthetic data

[ be the average of the W} s

Gap(k ( ) Zlog (W* ) — log (W}) and
sk = sdk\/l + %, where sd;, = \ (%) i {log (W, — 1) }z

i

= Select the lowest k such that Gap(k) > Gap(k + 1) — sg41

l.e., select the lowest k s.t. the log-scaled error removed by clustering on real data at k is
no worse than 1 SD below the log-scaled error removed at k + 1



Implementation in python

* The codeistoo long to putin the slides, butitis in the code file
= Sketch of the code:
1. Iterate through k values starting at 2
2. Determine performance (inertia) at k with real data
3. Determine performance (inertia) at k with simulated (random) data 10 times
4. Calculate the standard deviation of the log of performance on random data
5. See if the 2x2 difference in log inertia between k and k + 1 on real and random data is less than the
standard deviation
= If so, kis optimal, stop iterating
= Ifnot, k = k + 1 and start again

N
. N
| k = 30 for the model presented here
‘1
k‘ ‘L




Optimal clusting

model = cluster.KMeans (n clusters=30)
kmeans = model.fit (df [topic names])
df['cluster opt'] = kmeans.labels

umap color (df [topic names], df.cluster opt.astype ("category"))
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Example companies in the optimized clusters

I df [df.cluster opt==2][['coname', 'industry']].sample (n=ﬂ) I df [df.cluster opt==3][['coname',6 'industry']].sample (n=ﬂ)

coname indu: coname

CALLIDUS SOFTWARE INC Public A« AMERICAN RAILCAR INDUSTRIES, INC.

MUNRO DEVELOPMENTS, INC. Construc PHARMA-BIO SERV, INC.

RYMAN HOSPITALITY PROPERTIES, INC. Serv. TIME WARNER CABLE INC.
AMPCO PITTSBURGH CORP Utili REEF OIL & GAS INCOME & DEVELOPMENT FUND III LP

PORTLOGIC SYSTEMS INC. Public A« PNM RESOURCES INC

ONCOTHYREON INC. Public A« AMERICAN GREETINGS CORP

FORD CREDIT AUTO OWNER TRUST 2010-B Serv. TIPTREE FINANCIAL INC.
GSI GROUP INC Utili ARTHROCARE CORP

GLOBALSTAR, INC. Wholesale T: KIEWIT ROYALTY TRUST

AMERICREDIT FINANCIAL SERVICES INC Serv. MS STRUCTURED TILES SERIES 2006-1
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Wrap-up

Supervised text classification

= Good when you only need one class, and that class is:
1. Easy to pick up with some other text as a prior
2. Very different from the baseline text in your documents

Word vectors

= Easy to implement
= Useful in some context where words matter

LDA

* Good for getting a simple, quantitative summary of your data




Packages used for these slides

Python

gensim
matplotlib
numpy
pandas
pyLDAvis
scikit-learn
seaborn
spacy
umap-learn

R

kableExtra
knitr
reticulate
revealjs
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Custom code

# Convert SIC codes to their 2-digit labels

def sic to industry(mat):
d = {0:"Agriculture', 1:'Mining', 2:'Construction', 3:'Manufacturing', 4:'Utilities', 5:'Wholesale Trade',
6:'Retail Trade', 7:'Finance', 8:'Services', 9:'Public Admin', 10:'NA'}
mat np.where ((mat >= 100) & (mat <=999), 1, mat)
mat np.where ((mat >= 1000) (mat <=1499), 2, mat)
mat np.where ( (mat 1500) mat <=1799), 3, mat)
mat np.where ( (mat 2000) mat <=3999), 4, mat)
mat np.where ( (mat 4000) mat <=4999), 5, mat)
mat np.where ( (mat 5000) mat <=5199), 6, mat)
mat np.where ( (mat 5200) at <=5999), 7, mat)
mat np.where ( (mat 6000) mat <=6799), 8, mat)
mat np.where ( (mat 7000) mat <=8999), 9, mat)
) 9
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mat np.where ((mat >= 9100 (mat <=9999), , mat)
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mat = np.where (np.isnan (mat), , mat)
return [d[i] for i in list (mat




Custom code

# From umap.plot source code on Github
def get embedding(umap object) :
if hasattr (umap object, "embedding "):
return umap object.embedding
elif hasattr (umap object, "embedding"):
return umap object.embedding
else:
raise ValueError("Could not find embedding attribute of umap object")

# Cut down version of umap.plot.points to remove dependencies on datashader, bokeh, holoviews, scikit-image, and colorcet
# Introduces a dependency on seaborn though
def umap color(data map, data color, cmap='viridis', subset=None, title=None):

reducer = umap.UMAP ()

umap object = reducer.fit (data map)

embed = get embedding (umap object)

if subset is not None:

embed X = embed[subset, 0]

embed Y = embed[subset, 1]

data color = np.array(data color[subset])
else:

embed X = embed[:, 0]

embed Y embed([:, 1]

point size = 100.0 / np.sqrt (len (embed X))

# color by values

fig, ax = plt.subplots(figsize=(12,8))

g = sns.scatterplot (ax=ax, x=embed X, y=embed Y, hue=data color, size=point size)
= plt.legend(bbox to anchor=(1.05, 1), loc=2, borderaxespad=0.)

return g




