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Main applications
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Dependent Variable

▪ Annual salary

Independent Variables

▪ Job title

▪ Department

▪ Full time / part time

▪ Salaried or hourly

▪ Female

Bias, #1: Quantifying bias in wages

▪ Based on the City of Chicago wage data set

This is a simple test to showcase the toolchain for SHAP
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Dependent Variable

▪ Offensive speech

Independent Variables

▪ “Non-offensive” tweets from le�-wing/right-

wing/neutral groups

▪ Non-offensive tweets from GermEval 1 & 2

▪ Tweet topics

Bias, #2: Political bias in hate speech classification

Word-level examination

From Wich, Bauer and Groh (2020 WOAH)
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Dependent Variable

▪ Net financial assets

Independent Variables

▪ Treatment: 401K eligibility

▪ Age

▪ Income

▪ Family size

▪ Years of education

▪ Marital status

▪ Two-earner status indicator

▪ Defined benefit pension indicator

▪ IRA participation

▪ Home ownership indicator

Causal ML: Quantifying the impact of 401(k)s on wealth

▪ An illustrative implementation of using Double ML for causality

▪ The key motivator for the method is the

From the web appendix of Chernozhukov et al. (2017 AER)
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Introduction to Bias using SHAP
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An example of quantifying bias

▪ Data: City of Chicago salaries

▪ 33,586 employees

▪ Trained using a simple XGBoost model

▪ Features:

▪ Job title

▪ Department

▪ Full time / part time

▪ Salaried or hourly

▪ Female

Is there gender bias in annual compensation?
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The data

vars = ['Job.Titles', 'Department', 'Full.Time', 'Salaried', 'Female'] 

df[vars]

##                                    Job.Titles        Department  Full.Time  \ 
## 0                                    SERGEANT            POLICE          1    
## 1      POLICE OFFICER (ASSIGNED AS DETECTIVE)            POLICE          1    
## 2                                       Other  GENERAL SERVICES          1    
## 3                                       Other       WATER MGMNT          1    
## 4                                       Other        TRANSPORTN          1    
## ...                                       ...               ...        ...    
## 33581                          POLICE OFFICER            POLICE          1    
## 33582                          POLICE OFFICER            POLICE          1    
## 33583                          POLICE OFFICER            POLICE          1    
## 33584                          POLICE OFFICER            POLICE          1    
## 33585                                   Other             Other          1    
##  
##        Salaried  Female   
## 0             1     0.0   
## 1             1     1.0   
## 2             1     1.0   
## 3             1     0.0   
## 4             0     0.0   
## ...         ...     ...   
## 33581         1     1.0   
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One hot encoding categorical data

▪ Pandas has a function for this, 

▪ prefix= lets us name the columns of the output

▪ As  outputs a new data frame only containing the new columns, we need to join them

back

▪  makes this quick and easy

pd.get_dummies()

pd.get_dummies()

df.join()

one_hot1 = pd.get_dummies(df['Job.Titles'], prefix='Job.Titles') 

one_hot2 = pd.get_dummies(df['Department'], prefix='Department') 

 
df = df.join(one_hot1) 

df = df.join(one_hot2)
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Prepping XGBoost

We did this in Session 2

vars = one_hot1.columns.tolist() + \ 

       one_hot2.columns.tolist() + \ 

       ['Full.Time', 'Salaried', 'Female'] 

dtrain = xgb.DMatrix(df[vars], label=df['Salary'], feature_names=vars)

param = { 

    'booster': 'gbtree',             # default -- tree based 

    'nthread': 8,                    # number of threads to use for parallel processing 

    'objective': 'reg:squarederror', # RMSE error 

    'eval_metric': 'rmse',           # maximize ROC AUC 

    'eta': 0.3,                      # shrinkage; [0, 1], default 0.3 

    'max_depth': 6,                  # maximum depth of each tree; default 6 

    'gamma': 0,                      # set above 0 to prune trees, [0, inf], default 0 

    'min_child_weight': 1,           # higher leads to more pruning of tress, [0, inf], default 1 

    'subsample': 1,                  # Randomly subsample rows if in (0, 1), default 1 

} 

num_round=30
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Building our model and prepping SHAP

▪ We call  to fit our XGBoost model

▪ Since XGBoost is a tree-based model, we will use SHAP’s  function to analyze the

model

▪ Since we only have in-sample data, we will compute SHAP on the same data the XGBoost model was fit to

▪ We will also prepare a small sample for more CPU-intense analyses

xgb.train()

model_xgb = xgb.train(param, dtrain, num_round)

shap.TreeExplainer()

explainer = shap.TreeExplainer(model_xgb) 

shap_values = explainer(df[vars]) 

 
df_small = df.sample(frac=0.01) 

shap_values_small = explainer(df[vars])
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Explaining a single observation

shap.plots.waterfall(shap_values[0])

Here we see that having Female=0 was the fourth most influential feature in the model,

and that it led to a higher predicted salary
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Explaining a single observation

shap.plots.waterfall(shap_values[2])

Here we see that having Female=1 was the second most influential feature in the model,

and that it led to a lower predicted salary
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What exactly is SHAP?

▪ Game theoretic and theory driven

▪ Unifies six other methods that tried to address this problem

▪ It is a model itself, a model to explain models

▪ Provides a simple to understand output

▪ Based on Shapley, 1953, “A value for n-person games.”

▪ SHAP itself is from Lundberg and Lee (2017)

Aims to provide an explanation of the importance of model inputs in explaining model

output

SHAP: SHapley Additive exPlanations
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Principles of SHAP

1. Local accuracy

▪ The simple model is able to accurately predict a model output on small subsets of the data

2. Missingness

▪ SHAP only uses data the original model had access to

▪ If data was missing from the original model, SHAP won’t use it

3. Consistency

▪ Akin to transitivity conditions in utility theory (Savage Axioms)

▪ But instead of “utility,” we have “simplified model’s input’s contribution”
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Intuition of SHAP

▪ SHAP is defined by a series of [conditional] expectation of the impact of an input

▪ For linear models, order of selecting inputs has no effect

▪ For nonlinear models, SHAP averages inputs’ conditional expected impact over all possible orderings
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Charting with SHAP
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A more concise point visualization

shap.plots.force(shap_values[1])
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Aggregating across the data

N=300 

shap.plots.force(explainer.expected_value, shap_values.sample(N).values, feature_names=vars)
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Seeing more variables’ impact

▪ A “Decision plot” uses a line chart to show the impact of more measures across the data

shap.decision_plot( 

  explainer.expected_value, 

  explainer.shap_values(df_small[df_small.Female==1][vars

  feature_names=vars)

shap.decision_plot( 

  explainer.expected_value, 

  explainer.shap_values(df_small[df_small.Female==0][vars

  feature_names=vars)
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Aggregate analysis of an individual variable

▪ If we want to see the full impact of “Female” on outcomes in our data, a scatter plot is useful

shap.plots.scatter(shap_values[:,"Female"], color=shap_values)

Remember that our model is nonparametric! Signs can be different even when the

variable doesn’t change due to interactive effects
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Multiple scatterplots at once: Bee swarm

▪ If you want a concise way to present multiple variables, the bee swarm plot can be useful

shap.plots.beeswarm(shap_values)
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Importance plot

▪ Lastly, we can replicate XGBoost’s importance plot using 

shap.plots.bar(shap_values)

This may not be useful for XGBoost since it already has an importance metric, but many

other models lack it
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Addendum: Using R

▪ If you are working explicitly with XGBoost, there is a great  package

▪ To interface with the python  package, you can use 

▪ There is also , though it isn’t as full-featured.

SHAPforxgboost

shap shapper

shapr
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SHAP for hate speech bias
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Paper background

▪ Baseline data is o�en a critical issue in measure construction

▪ This paper takes a strong stance in demonstrating this, by using a fixed, unbiased sample of hate speech

content

▪ E.g., the “1” class is not impacted by any political bias, only the “0” class

▪ The authors aim to show how using a politically biased non-offensive baseline can induce bias in hate

speech classification models

How does political bias in data impact hate speech classification?

From Wich, Bauer and Groh (2020 WOAH)
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The models

▪ The authors construct hate speech detection models using a combination of four corpuses

1. A baseline model from GermEval 1 & 2 that is politically neutral

2. A set of politically le�-wing tweets

3. A set of politically right-wing tweets

▪ In order to see the effect of political leaning on the model, they also run the model on mixtures of corpuses

that are 1/3 or 2/3 neutral, with the remaining text from one of the non-neutral corpuses

Le�-wing text induces a statistically significant divergence in model performance when

more than 2/3 of the text is le�-wing

Right-wing text induces a statistically significant divergence in model performance when

only 1/3 of the text is right-wing
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Applying SHAP to the models

▪ Same workflow as we did, except tailored for a neural network

▪ Just replace the TreeExplainer with DeepExplainer

▪ Conceptually, SHAP will behave the same across any nonlinear model

▪ Since their data is word-level, the features fed to SHAP will be one hot encoded vectors of words

SHAP will weight the extent to which a word indicates the presence of hate speech, in

[conditional] expectation
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Examples of bias with SHAP

1. @user @user Of course, all do-gooders say “yes,” because they know that it won’t happen.

▪ Tagged categorization: Offensive

2. If the people had the right to elect the chancellor directly, Merkel would have been history a long time ago.

▪ Tagged categorization: Not offensive
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What else could this paper have done?

1. Leverage the topic model to show if bias is generally pervasive when using biased corpuses

▪ Or perhaps bias creeps in only in certain contexts

▪ How? Examine SHAP at a per-topic level

2. Quantify the extent of bias

▪ They already quantified the impact on model accuracy, but innacuracy doesn’t directly imply bias

▪ How? Examine SHAP at the corpus level
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Double ML: Theory
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Background

▪ There are a number of relevant papers published in economics in recent years developing and using Double

ML

▪ The method is developed largely from:

▪ Chernozhukov et al. (2017 AER), “Double/debiased/Neyman machine learning of treatment effects”

▪ Chernozhukov et al. (2018 Econometrics J), “Double/debiased machine learning for treatment and

structural parameters.”

Impact or overlap with methodological work by Susan Athey, Matthew Gentzkow, Trevor

Hastie, Guido Imbens, Matt Taddy, and Stefan Wager

6 . 2



What is Double ML?

1. Split your sample as you would for -fold cross validation, into sets 

▪  sample of  observations each

▪ Let 

2. Construct  estimators using a machine learning estimator over nuisance parameters (e.g., controls)

applied to the data 

3. Average the  estimators to obtain a final estimator

▪ This average estimator is approximately unbiased and normally distributed

▪ The estimator is also asymptotically efficient

And repeat. Bootstrap this out and take the mean or median of the estimators
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Where Double ML excels: Endogenous treatment

▪ Suppose a policy affects a subset of individuals (people, corporations, etc.)

▪ Suppose individuals have the ability to alter their treatment status

▪ E.g., state laws (move), labor laws, etc.

▪ Linear controls may be insufficient to claim causality of the treatment on anything

1. Linear controls

2. Propensity score adjustments (e.g., weighting)

3. Matching methods

4. “doubly-robust” estimators

There are a lot of older methods that try to address this, though incompletely
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Why is machine learning needed?

▪ Suppose a true form of a specification is as follows

▪  is a treatment indicator,  is a vector of controls

▪ We o�en assume  to be something like 

▪ We o�en assume  to be a constant (i.e., assume that  is exogenous)

We know these assumptions aren’t true!

6 . 5



Why is machine learning needed?

▪ We could use a more flexible econometric approach, such as including interactions between  and 

▪ This is still very restrictive – purely linear

▪ We could include transformations of  and its interactions

▪ This is still restrictive –  is additive separable

▪ We could use a nonparametric estimator!

▪ This is where machine learning is very useful: efficient and reasonably accurate nonparametric estimation

▪ LASSO, random forest, XGBoost, etc.

How can we estimate a more general form for  and ?
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Model variants

▪ The models described in the last few slides are referred to as the “Interactive regression model” or IRM

▪ If you can separate your treatment effect from the controls but suspect nonlinear effects of controls, the

“Partially linear regression model” or PLR is appropriate

▪ Solves  and 

▪ There are also instrumental variable variants of both IRM and PLR
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Reconciling these slides notation with the paper

▪ These slides use a somewhat simpler/accounting-oriented notation.

▪ Reconciliation from slides to papers:

▪  is 

▪  is 

▪  is  or  depending on the paper

▪  is 
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Implementing DoubleML
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Walking through an implementation of DoubleML

▪ This problem is walked through in Chernozhukov et al. (2017 AER, Web Appendix)

▪ The R code for the AER paper is available from AER as well

▪ Quite clean code at that!

▪ We will implement this in python using the  library

▪ Which Chernozhukov was involved in the development of

Problem: How does 401k participation impact wealth?

DoubleML
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Importing the data

▪ Conveniently, the data is available from the DoubleML package

# Grab the dataset 

import doubleml.datasets 

df = dml.datasets.fetch_401K('DataFrame') 

df

##          nifa  net_tfa        tw  age      inc  fsize  educ  db  marr  \ 
## 0         0.0      0.0    4500.0   47   6765.0      2     8   0     0    
## 1      6215.0   1015.0   22390.0   36  28452.0      1    16   0     0    
## 2         0.0  -2000.0   -2000.0   37   3300.0      6    12   1     0    
## 3     15000.0  15000.0  155000.0   58  52590.0      2    16   0     1    
## 4         0.0      0.0   58000.0   32  21804.0      1    11   0     0    
## ...       ...      ...       ...  ...      ...    ...   ...  ..   ...    
## 9910  98498.0  98858.0  157858.0   52  73920.0      1    16   1     0    
## 9911    287.0   6230.0   15730.0   41  42927.0      4    14   0     1    
## 9912     99.0   6099.0    7406.0   40  23619.0      2    16   1     0    
## 9913      0.0    -32.0    2468.0   47  14280.0      4     6   1     0    
## 9914   4000.0   5000.0    8857.0   33  11112.0      1    14   0     0    
##  
##       twoearn  e401  p401  pira  hown   
## 0           0     0     0     0     1   
## 1           0     0     0     0     1   
## 2           0     0     0     0     0   
## 3           1     0     0     0     1   
## 4           0     0     0     0     1   
## ...       ...   ...   ...   ...   ...   
## 9910        0     1     1     0     1   
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Using your own data

▪ We can also do this manually, by importing the Stata file from AER

▪ We then need to prep the data into the format  expects

▪ This is fairly straightforward, just defining our Y, treatment, and control variables

DoubleML

df = pd.read_stata('../../Data/S5_sipp1991.dta') 

 
y = 'net_tfa' 

treat = 'e401' 

controls = [x for x in df.columns.tolist() if x not in [y, treat]] 

 
df_dml = dml.DoubleMLData(df, y_col=y, d_cols=treat, x_cols=controls)
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What is the data format used by DoubleML?

▪ Pandas dataframe

▪ A pre-specified outcome variable

▪ One or more treatment indicators

▪ One or more controls

▪ Optional instruments

print(df_dml)

## ================== DoubleMLData Object ================== 
##  
## ------------------ Data summary      ------------------ 
## Outcome variable: net_tfa 
## Treatment variable(s): ['e401'] 
## Covariates: ['nifa', 'tw', 'age', 'inc', 'fsize', 'educ', 'db', 'marr', 'twoearn', 'p401', 'pira', 'hown'] 
## Instrument variable(s): None 
## No. Observations: 9915 
##  
## ------------------ DataFrame info    ------------------ 
## <class 'pandas.core.frame.DataFrame'> 
## Int64Index: 9915 entries, 0 to 9914 
## Columns: 14 entries, nifa to hown 
## dtypes: float32(4), int8(10) 
## memory usage: 329.2 KB
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: Continuous GBM : Binary GBM

Set up the Nuisance functions

▪ Recall that there are two functions,  and  that need to be solved for this method

▪ We can specify any form for these that we want, so long as they are consistent with Scikit-learn

g_0 = GradientBoostingRegressor( 

  loss='ls', 

  learning_rate=0.01, 

  n_estimators=1000, 

  subsample=0.5, 

  max_depth=2 

  )

m_0 = GradientBoostingClassifier( 

  loss='exponential', 

  learning_rate=0.01, 

  n_estimators=1000, 

  subsample=0.5, 

  max_depth=2 

  )
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Run the DML model: Average Treatment Effects

# Fix the random number generator for replicability 

np.random.seed(1234) 

# Run the model 

dml_model_irm = dml.DoubleMLIRM(df_dml, g_0, m_0) 

# Output the model's findings 

print(dml_model_irm.fit())

## ================== DoubleMLIRM Object ================== 
##  
## ------------------ Data summary      ------------------ 
## Outcome variable: net_tfa 
## Treatment variable(s): ['e401'] 
## Covariates: ['nifa', 'tw', 'age', 'inc', 'fsize', 'educ', 'db', 'marr', 'twoearn', 'p401', 'pira', 'hown'] 
## Instrument variable(s): None 
## No. Observations: 9915 
##  
## ------------------ Score & algorithm ------------------ 
## Score function: ATE 
## DML algorithm: dml2 
##  
## ------------------ Resampling        ------------------ 
## No. folds: 5 
## No. repeated sample splits: 1 
## Apply cross-fitting: True 
##  
## ------------------ Fit summary       ------------------ 
##             coef     std err         t         P>|t|        2.5 %       97.5 % 
## e401  3320.43343  383.604082  8.655887  4.890947e-18  2568.583245  4072.283614
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Run the DML model: ATTE

▪ ATTE: Average Treatment Effects of the Treated

# Run the model 

dml_model_irm_ATTE = dml.DoubleMLIRM(df_dml, g_0, m_0, score='ATTE') 

# Output the model's findings 

print(dml_model_irm_ATTE.fit())

## ================== DoubleMLIRM Object ================== 
##  
## ------------------ Data summary      ------------------ 
## Outcome variable: net_tfa 
## Treatment variable(s): ['e401'] 
## Covariates: ['nifa', 'tw', 'age', 'inc', 'fsize', 'educ', 'db', 'marr', 'twoearn', 'p401', 'pira', 'hown'] 
## Instrument variable(s): None 
## No. Observations: 9915 
##  
## ------------------ Score & algorithm ------------------ 
## Score function: ATTE 
## DML algorithm: dml2 
##  
## ------------------ Resampling        ------------------ 
## No. folds: 5 
## No. repeated sample splits: 1 
## Apply cross-fitting: True 
##  
## ------------------ Fit summary       ------------------ 
##               coef     std err          t          P>|t|        2.5 %         97.5 %   
## e401  10081.312662  392.074708  25.712734  8.421563e-146  9312.860354   10849.764969
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Other twists on the model

1. Change the machine learning backend

▪ Our models used dml2

▪ You can switch to dml1 using dml_procedure='dml1'

▪ dml1 follows the math in these slides

▪ Solve for a condition equal to zero for each model, and then average the estimators

▪ dml2 solves the for the average of the condition being equal to zero overall

2. Run multiple iterations of the model

▪ The paper uses 100 iterations, emulate this by adding n_rep=100

3. Change the machine learning models fed to the DoubleML model

▪ An example of using “Histogram-based Gradient Boosting” is in the Jupyter notebook

▪ This is a much faster GBM-like model
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Addendum: Using R

▪ The  package is available in R as welldoubleML
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Conclusion
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Wrap-up

▪ A flexible model for understanding how other models use data

▪ Many visualization tools for different situations:

▪ Individual observations

▪ Individual measures

▪ Aggregations over all observations

▪ Importance plots

▪ Leveraging the nonparametric nature of ML models to improve causality

▪ Easy to gauge ATE and ATTE

▪ Extendable to instrumental variable problems

SHAP

DoubleML
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Python

▪ doubleml

▪ numpy

▪ pandas

▪ scikit-learn

▪ shap

▪ xgboost

R

▪ kableExtra

▪ knitr

▪ reticulate

▪ revealjs

Packages used for these slides
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Custom code

# Fully worked out DoubleML model using Histogram-based GBM 
 
from sklearn.experimental import enable_hist_gradient_boosting  # noqa 
from sklearn.ensemble import HistGradientBoostingClassifier, HistGradientBoostingRegressor 
 
# set up the data 
df = pd.read_stata('../Data/S5_sipp1991.dta') 
 
y = 'net_tfa' 
treat = 'e401' 
controls = [x for x in df.columns.tolist() if x not in [y, treat]] 
 
df_dml3 = dml.DoubleMLData(df, y_col=y, d_cols=treat, x_cols=controls) 
 
#set up the nonparametric nuisance functions 
g_0 = HistGradientBoostingRegressor(loss='least_squares', 
                                    learning_rate=0.01, 
                                    max_iter=1000, 
                                    max_depth=2, 
                                    early_stopping=False 
                                   ) 
m_0 = HistGradientBoostingClassifier(loss='binary_crossentropy', 
                                     learning_rate=0.01, 
                                     max_iter=1000, 
                                     max_depth=2, 
                                     early_stopping=False 
                                    ) 
 
 
np.random.seed(1234) 
dml_model_ex_irm = dml.DoubleMLIRM(df_dml, g_0, m_0, n_folds=5, n_rep=100) 
print(dml_model_ex_irm.fit())
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