
Session 5: Economics Approaches to

Machine Learning

2021 August 12

Dr. Richard M. Crowley
 rcrowley@smu.edu.sg

http://rmc.link/

1

mailto:rcrowley@smu.edu.sg
http://rmc.link/

Main applications

2 . 1

Dependent Variable

▪ Annual salary

Independent Variables

▪ Job title

▪ Department

▪ Full time / part time

▪ Salaried or hourly

▪ Female

Bias, #1: Quantifying bias in wages

▪ Based on the City of Chicago wage data set

This is a simple test to showcase the toolchain for SHAP

2 . 2

Dependent Variable

▪ Offensive speech

Independent Variables

▪ “Non-offensive” tweets from le�-wing/right-

wing/neutral groups

▪ Non-offensive tweets from GermEval 1 & 2

▪ Tweet topics

Bias, #2: Political bias in hate speech classification

Word-level examination

From Wich, Bauer and Groh (2020 WOAH)

2 . 3

Dependent Variable

▪ Net financial assets

Independent Variables

▪ Treatment: 401K eligibility

▪ Age

▪ Income

▪ Family size

▪ Years of education

▪ Marital status

▪ Two-earner status indicator

▪ Defined benefit pension indicator

▪ IRA participation

▪ Home ownership indicator

Causal ML: Quantifying the impact of 401(k)s on wealth

▪ An illustrative implementation of using Double ML for causality

▪ The key motivator for the method is the

From the web appendix of Chernozhukov et al. (2017 AER)

2 . 4

Introduction to Bias using SHAP

3 . 1

An example of quantifying bias

▪ Data: City of Chicago salaries

▪ 33,586 employees

▪ Trained using a simple XGBoost model

▪ Features:

▪ Job title

▪ Department

▪ Full time / part time

▪ Salaried or hourly

▪ Female

Is there gender bias in annual compensation?

3 . 2

The data

vars = ['Job.Titles', 'Department', 'Full.Time', 'Salaried', 'Female']

df[vars]

Job.Titles Department Full.Time \
0 SERGEANT POLICE 1
1 POLICE OFFICER (ASSIGNED AS DETECTIVE) POLICE 1
2 Other GENERAL SERVICES 1
3 Other WATER MGMNT 1
4 Other TRANSPORTN 1
...
33581 POLICE OFFICER POLICE 1
33582 POLICE OFFICER POLICE 1
33583 POLICE OFFICER POLICE 1
33584 POLICE OFFICER POLICE 1
33585 Other Other 1

Salaried Female
0 1 0.0
1 1 1.0
2 1 1.0
3 1 0.0
4 0 0.0
...
33581 1 1.0

3 . 3

One hot encoding categorical data

▪ Pandas has a function for this,

▪ prefix= lets us name the columns of the output

▪ As outputs a new data frame only containing the new columns, we need to join them

back

▪ makes this quick and easy

pd.get_dummies()

pd.get_dummies()

df.join()

one_hot1 = pd.get_dummies(df['Job.Titles'], prefix='Job.Titles')

one_hot2 = pd.get_dummies(df['Department'], prefix='Department')

df = df.join(one_hot1)

df = df.join(one_hot2)

3 . 4

https://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html
https://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.join.html

Prepping XGBoost

We did this in Session 2

vars = one_hot1.columns.tolist() + \

 one_hot2.columns.tolist() + \

 ['Full.Time', 'Salaried', 'Female']

dtrain = xgb.DMatrix(df[vars], label=df['Salary'], feature_names=vars)

param = {

 'booster': 'gbtree', # default -- tree based

 'nthread': 8, # number of threads to use for parallel processing

 'objective': 'reg:squarederror', # RMSE error

 'eval_metric': 'rmse', # maximize ROC AUC

 'eta': 0.3, # shrinkage; [0, 1], default 0.3

 'max_depth': 6, # maximum depth of each tree; default 6

 'gamma': 0, # set above 0 to prune trees, [0, inf], default 0

 'min_child_weight': 1, # higher leads to more pruning of tress, [0, inf], default 1

 'subsample': 1, # Randomly subsample rows if in (0, 1), default 1

}

num_round=30

3 . 5

Building our model and prepping SHAP

▪ We call to fit our XGBoost model

▪ Since XGBoost is a tree-based model, we will use SHAP’s function to analyze the

model

▪ Since we only have in-sample data, we will compute SHAP on the same data the XGBoost model was fit to

▪ We will also prepare a small sample for more CPU-intense analyses

xgb.train()

model_xgb = xgb.train(param, dtrain, num_round)

shap.TreeExplainer()

explainer = shap.TreeExplainer(model_xgb)

shap_values = explainer(df[vars])

df_small = df.sample(frac=0.01)

shap_values_small = explainer(df[vars])

3 . 6

https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.train
https://shap-lrjball.readthedocs.io/en/docs_update/generated/shap.TreeExplainer.html

Explaining a single observation

shap.plots.waterfall(shap_values[0])

Here we see that having Female=0 was the fourth most influential feature in the model,

and that it led to a higher predicted salary

3 . 7

Explaining a single observation

shap.plots.waterfall(shap_values[2])

Here we see that having Female=1 was the second most influential feature in the model,

and that it led to a lower predicted salary

3 . 8

What exactly is SHAP?

▪ Game theoretic and theory driven

▪ Unifies six other methods that tried to address this problem

▪ It is a model itself, a model to explain models

▪ Provides a simple to understand output

▪ Based on Shapley, 1953, “A value for n-person games.”

▪ SHAP itself is from Lundberg and Lee (2017)

Aims to provide an explanation of the importance of model inputs in explaining model

output

SHAP: SHapley Additive exPlanations

3 . 9

Principles of SHAP

1. Local accuracy

▪ The simple model is able to accurately predict a model output on small subsets of the data

2. Missingness

▪ SHAP only uses data the original model had access to

▪ If data was missing from the original model, SHAP won’t use it

3. Consistency

▪ Akin to transitivity conditions in utility theory (Savage Axioms)

▪ But instead of “utility,” we have “simplified model’s input’s contribution”

3 . 10

Intuition of SHAP

▪ SHAP is defined by a series of [conditional] expectation of the impact of an input

▪ For linear models, order of selecting inputs has no effect

▪ For nonlinear models, SHAP averages inputs’ conditional expected impact over all possible orderings

3 . 11

Charting with SHAP

4 . 1

A more concise point visualization

shap.plots.force(shap_values[1])

4 . 2

Aggregating across the data

N=300

shap.plots.force(explainer.expected_value, shap_values.sample(N).values, feature_names=vars)

4 . 3

Seeing more variables’ impact

▪ A “Decision plot” uses a line chart to show the impact of more measures across the data

shap.decision_plot(

 explainer.expected_value,

 explainer.shap_values(df_small[df_small.Female==1][vars

 feature_names=vars)

shap.decision_plot(

 explainer.expected_value,

 explainer.shap_values(df_small[df_small.Female==0][vars

 feature_names=vars)

4 . 4

Aggregate analysis of an individual variable

▪ If we want to see the full impact of “Female” on outcomes in our data, a scatter plot is useful

shap.plots.scatter(shap_values[:,"Female"], color=shap_values)

Remember that our model is nonparametric! Signs can be different even when the

variable doesn’t change due to interactive effects
4 . 5

Multiple scatterplots at once: Bee swarm

▪ If you want a concise way to present multiple variables, the bee swarm plot can be useful

shap.plots.beeswarm(shap_values)

4 . 6

Importance plot

▪ Lastly, we can replicate XGBoost’s importance plot using

shap.plots.bar(shap_values)

This may not be useful for XGBoost since it already has an importance metric, but many

other models lack it

4 . 7

Addendum: Using R

▪ If you are working explicitly with XGBoost, there is a great package

▪ To interface with the python package, you can use

▪ There is also , though it isn’t as full-featured.

SHAPforxgboost

shap shapper

shapr

4 . 8

https://github.com/liuyanguu/SHAPforxgboost
https://shap.readthedocs.io/en/latest/index.html
https://github.com/ModelOriented/shapper
https://cran.r-project.org/web/packages/shapr/index.html

SHAP for hate speech bias

5 . 1

Paper background

▪ Baseline data is o�en a critical issue in measure construction

▪ This paper takes a strong stance in demonstrating this, by using a fixed, unbiased sample of hate speech

content

▪ E.g., the “1” class is not impacted by any political bias, only the “0” class

▪ The authors aim to show how using a politically biased non-offensive baseline can induce bias in hate

speech classification models

How does political bias in data impact hate speech classification?

From Wich, Bauer and Groh (2020 WOAH)

5 . 2

The models

▪ The authors construct hate speech detection models using a combination of four corpuses

1. A baseline model from GermEval 1 & 2 that is politically neutral

2. A set of politically le�-wing tweets

3. A set of politically right-wing tweets

▪ In order to see the effect of political leaning on the model, they also run the model on mixtures of corpuses

that are 1/3 or 2/3 neutral, with the remaining text from one of the non-neutral corpuses

Le�-wing text induces a statistically significant divergence in model performance when

more than 2/3 of the text is le�-wing

Right-wing text induces a statistically significant divergence in model performance when

only 1/3 of the text is right-wing

5 . 3

Applying SHAP to the models

▪ Same workflow as we did, except tailored for a neural network

▪ Just replace the TreeExplainer with DeepExplainer

▪ Conceptually, SHAP will behave the same across any nonlinear model

▪ Since their data is word-level, the features fed to SHAP will be one hot encoded vectors of words

SHAP will weight the extent to which a word indicates the presence of hate speech, in

[conditional] expectation

5 . 4

Examples of bias with SHAP

1. @user @user Of course, all do-gooders say “yes,” because they know that it won’t happen.

▪ Tagged categorization: Offensive

2. If the people had the right to elect the chancellor directly, Merkel would have been history a long time ago.

▪ Tagged categorization: Not offensive

5 . 5

What else could this paper have done?

1. Leverage the topic model to show if bias is generally pervasive when using biased corpuses

▪ Or perhaps bias creeps in only in certain contexts

▪ How? Examine SHAP at a per-topic level

2. Quantify the extent of bias

▪ They already quantified the impact on model accuracy, but innacuracy doesn’t directly imply bias

▪ How? Examine SHAP at the corpus level

5 . 6

Double ML: Theory

6 . 1

Background

▪ There are a number of relevant papers published in economics in recent years developing and using Double

ML

▪ The method is developed largely from:

▪ Chernozhukov et al. (2017 AER), “Double/debiased/Neyman machine learning of treatment effects”

▪ Chernozhukov et al. (2018 Econometrics J), “Double/debiased machine learning for treatment and

structural parameters.”

Impact or overlap with methodological work by Susan Athey, Matthew Gentzkow, Trevor

Hastie, Guido Imbens, Matt Taddy, and Stefan Wager

6 . 2

What is Double ML?

1. Split your sample as you would for -fold cross validation, into sets

▪ sample of observations each

▪ Let

2. Construct estimators using a machine learning estimator over nuisance parameters (e.g., controls)

applied to the data

3. Average the estimators to obtain a final estimator

▪ This average estimator is approximately unbiased and normally distributed

▪ The estimator is also asymptotically efficient

And repeat. Bootstrap this out and take the mean or median of the estimators

6 . 3

Where Double ML excels: Endogenous treatment

▪ Suppose a policy affects a subset of individuals (people, corporations, etc.)

▪ Suppose individuals have the ability to alter their treatment status

▪ E.g., state laws (move), labor laws, etc.

▪ Linear controls may be insufficient to claim causality of the treatment on anything

1. Linear controls

2. Propensity score adjustments (e.g., weighting)

3. Matching methods

4. “doubly-robust” estimators

There are a lot of older methods that try to address this, though incompletely

6 . 4

Why is machine learning needed?

▪ Suppose a true form of a specification is as follows

▪ is a treatment indicator, is a vector of controls

▪ We o�en assume to be something like

▪ We o�en assume to be a constant (i.e., assume that is exogenous)

We know these assumptions aren’t true!

6 . 5

Why is machine learning needed?

▪ We could use a more flexible econometric approach, such as including interactions between and

▪ This is still very restrictive – purely linear

▪ We could include transformations of and its interactions

▪ This is still restrictive – is additive separable

▪ We could use a nonparametric estimator!

▪ This is where machine learning is very useful: efficient and reasonably accurate nonparametric estimation

▪ LASSO, random forest, XGBoost, etc.

How can we estimate a more general form for and ?

6 . 6

Model variants

▪ The models described in the last few slides are referred to as the “Interactive regression model” or IRM

▪ If you can separate your treatment effect from the controls but suspect nonlinear effects of controls, the

“Partially linear regression model” or PLR is appropriate

▪ Solves and

▪ There are also instrumental variable variants of both IRM and PLR

6 . 7

Reconciling these slides notation with the paper

▪ These slides use a somewhat simpler/accounting-oriented notation.

▪ Reconciliation from slides to papers:

▪ is

▪ is

▪ is or depending on the paper

▪ is

6 . 8

Implementing DoubleML

7 . 1

Walking through an implementation of DoubleML

▪ This problem is walked through in Chernozhukov et al. (2017 AER, Web Appendix)

▪ The R code for the AER paper is available from AER as well

▪ Quite clean code at that!

▪ We will implement this in python using the library

▪ Which Chernozhukov was involved in the development of

Problem: How does 401k participation impact wealth?

DoubleML

7 . 2

https://docs.doubleml.org/stable/index.html

Importing the data

▪ Conveniently, the data is available from the DoubleML package

Grab the dataset

import doubleml.datasets

df = dml.datasets.fetch_401K('DataFrame')

df

nifa net_tfa tw age inc fsize educ db marr \
0 0.0 0.0 4500.0 47 6765.0 2 8 0 0
1 6215.0 1015.0 22390.0 36 28452.0 1 16 0 0
2 0.0 -2000.0 -2000.0 37 3300.0 6 12 1 0
3 15000.0 15000.0 155000.0 58 52590.0 2 16 0 1
4 0.0 0.0 58000.0 32 21804.0 1 11 0 0
...
9910 98498.0 98858.0 157858.0 52 73920.0 1 16 1 0
9911 287.0 6230.0 15730.0 41 42927.0 4 14 0 1
9912 99.0 6099.0 7406.0 40 23619.0 2 16 1 0
9913 0.0 -32.0 2468.0 47 14280.0 4 6 1 0
9914 4000.0 5000.0 8857.0 33 11112.0 1 14 0 0

twoearn e401 p401 pira hown
0 0 0 0 0 1
1 0 0 0 0 1
2 0 0 0 0 0
3 1 0 0 0 1
4 0 0 0 0 1
...
9910 0 1 1 0 1

7 . 3

Using your own data

▪ We can also do this manually, by importing the Stata file from AER

▪ We then need to prep the data into the format expects

▪ This is fairly straightforward, just defining our Y, treatment, and control variables

DoubleML

df = pd.read_stata('../../Data/S5_sipp1991.dta')

y = 'net_tfa'

treat = 'e401'

controls = [x for x in df.columns.tolist() if x not in [y, treat]]

df_dml = dml.DoubleMLData(df, y_col=y, d_cols=treat, x_cols=controls)

7 . 4

https://docs.doubleml.org/stable/index.html

What is the data format used by DoubleML?

▪ Pandas dataframe

▪ A pre-specified outcome variable

▪ One or more treatment indicators

▪ One or more controls

▪ Optional instruments

print(df_dml)

================== DoubleMLData Object ==================

------------------ Data summary ------------------
Outcome variable: net_tfa
Treatment variable(s): ['e401']
Covariates: ['nifa', 'tw', 'age', 'inc', 'fsize', 'educ', 'db', 'marr', 'twoearn', 'p401', 'pira', 'hown']
Instrument variable(s): None
No. Observations: 9915

------------------ DataFrame info ------------------
<class 'pandas.core.frame.DataFrame'>
Int64Index: 9915 entries, 0 to 9914
Columns: 14 entries, nifa to hown
dtypes: float32(4), int8(10)
memory usage: 329.2 KB

7 . 5

: Continuous GBM : Binary GBM

Set up the Nuisance functions

▪ Recall that there are two functions, and that need to be solved for this method

▪ We can specify any form for these that we want, so long as they are consistent with Scikit-learn

g_0 = GradientBoostingRegressor(

 loss='ls',

 learning_rate=0.01,

 n_estimators=1000,

 subsample=0.5,

 max_depth=2

)

m_0 = GradientBoostingClassifier(

 loss='exponential',

 learning_rate=0.01,

 n_estimators=1000,

 subsample=0.5,

 max_depth=2

)

7 . 6

Run the DML model: Average Treatment Effects

Fix the random number generator for replicability

np.random.seed(1234)

Run the model

dml_model_irm = dml.DoubleMLIRM(df_dml, g_0, m_0)

Output the model's findings

print(dml_model_irm.fit())

================== DoubleMLIRM Object ==================

------------------ Data summary ------------------
Outcome variable: net_tfa
Treatment variable(s): ['e401']
Covariates: ['nifa', 'tw', 'age', 'inc', 'fsize', 'educ', 'db', 'marr', 'twoearn', 'p401', 'pira', 'hown']
Instrument variable(s): None
No. Observations: 9915

------------------ Score & algorithm ------------------
Score function: ATE
DML algorithm: dml2

------------------ Resampling ------------------
No. folds: 5
No. repeated sample splits: 1
Apply cross-fitting: True

------------------ Fit summary ------------------
coef std err t P>|t| 2.5 % 97.5 %
e401 3320.43343 383.604082 8.655887 4.890947e-18 2568.583245 4072.283614

7 . 7

Run the DML model: ATTE

▪ ATTE: Average Treatment Effects of the Treated

Run the model

dml_model_irm_ATTE = dml.DoubleMLIRM(df_dml, g_0, m_0, score='ATTE')

Output the model's findings

print(dml_model_irm_ATTE.fit())

================== DoubleMLIRM Object ==================

------------------ Data summary ------------------
Outcome variable: net_tfa
Treatment variable(s): ['e401']
Covariates: ['nifa', 'tw', 'age', 'inc', 'fsize', 'educ', 'db', 'marr', 'twoearn', 'p401', 'pira', 'hown']
Instrument variable(s): None
No. Observations: 9915

------------------ Score & algorithm ------------------
Score function: ATTE
DML algorithm: dml2

------------------ Resampling ------------------
No. folds: 5
No. repeated sample splits: 1
Apply cross-fitting: True

------------------ Fit summary ------------------
coef std err t P>|t| 2.5 % 97.5 %
e401 10081.312662 392.074708 25.712734 8.421563e-146 9312.860354 10849.764969

7 . 8

Other twists on the model

1. Change the machine learning backend

▪ Our models used dml2

▪ You can switch to dml1 using dml_procedure='dml1'

▪ dml1 follows the math in these slides

▪ Solve for a condition equal to zero for each model, and then average the estimators

▪ dml2 solves the for the average of the condition being equal to zero overall

2. Run multiple iterations of the model

▪ The paper uses 100 iterations, emulate this by adding n_rep=100

3. Change the machine learning models fed to the DoubleML model

▪ An example of using “Histogram-based Gradient Boosting” is in the Jupyter notebook

▪ This is a much faster GBM-like model

7 . 9

Addendum: Using R

▪ The package is available in R as welldoubleML

7 . 10

https://docs.doubleml.org/r/stable/

Conclusion

8 . 1

Wrap-up

▪ A flexible model for understanding how other models use data

▪ Many visualization tools for different situations:

▪ Individual observations

▪ Individual measures

▪ Aggregations over all observations

▪ Importance plots

▪ Leveraging the nonparametric nature of ML models to improve causality

▪ Easy to gauge ATE and ATTE

▪ Extendable to instrumental variable problems

SHAP

DoubleML

8 . 2

Python

▪ doubleml

▪ numpy

▪ pandas

▪ scikit-learn

▪ shap

▪ xgboost

R

▪ kableExtra

▪ knitr

▪ reticulate

▪ revealjs

Packages used for these slides

8 . 3

References

▪ Blevins, Cameron, and Lincoln Mullen. “Jane, John… Leslie? A Historical Method for Algorithmic Gender

Prediction.” DHQ: Digital Humanities Quarterly 9, no. 3 (2015).

▪ Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, and Whitney Newey.

“Double/debiased/Neyman machine learning of treatment effects.” American Economic Review 107, no. 5

(2017): 261-65.

▪ Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and

James Robins. “Double/debiased machine learning for treatment and structural parameters.” (2018): C1-C68.

▪ Lundberg, Scott, and Su-In Lee. “A unified approach to interpreting model predictions.” arXiv preprint,

arXiv:1705.07874 (2017).

▪ Shapley, Lloyd. “A value for n-person Games.” Ann. Math. Study 28, Contributions to the Theory of Games,

ed. by HW Kuhn, and AW Tucker (1953): 307-317.

▪ Wich, Maximilian, Jan Bauer, and Georg Groh. “Impact of politically biased data on hate speech

classification.” In Proceedings of the Fourth Workshop on Online Abuse and Harms, pp. 54-64. 2020.

8 . 4

Custom code

Fully worked out DoubleML model using Histogram-based GBM

from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingClassifier, HistGradientBoostingRegressor

set up the data
df = pd.read_stata('../Data/S5_sipp1991.dta')

y = 'net_tfa'
treat = 'e401'
controls = [x for x in df.columns.tolist() if x not in [y, treat]]

df_dml3 = dml.DoubleMLData(df, y_col=y, d_cols=treat, x_cols=controls)

#set up the nonparametric nuisance functions
g_0 = HistGradientBoostingRegressor(loss='least_squares',
 learning_rate=0.01,
 max_iter=1000,
 max_depth=2,
 early_stopping=False
)
m_0 = HistGradientBoostingClassifier(loss='binary_crossentropy',
 learning_rate=0.01,
 max_iter=1000,
 max_depth=2,
 early_stopping=False
)

np.random.seed(1234)
dml_model_ex_irm = dml.DoubleMLIRM(df_dml, g_0, m_0, n_folds=5, n_rep=100)
print(dml_model_ex_irm.fit())

8 . 5

