Session 5: Economics Approaches to Machine Learning

2021 August 12

Dr. Richard M. Crowley rcrowley@smu.edu.sg http://rmc.link/

Main applications

/

Bias, #1: Quantifying bias in wages

Based on the City of Chicago wage data set

Dependent Variable

Annual salary

This is a simple test to showcase the toolchain for SHAP

1000

生命生命

Independent Variables

- Job title
- Department
- Full time / part time
- Salaried or hourly
- Female

2.2

0011000

的问题

Bias, #2: Political bias in hate speech classification

Dependent Variable

Offensive speech

1000

生成生活

- wing/neutral groups
- Non-offensive tweets from GermEval 1 & 2
- Tweet topics

From Wich, Bauer and Groh (2020 WOAH)

- **Independent Variables**
- "Non-offensive" tweets from left-wing/right-

 - Word-level examination

0011000

的時時時

Causal ML: Quantifying the impact of 401(k)s on wealth

- An illustrative implementation of using Double ML for causality
- The key motivator for the method is the

Dependent Variable

Net financial assets

1008

生命生命

- Age
- Income

From the web appendix of Chernozhukov et al. (2017 AER)

0011000

14164416

Independent Variables

Treatment: 401K eligibility

Family size

Years of education

Marital status

Two-earner status indicator

Defined benefit pension indicator

IRA participation

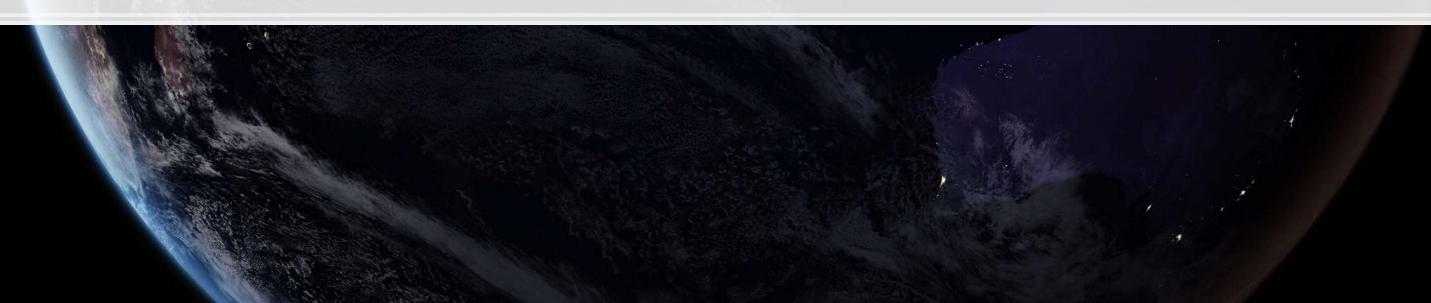
Home ownership indicator

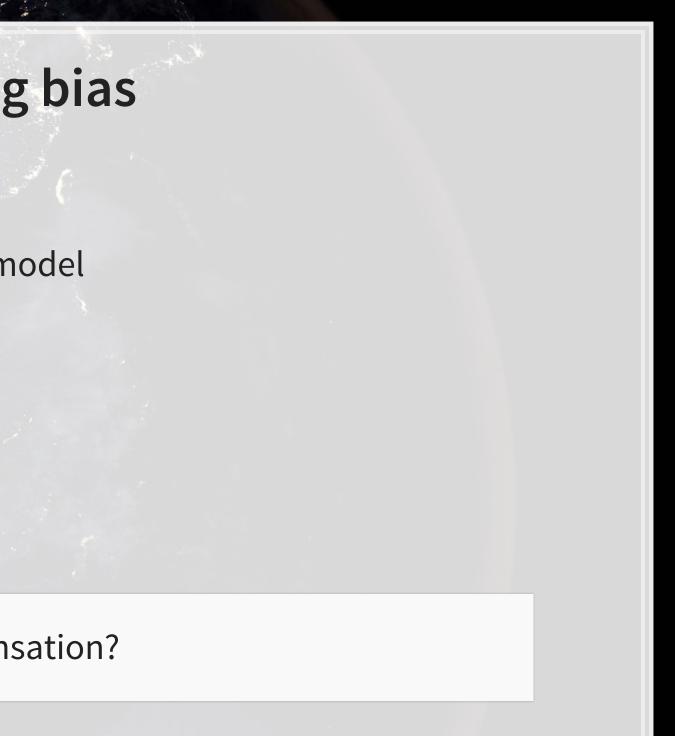
Introduction to Bias using SHAP

An example of quantifying bias

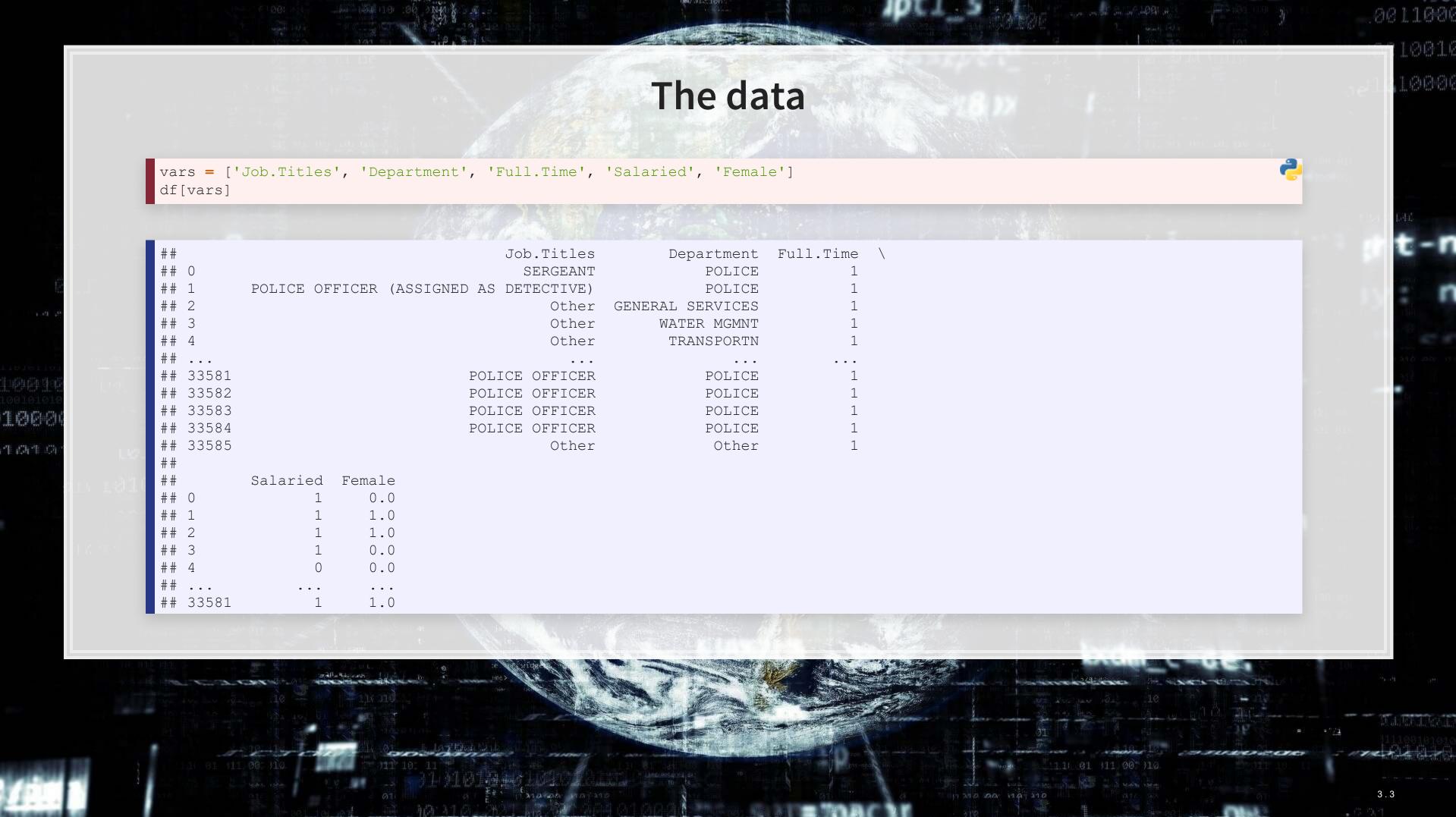
- Data: City of Chicago salaries
 - 33,586 employees
- Trained using a simple XGBoost model
- Features:
 - Job title
 - Department
 - Full time / part time
 - Salaried or hourly
 - Female

Is there gender bias in annual compensation?





##			J	ob.Titles	Department	Full.Time	\setminus
## O				SERGEANT	POLICE	1	
## 1	POLICE OF	FICER	(ASSIGNED AS D	ETECTIVE)	POLICE	1	
## 2				Other	GENERAL SERVICES	1	
## 3				Other	WATER MGMNT	1	
## 4				Other	TRANSPORTN	1	
##				• • •	• • •		
## 33581			POLIC	E OFFICER	POLICE	1	
## 33582			POLIC	E OFFICER	POLICE	1	
## 33583			POLIC	E OFFICER	POLICE	1	
## 33584			POLIC	E OFFICER	POLICE	1	
 ## 33585				Other	Other	1	
# #							
##	Salaried	Femal	е				
## O	1	0.	0				
## 1	1	1.	0				
## 2	1	1.	0				
## 3	1	0.	0				
## 4	0	0.	0				
##	• • •	• •	•				
## 33581	1	1.	0				
					The second s	10 30 7 4 A	ACCESSION AND

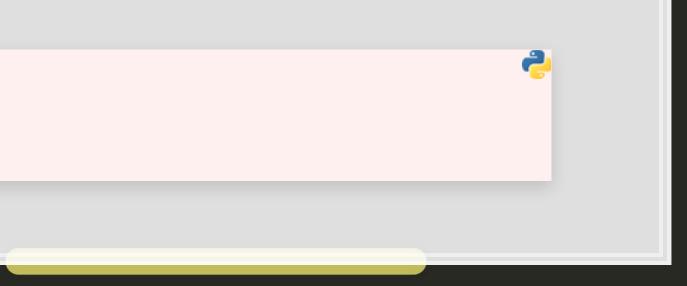


One hot encoding categorical data

- Pandas has a function for this, pd.get dummies()
 - prefix= lets us name the columns of the output
- As pd.get dummies () outputs a new data frame only containing the new columns, we need to join them back
 - df.join() makes this quick and easy

```
one hot1 = pd.get dummies(df['Job.Titles'], prefix='Job.Titles')
one hot2 = pd.get dummies(df['Department'], prefix='Department')
```

```
df = df.join(one hot1)
  = df.join(one hot2)
```



Prepping XGBoost

We did this in Session 2

```
vars = one_hot1.columns.tolist() + \
    one_hot2.columns.tolist() + \
    ['Full.Time', 'Salaried', 'Female']
dtrain = xgb.DMatrix(df[vars], label=df['Salary'], feature_names=vars)
```



Building our model and prepping SHAP

We call xgb.train() to fit our XGBoost model

model_xgb = xgb.train(param, dtrain, num_round)

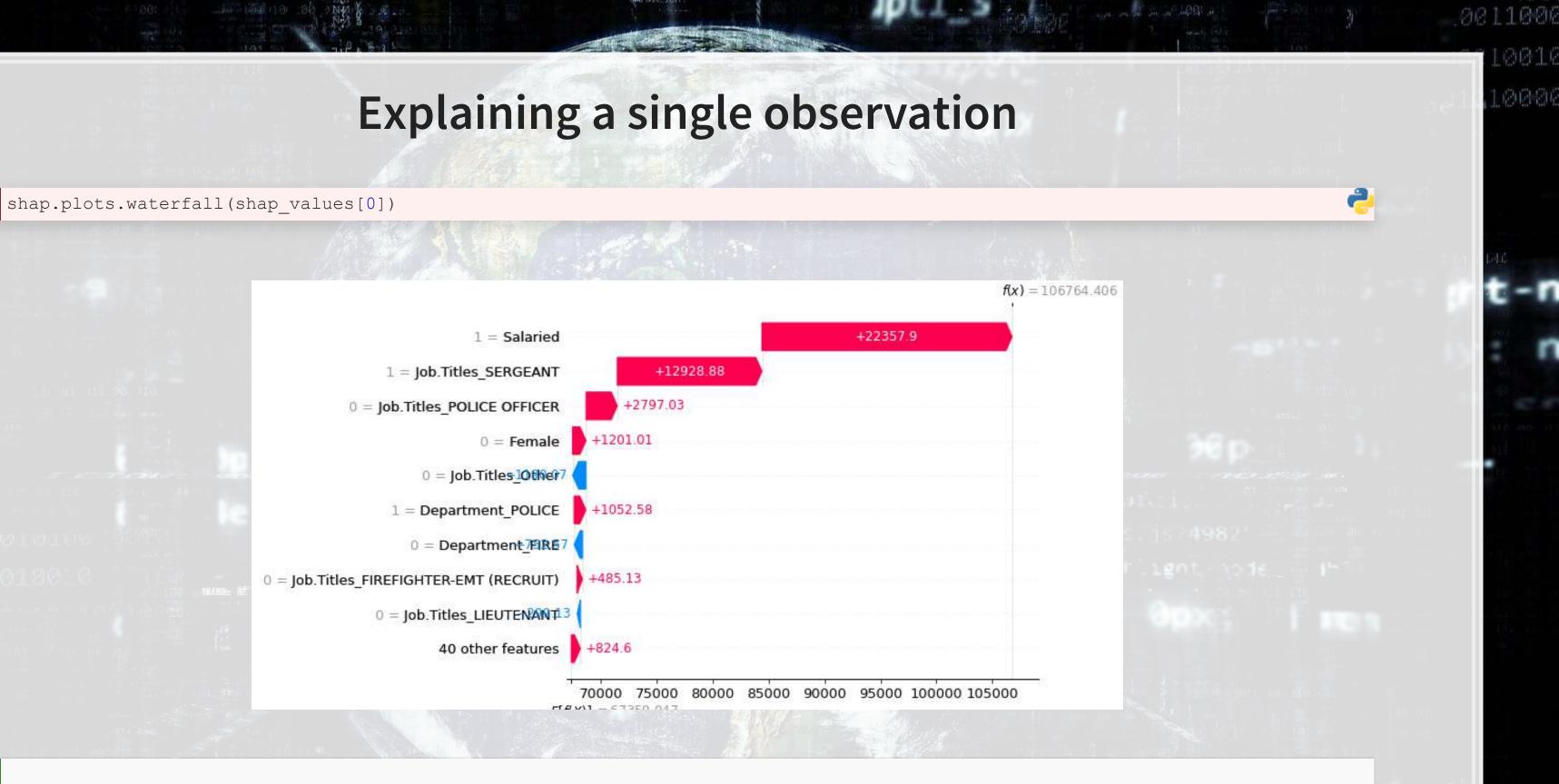
- Since XGBoost is a tree-based model, we will use SHAP's shap.TreeExplainer() function to analyze the model
- Since we only have in-sample data, we will compute SHAP on the same data the XGBoost model was fit to
- We will also prepare a small sample for more CPU-intense analyses

```
explainer = shap.TreeExplainer(model xgb)
shap values = explainer(df[vars])
df small = df.sample(frac=0.01)
shap_values_small = explainer(df[vars])
```


٢

1008

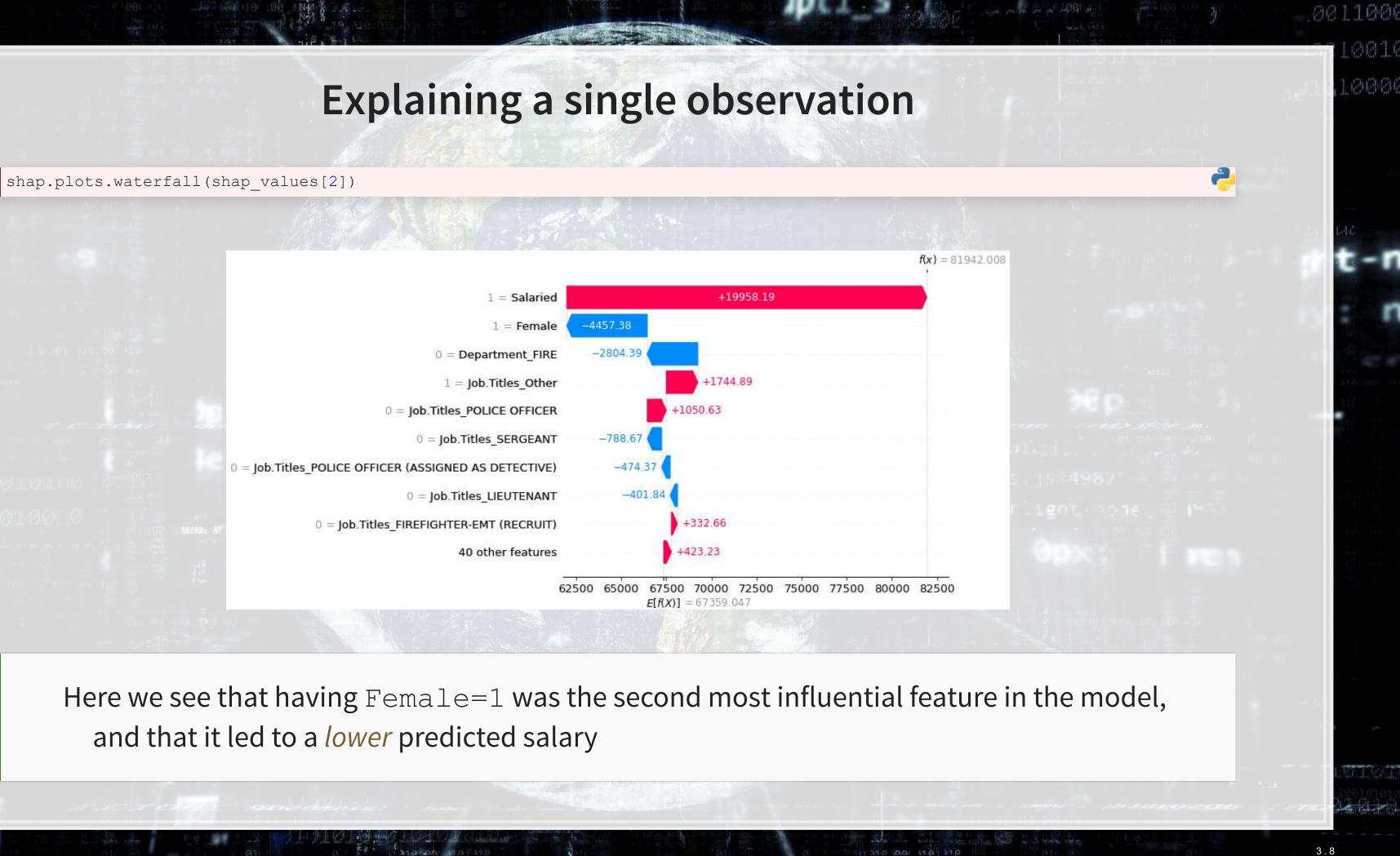
生活生活



Here we see that having Female=0 was the fourth most influential feature in the model, and that it led to a *higher* predicted salary

1008

生活生活



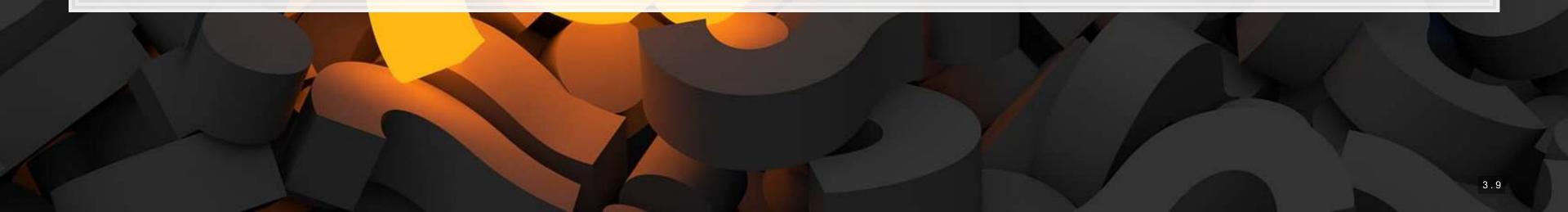
What exactly is SHAP?

Aims to provide an explanation of the importance of model inputs in explaining model output

- Game theoretic and theory driven
- Unifies six other methods that tried to address this problem
- It is a model itself, a model to explain models
- Provides a simple to understand output

SHAP: *SH*apley *A*dditive ex*P*lanations

- Based on Shapley, 1953, "A value for n-person games."
- SHAP itself is from Lundberg and Lee (2017)

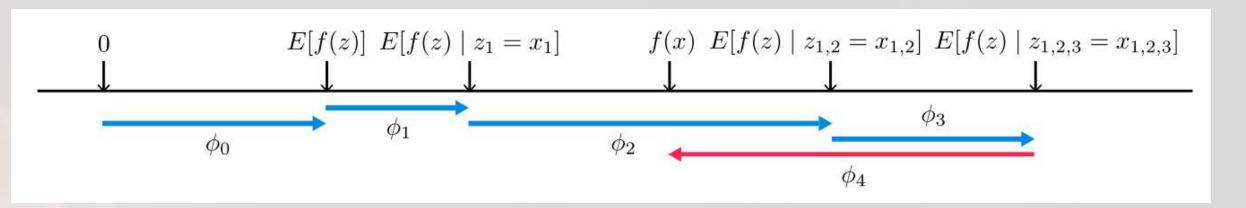


Principles of SHAP

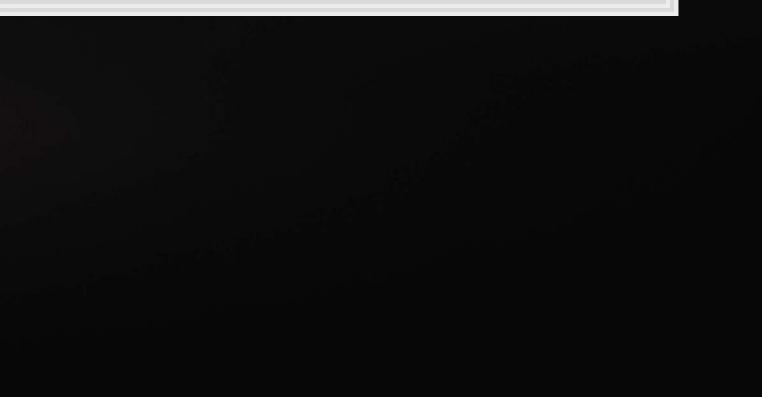
1. Local accuracy

- The simple model is able to accurately predict a model output on small subsets of the data
- 2. Missingness
 - SHAP only uses data the original model had access to
 - If data was missing from the original model, SHAP won't use it
- 3. Consistency
 - Akin to transitivity conditions in utility theory (Savage Axioms)
 - But instead of "utility," we have "simplified model's input's contribution"

Intuition of SHAP



- SHAP is defined by a series of [conditional] expectation of the impact of an input
- For linear models, order of selecting inputs has no effect
- For nonlinear models, SHAP averages inputs' conditional expected impact over all possible orderings

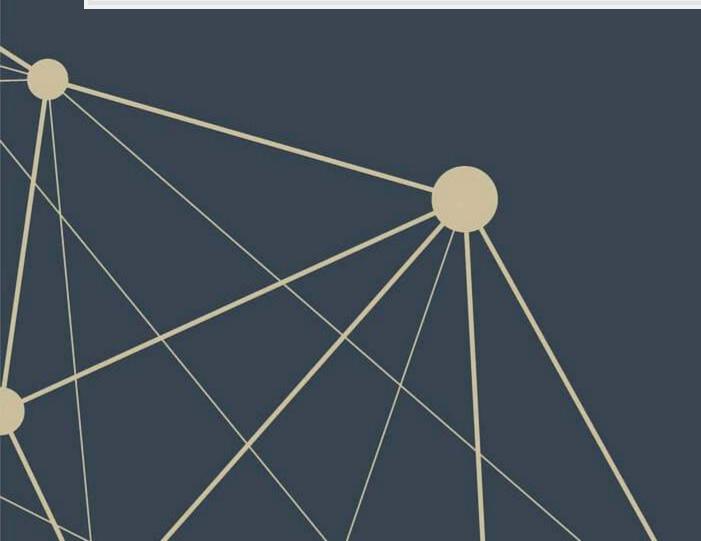


Charting with SHAP

/

A more concise point visual

shap.plots.force(shap_values[1])



iza	ation				
hi e+4	igher ≓ lower ^{f(X)} 97,124.66	1.074e+5	1.174e		
= 1	Female =				

Aggregating across the data

N=300

shap.plots.force(explainer.expected_value, shap_values.sample(N).values, feature_names=vars)

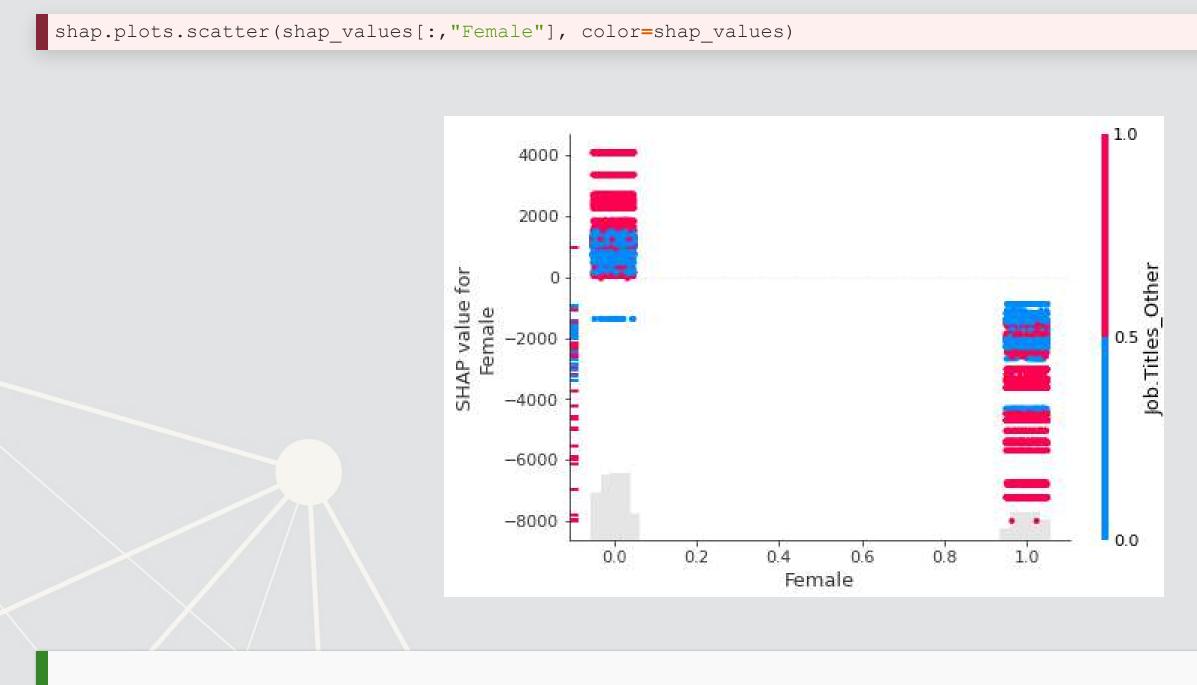
	220	2.40	000	200	
D	220	240	260	280	

Seeing more variables' impact

• A "Decision plot" uses a line chart to show the impact of more measures across the data

Aggregate analysis of an individual variable

• If we want to see the full impact of "Female" on outcomes in our data, a scatter plot is useful



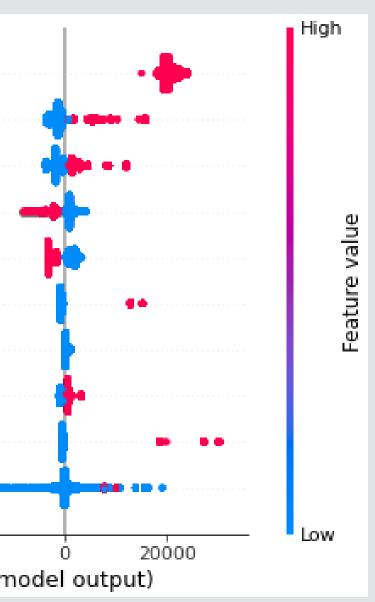
Remember that our model is nonparametric! Signs can be different even when the variable doesn't change due to interactive effects

Multiple scatterplots at once: Bee swarm

• If you want a concise way to present multiple variables, the bee swarm plot can be useful

shap.plots.beeswarm(shap_values)

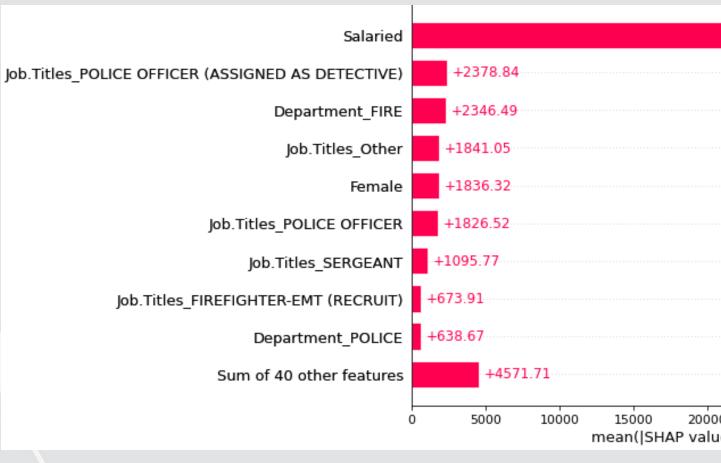
• •	Salaried
	Department_FIRE
	Job.Titles_Other
	Female
	Job.Titles_POLICE OFFICER
	Job.Titles_SERGEANT
	ob.Titles_FIREFIGHTER-EMT (RECRUIT)
	Department_POLICE
	Job.Titles_LIEUTENANT
•	Sum of 40 other features
–80000 –60000 –40000 –20000 SHΔP value (impact on n	



Importance plot

Lastly, we can replicate XGBoost's importance plot using |SHAP|

shap.plots.bar(shap_values)



This may not be useful for XGBoost since it already has an importance metric, but many other models lack it

		+3112	20.19
0 e)	25000	30000	-

Addendum: Using R

- If you are working explicitly with XGBoost, there is a great SHAPforxgboost package
- To interface with the python shap package, you can use shapper
- There is also shapr, though it isn't as full-featured.

SHAPforxgboost <mark>package</mark> happer

SHAP for hate speech bias

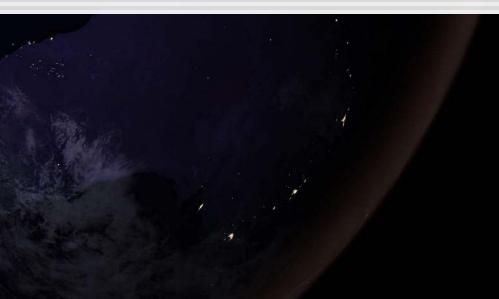
1

Paper background

How does political bias in data impact hate speech classification?

- Baseline data is often a critical issue in measure construction
 - This paper takes a strong stance in demonstrating this, by using a fixed, unbiased sample of hate speech content
 - E.g., the "1" class is not impacted by any political bias, only the "0" class
- The authors aim to show how using a politically biased non-offensive baseline can induce bias in hate speech classification models

From Wich, Bauer and Groh (2020 WOAH)



The models

- The authors construct hate speech detection models using a combination of four corpuses 1. A baseline model from GermEval 1 & 2 that is politically neutral 2. A set of politically left-wing tweets 3. A set of politically right-wing tweets
- In order to see the effect of political leaning on the model, they also run the model on mixtures of corpuses that are 1/3 or 2/3 neutral, with the remaining text from one of the non-neutral corpuses

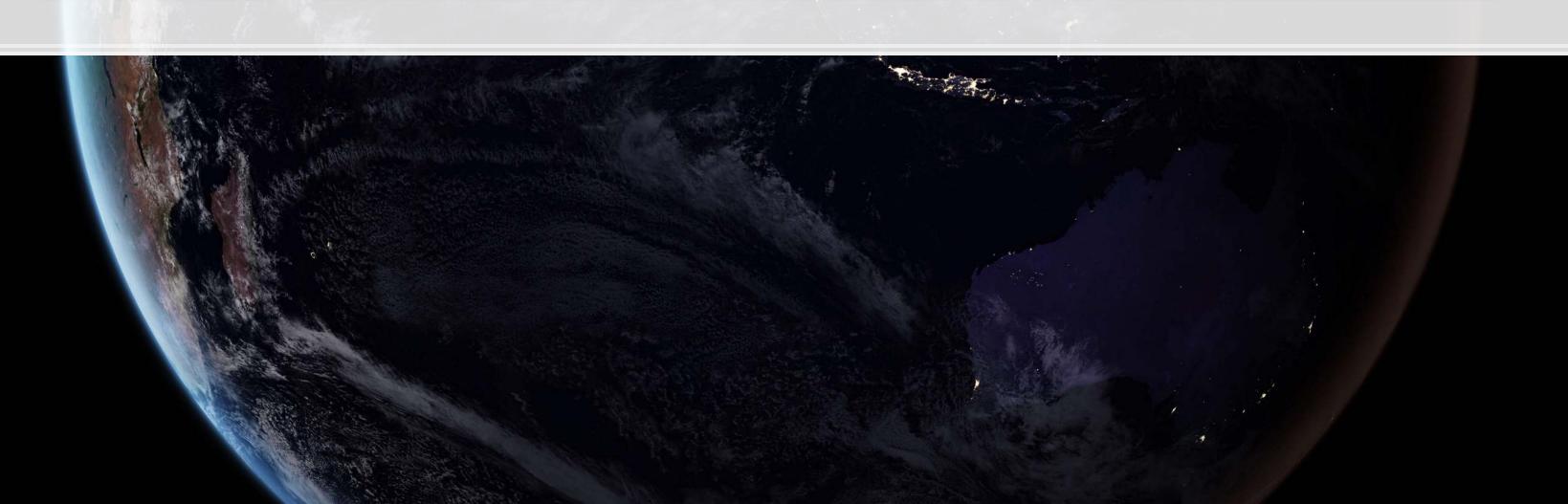
Left-wing text induces a statistically significant divergence in model performance when more than 2/3 of the text is left-wing

Right-wing text induces a statistically significant divergence in model performance when only 1/3 of the text is right-wing

Applying SHAP to the models

- Same workflow as we did, except tailored for a neural network
 - Just replace the TreeExplainer with DeepExplainer
- Conceptually, SHAP will behave the same across any nonlinear model
- Since their data is word-level, the features fed to SHAP will be one hot encoded vectors of words

SHAP will weight the extent to which a word indicates the presence of hate speech, in [conditional] expectation



model ne hot encoded vectors of words

Examples of bias with SHAP

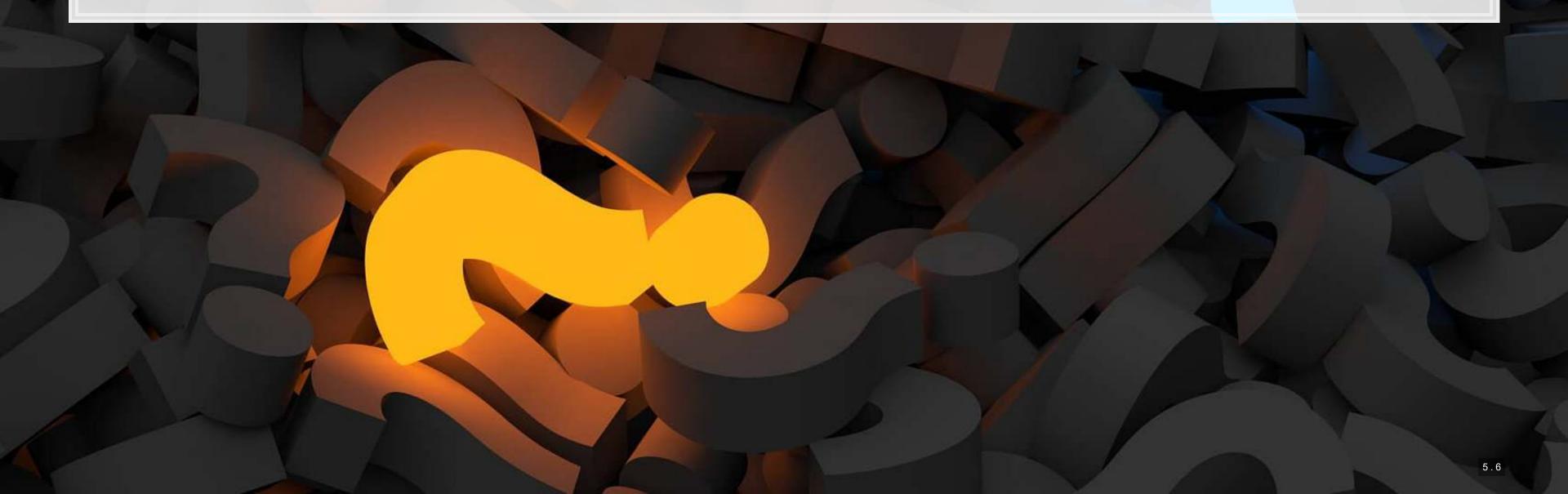


- 1. @user @user Of course, all **do-gooders** say "yes," because they know that it won't happen.
 - Tagged categorization: Offensive
- 2. If the **people** had the right to elect the chancellor directly, **Merkel** would have been history a long time ago.
 - Tagged categorization: Not offensive

What else could this paper have done?

1. Leverage the topic model to show if bias is generally pervasive when using biased corpuses

- Or perhaps bias creeps in only in certain contexts
- How? Examine SHAP at a per-topic level
- 2. Quantify the extent of bias
 - They already quantified the impact on model accuracy, but innacuracy doesn't directly imply bias
 - How? Examine SHAP at the corpus level



Double ML: Theory

/

Background

- There are a number of relevant papers published in economics in recent years developing and using Double ML
- The method is developed largely from:
 - Chernozhukov et al. (2017 AER), "Double/debiased/Neyman machine learning of treatment effects"
 - Chernozhukov et al. (2018 Econometrics J), "Double/debiased machine learning for treatment and structural parameters."

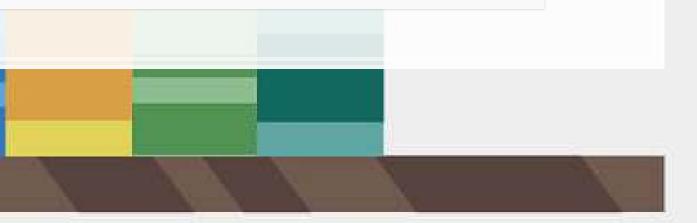
Impact or overlap with methodological work by Susan Athey, Matthew Gentzkow, Trevor Hastie, Guido Imbens, Matt Taddy, and Stefan Wager

What is Double ML?

1. Split your sample as you would for K-fold cross validation, into sets $\{I_k\}_{k \in \{1,...,K\}}$

- K sample of N/K observations each
- Let $I_k^c = \cup \{I_j\}_{j \neq k}$
- 2. Construct K estimators using a machine learning estimator over nuisance parameters (e.g., controls) applied to the data I_{K}^{c}
- 3. Average the K estimators to obtain a final estimator
 - This average estimator is approximately unbiased and normally distributed
 - The estimator is also asymptotically efficient

And repeat. Bootstrap this out and take the mean or median of the estimators

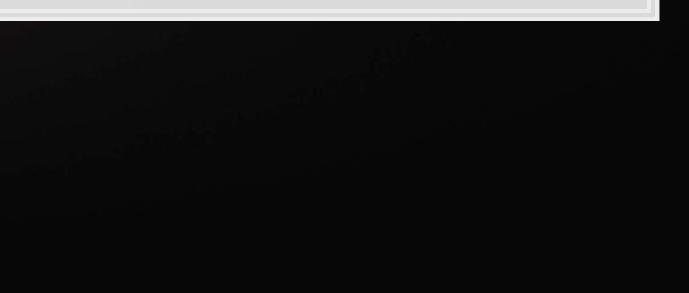


Where Double ML excels: Endogenous treatment

- Suppose a policy affects a subset of individuals (people, corporations, etc.)
- Suppose individuals have the ability to alter their treatment status
 - E.g., state laws (move), labor laws, etc.
- Linear controls may be insufficient to claim causality of the treatment on anything

There are a lot of older methods that try to address this, though incompletely

- 1. Linear controls
- 2. Propensity score adjustments (e.g., weighting)
- 3. Matching methods
- 4. "doubly-robust" estimators



Why is machine learning needed?

- Suppose a true form of a specification is as follows
 - *T* is a treatment indicator, *C* is a vector of controls

$$egin{aligned} Y &= g_0(T,C) + arepsilon_1 \ T &= m_0(C) + arepsilon_2 \end{aligned}$$

- We often assume g_0 to be something like $lpha+ heta_0 \; T+\gamma\cdot C$
- We often assume m_0 to be a constant (i.e., assume that T is exogenous)

 $G^{2}(\varepsilon)$

(an cosnx + bn sinn x)

 ΔNE

We know these assumptions aren't true!

Why is machine learning needed?

How can we estimate a more general form for g_0 and m_0 ?

- We could use a more flexible econometric approach, such as including interactions between T and C
 - This is still very restrictive purely linear
- We could include transformations of C and its interactions
 - This is still restrictive T is additive separable
- We could use a nonparametric estimator!
 - This is where machine learning is very useful: efficient and reasonably accurate nonparametric estimation
 - LASSO, random forest, XGBoost, etc.

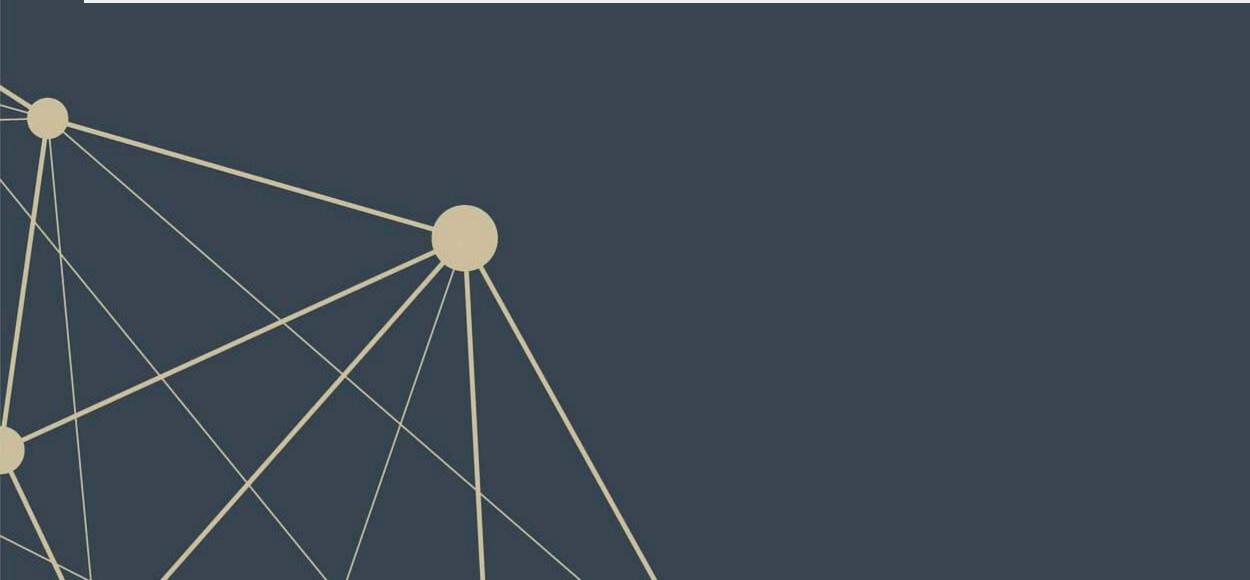
Model variants

- The models described in the last few slides are referred to as the "Interactive regression model" or IRM
- If you can separate your treatment effect from the controls but suspect nonlinear effects of controls, the "Partially linear regression model" or PLR is appropriate
 - Solves $Y = heta_0 T + g_0(C) + arepsilon_0$ and $T = m_0(C) + arepsilon_2$
- There are also instrumental variable variants of both IRM and PLR

eractive regression model" or IRM ct nonlinear effects of controls, the

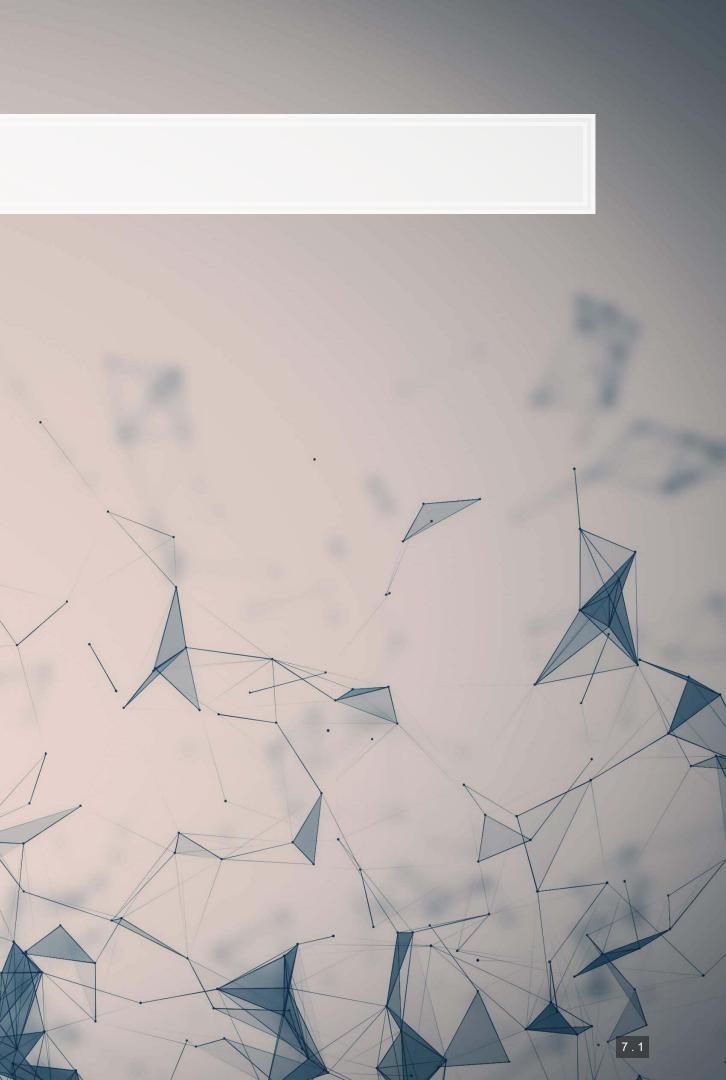
Reconciling these slides notation with the paper

- These slides use a somewhat simpler/accounting-oriented notation.
- Reconciliation from slides to papers:
 - T is D
 - *C* is *X*
 - ε_0 is U or ζ depending on the paper
 - $arepsilon_1$ is V



Implementing DoubleML

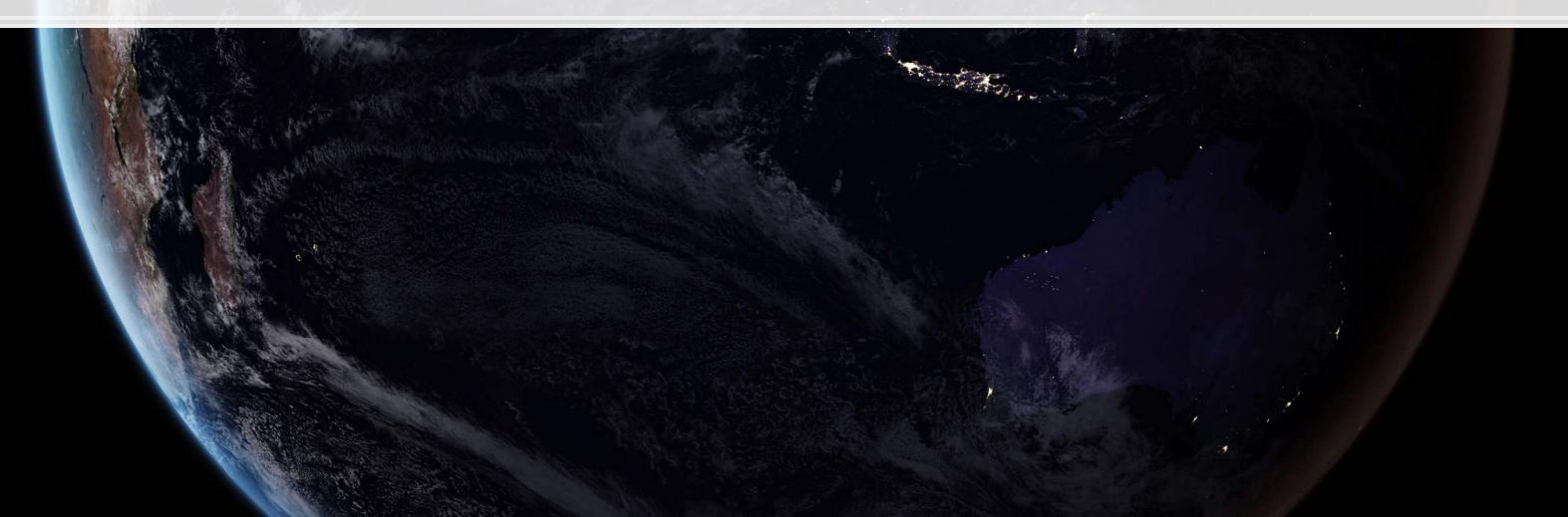
1



Walking through an implementation of DoubleML

Problem: How does 401k participation impact wealth?

- This problem is walked through in Chernozhukov et al. (2017 AER, Web Appendix)
 - The R code for the AER paper is available from AER as well
 - Quite clean code at that!
- We will implement this in python using the DoubleML library
 - Which Chernozhukov was involved in the development of



(2017 AER, Web Appendix) s well

library nt of

Importing the data

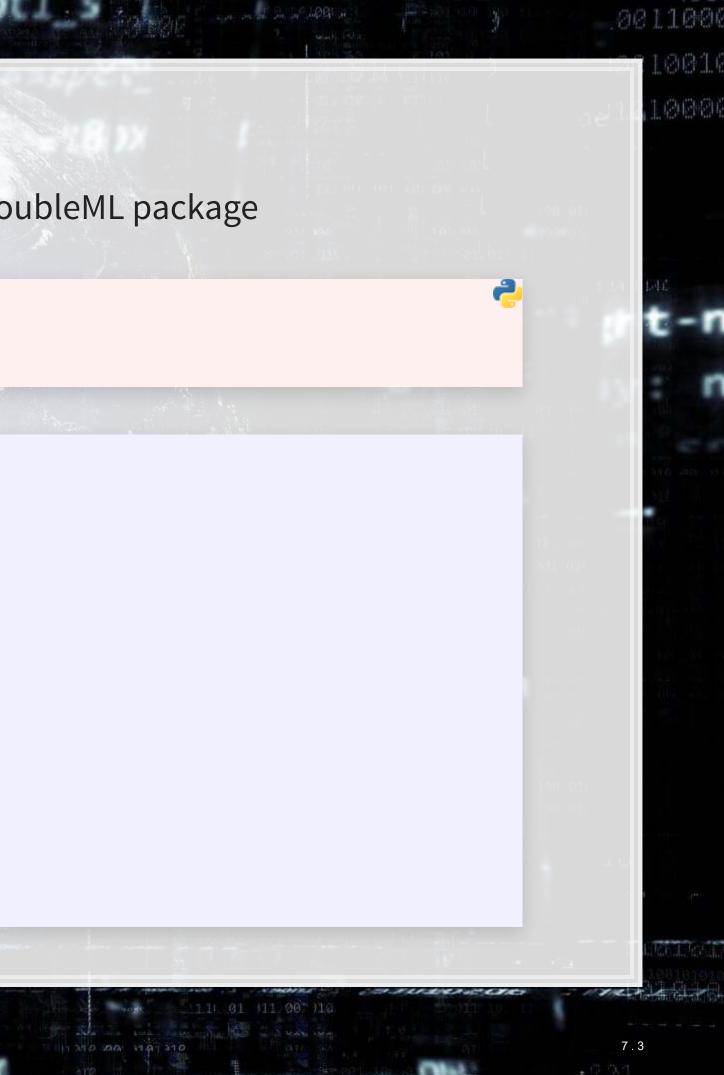
Conveniently, the data is available from the DoubleML package

Grab the dataset
import doubleml.datasets
df = dml.datasets.fetch_401K('DataFrame')
df

1008

生活生活

										a she		
##		nifa	net tfa		tw	age	inc	fsize	educ	db	marr	\setminus
##	0	0.0	0.0		4500.0	47	6765.0	2	8	0	0	
##	1	6215.0	1015.0	2	2390.0	36	28452.0	1	16	0	0	
##	2	0.0	-2000.0	_	2000.0	37	3300.0	6	12	1	0	
##	3	15000.0	15000.0	15	5000.0	58	52590.0	2	16	0	1	
##	4	0.0	0.0	5	8000.0	32	21804.0	1	11	0	0	
##					• • •	• • •		• • •	• • •	••	• • •	
##	9910	98498.0	98858.0	15	7858.0	52	73920.0	1	16	1	0	
##	9911	287.0	6230.0	1	5730.0	41	42927.0	4	14	0	1	
##	9912	99.0	6099.0		7406.0	40	23619.0	2	16	1	0	
##	9913	0.0	-32.0		2468.0	47	14280.0	4	6	1	0	
##	9914	4000.0	5000.0		8857.0	33	11112.0	1	14	0	0	
##												
##		twoearn	e401 p	401	pira	hown						
##	0	0	0	0	0	1						
##	1	0	0	0	0	1						
##	2	0	0	0	0	0						
##	3	1	0	0	0	1						
##	4	0	0	0	0	1						
##	• • •			• • •	• • •	• • •						
##	9910	0	1	1	0	1						



Using your own data

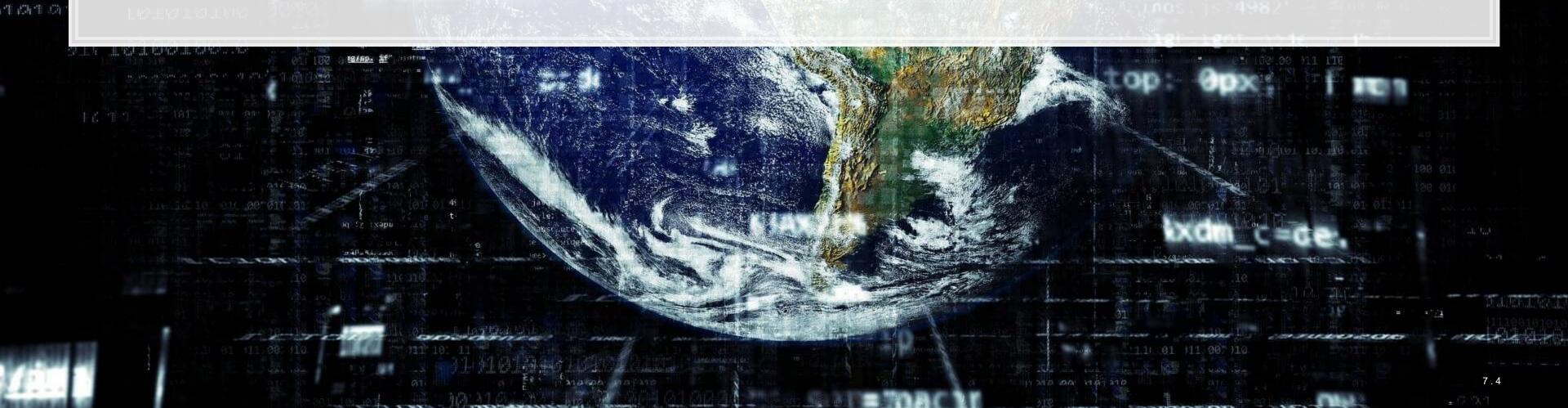
- We can also do this manually, by importing the Stata file from AER
- We then need to prep the data into the format DoubleML expects
 - This is fairly straightforward, just defining our Y, treatment, and control variables

```
df = pd.read_stata('../../Data/S5_sipp1991.dta')
y = 'net_tfa'
treat = 'e401'
```

1008

```
controls = [x for x in df.columns.tolist() if x not in [y, treat]]
```

df_dml = dml.DoubleMLData(df, y_col=y, d_cols=treat, x_cols=controls)



.0011000

的创新

from AER L expects nent, and control variables

What is the data format used by DoubleML?

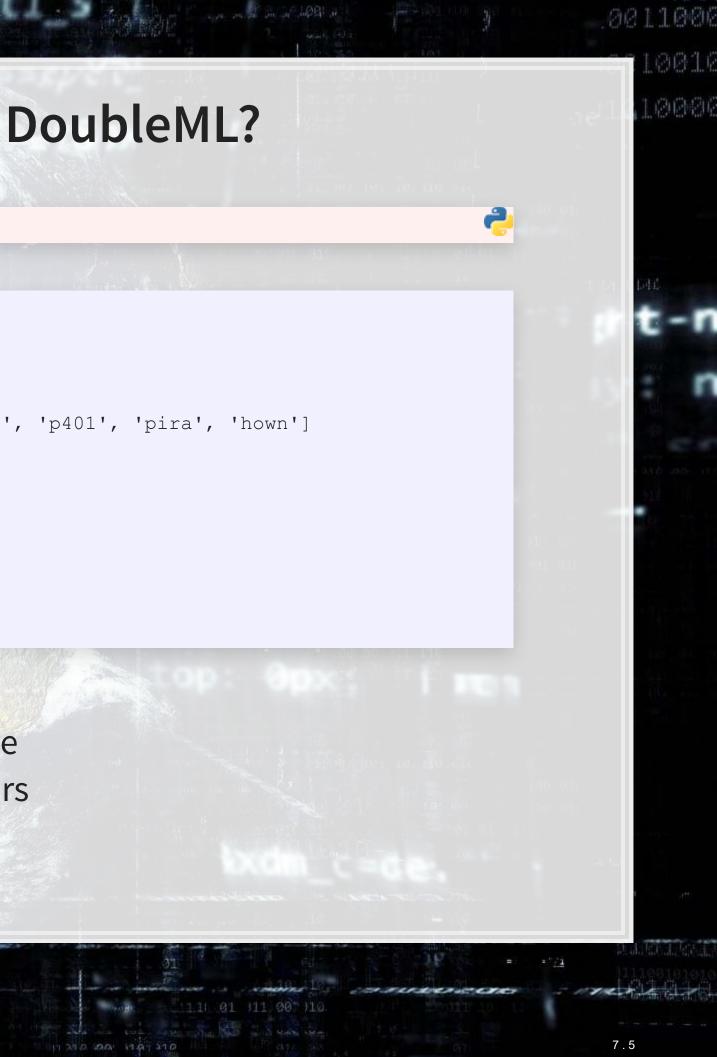
print(df_dml)

1008

生活生成

##	======================================								
##									
##	Data summary								
##	Outcome variable: net_tfa								
##	Treatment variable(s): ['e401']								
##	Covariates: ['nifa', 'tw', 'age', 'inc', 'fsize', 'educ', 'db', 'marr', 'twoearn								
	Instrument variable(s): None								
##	No. Observations: 9915								
##									
##	DataFrame info								
##	<class 'pandas.core.frame.dataframe'=""></class>								
##	Int64Index: 9915 entries, 0 to 9914								
##	Columns: 14 entries, nifa to hown								
##	dtypes: float32(4), int8(10)								
##	memory usage: 329.2 KB								

- Pandas dataframe
- A pre-specified outcome variable
- One or more treatment indicators
- One or more controls
- Optional instruments



Set up the Nuisance functions

• Recall that there are two functions, m_0 and g_0 that need to be solved for this method

• We can specify any form for these that we want, so long as they are consistent with Scikit-learn

g₀: Continuous GBM

g_0 = GradientBoostingRegressor(
 loss='ls',
 learning_rate=0.01,
 n_estimators=1000,
 subsample=0.5,
 max_depth=2
)

n_0 = GradientBoostingClassifier(loss='exponential', learning_rate=0.01, n_estimators=1000, subsample=0.5, max_depth=2)

1008

生命生命

e solved for this method y are consistent with Scikit-learn

m₀: Binary GBM

0011000

10010 10006

7.6

Run the DML model: Average Treatment Effects

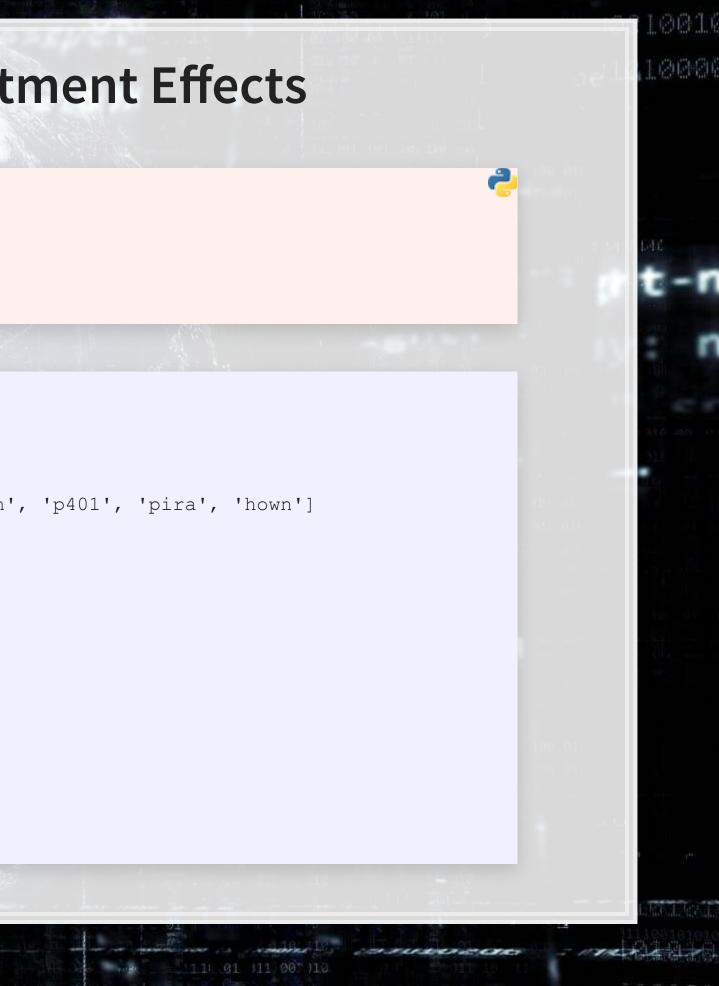
Fix the random number generator for replicability
np.random.seed(1234)
Run the model
dml_model_irm = dml.DoubleMLIRM(df_dml, g_0, m_0)
Output the model's findings
print(dml model irm.fit())

1000

生活生成

```
##
  ----- Data summary
##
## Outcome variable: net tfa
## Treatment variable(s): ['e401']
## Covariates: ['nifa', 'tw', 'age', 'inc', 'fsize', 'educ', 'db', 'marr', 'twoearn', 'p401', 'pira', 'hown']
## Instrument variable(s): None
## No. Observations: 9915
  ----- Score & algorithm ------
## Score function: ATE
## DML algorithm: dml2
##
  ----- Resampling
## No. folds: 5
## No. repeated sample splits: 1
## Apply cross-fitting: True
##
   ----- Fit summary
                   std err
            coef
                                                    2.5 %
                                                              97.5 %
                                         P>|t|
                                 t
  e401 3320.43343 383.604082 8.655887 4.890947e-18
                                              2568.583245 4072.283614
```

0011000



0011000 的第三 的的特殊 **Run the DML model: ATTE** ATTE: Average Treatment Effects of the Treated P>|t| 2.5 % 97.5 % t

Run the model dml model irm ATTE = dml.DoubleMLIRM(df_dml, g_0, m_0, score='ATTE') # Output the model's findings print(dml_model_irm_ATTE.fit())

1000

生态生态

----- Data summary ## Outcome variable: net tfa ## Treatment variable(s): ['e401'] ## Covariates: ['nifa', 'tw', 'age', 'inc', 'fsize', 'educ', 'db', 'marr', 'twoearn', 'p401', 'pira', 'hown'] ## Instrument variable(s): None ## No. Observations: 9915 ----- Score & algorithm ------**##** Score function: ATTE ## DML algorithm: dml2 ## ----- Resampling ## No. folds: 5 ## No. repeated sample splits: 1 ## Apply cross-fitting: True ## ----- Fit summary coef std err ## e401 10081.312662 392.074708 25.712734 8.421563e-146 9312.860354 10849.764969

Other twists on the model

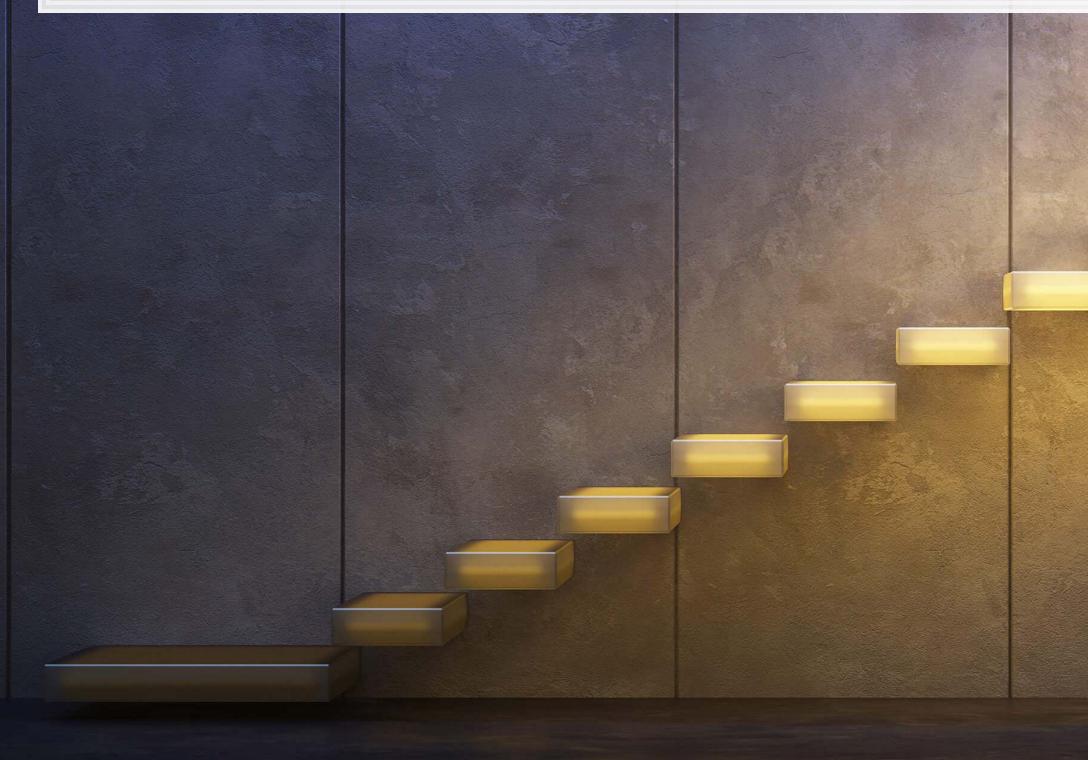
1. Change the machine learning backend

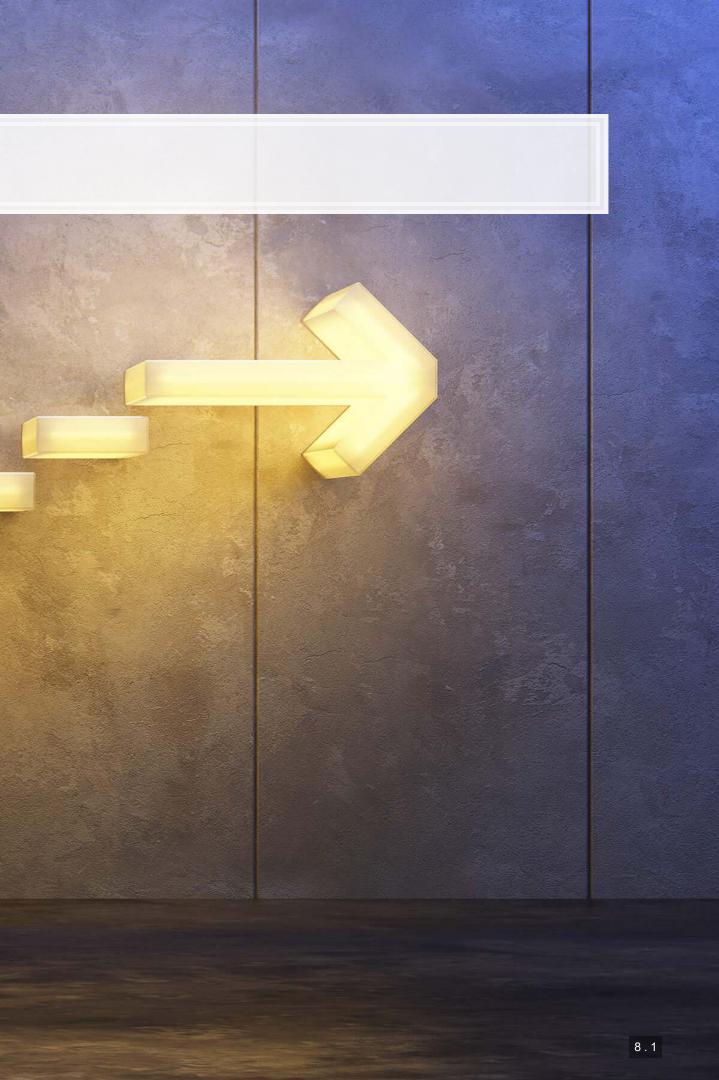
- Our models used dml2
- You can switch to dml1 using dml procedure='dml1'
- dml1 follows the math in these slides
 - Solve for a condition equal to zero for each model, and then average the estimators
 - dml2 solves the for the average of the condition being equal to zero overall
- 2. Run multiple iterations of the model
 - The paper uses 100 iterations, emulate this by adding n rep=100
- 3. Change the machine learning models fed to the DoubleML model
 - An example of using "Histogram-based Gradient Boosting" is in the Jupyter notebook
 - This is a much faster GBM-like model

Addendum: Using R

• The doubleML package is available in R as well

Conclusion





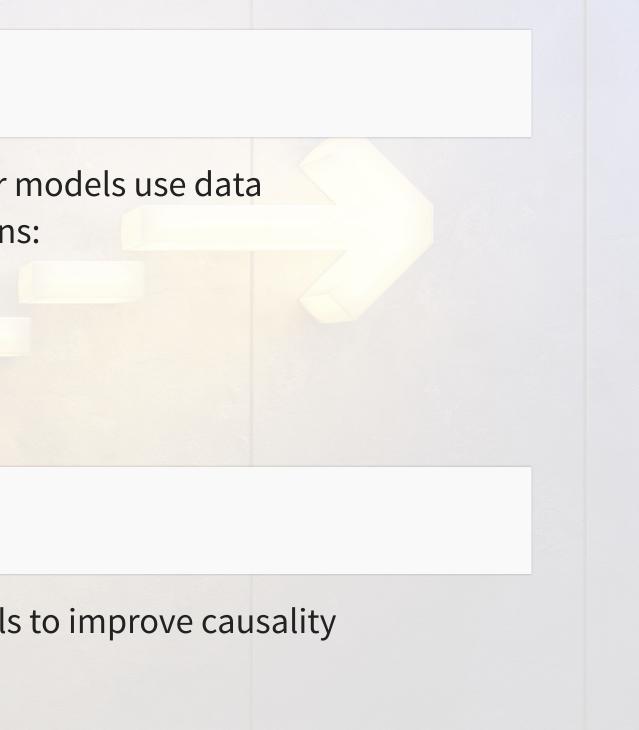
Wrap-up

SHAP

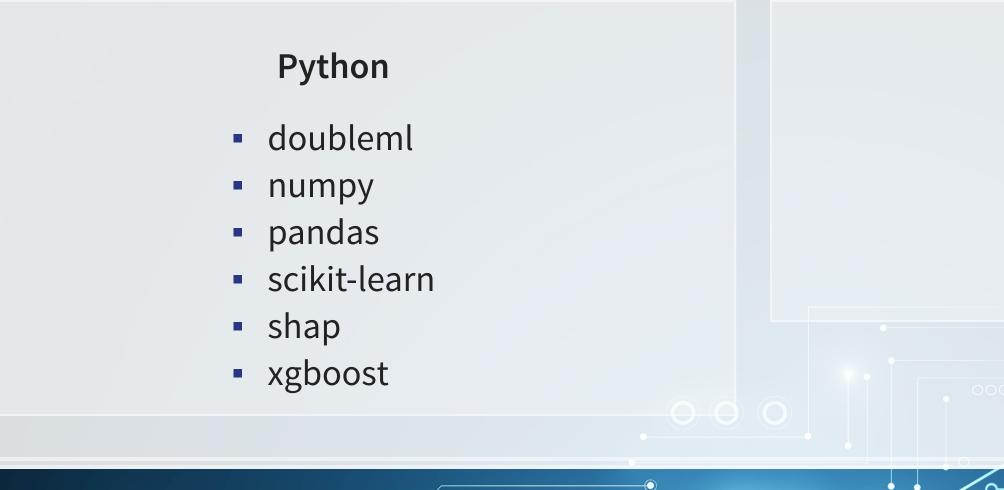
- A flexible model for understanding how other models use data
- Many visualization tools for different situations:
 - Individual observations
 - Individual measures
 - Aggregations over all observations
 - Importance plots

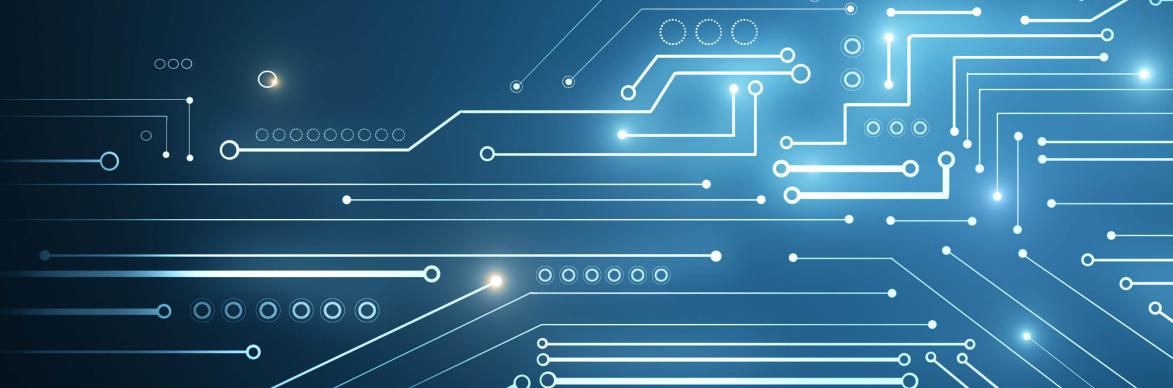
DoubleML

- Leveraging the nonparametric nature of ML models to improve causality
- Easy to gauge ATE and ATTE
- Extendable to instrumental variable problems



Packages used for these slides





R

- kableExtra
- knitr
- reticulate

0

20

O

0000

O)

0 000

0

8.3

 $\bigcirc \bigcirc$

 \bigcirc

 (\mathbf{O})

revealjs

References

- Blevins, Cameron, and Lincoln Mullen. "Jane, John... Leslie? A Historical Method for Algorithmic Gender Prediction." DHQ: Digital Humanities Quarterly 9, no. 3 (2015).
- Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, and Whitney Newey. "Double/debiased/Neyman machine learning of treatment effects." American Economic Review 107, no. 5 (2017): 261-65.
- Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. "Double/debiased machine learning for treatment and structural parameters." (2018): C1-C68.
- Lundberg, Scott, and Su-In Lee. "A unified approach to interpreting model predictions." arXiv preprint, arXiv:1705.07874 (2017).
- Shapley, Lloyd. "A value for n-person Games." Ann. Math. Study 28, Contributions to the Theory of Games, ed. by HW Kuhn, and AW Tucker (1953): 307-317.
- Wich, Maximilian, Jan Bauer, and Georg Groh. "Impact of politically biased data on hate speech classification." In Proceedings of the Fourth Workshop on Online Abuse and Harms, pp. 54-64. 2020.

Custom code

```
Fully worked out DoubleML model using Histogram-based GBM
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingClassifier, HistGradientBoostingRegressor
# set up the data
df = pd.read_stata('../Data/S5_sipp1991.dta')
y = 'net tfa'
treat = 'e401'
controls = [x for x in df.columns.tolist() if x not in [y, treat]]
df_dml3 = dml.DoubleMLData(df, y_col=y, d_cols=treat, x_cols=controls)
#set up the nonparametric nuisance functions
g_0 = HistGradientBoostingRegressor(loss='least_squares',
                                   learning_rate=0.01,
                                   max iter=1000,
                                   max_depth=2,
                                   early_stopping=False
m_0 = HistGradientBoostingClassifier(loss='binary_crossentropy',
                                    learning_rate=0.01,
                                    max_iter=1000,
                                    max_depth=2,
                                    early_stopping=False
np.random.seed(1234)
```

dml_model_ex_irm = dml.DoubleMLIRM(df_dml, g_0, m_0, n_folds=5, n_rep=100)
print(dml_model_ex_irm.fit())

