
Session 6: Neural Networks

2021 August 12

Dr. Richard M. Crowley

 rcrowley@smu.edu.sg

http://rmc.link/

1

mailto:rcrowley@smu.edu.sg
http://rmc.link/

Main applications

2 . 1

Dependent Variable

▪ The number someone wrote

Independent Variables

▪ An image of that number

▪ Treat as a vector

▪ Treat as an image

Handwriting recognition

▪ MNIST: The “Hello World” of neural network design

A simple introduction to building a neural network

2 . 2

Sentence embeddings

▪ Using Universal Sentence Encoder (USE)

▪ Try it out yourself!

USE is available as an off-the-shelf model, which makes it easy to use

2 . 3

Image object detection

▪ Yes!

▪ Using an off-the-shelf model, it can be done quickly and easily

Given a random image, can we tell if a person is in it?

Also, detecting 79 other objects in images

2 . 4

Frameworks for Neural networks

3 . 1

▪ It can run almost ANY ML/AI/NN algorithm

▪ It has APIs for easier access like Keras

▪ Comparatively easy GPU setup

▪ It can deploy anywhere

▪ Python & C/C++ built in

▪ Swi�, R Haskell, and Rust bindings

▪ TensorFlow light for mobile deployment

▪ TensorFlow.js for web deployment

TensorFlow

3 . 2

https://www.tensorflow.org/lite/
https://js.tensorflow.org/
https://magenta.tensorflow.org/
https://tfhub.dev/

▪ It has strong support from Google and others

▪ – Premade algorithms for

text, image, and video

▪ – Premade code examples

▪ The folder contains an amazing

set of resources

▪ – AI research models from Google Brain

TensorFlow resources

TensorFlow Hub

tensorflow/models

research

trax

3 . 3

https://tfhub.dev/
https://github.com/tensorflow/models
https://github.com/tensorflow/models/tree/master/research
https://github.com/google/trax
https://www.tensorflow.org/lite/
https://js.tensorflow.org/
https://magenta.tensorflow.org/
https://tfhub.dev/

▪

▪ Python, C/C++, Matlab

▪ Good for image processing

▪

▪ C++ and Python

▪ Still largely image oriented

▪

▪ Python, C++

▪ Scales well, good for NLP

▪ and

▪ For Lua and python

▪ , , and

▪

▪ Python based

▪ Integration with R, Scala…

Other notable frameworks

Caffe

Caffe2

Microso� Cognitive Toolkit

Torch Pytorch

fast.ai ELF AllenNLP

H20

3 . 4

http://caffe.berkeleyvision.org/
https://caffe2.ai/
https://www.microsoft.com/en-us/cognitive-toolkit/
http://torch.ch/
https://pytorch.org/
https://www.fast.ai/
https://github.com/pytorch/elf
https://allennlp.org/
https://www.h2o.ai/
https://caffe2.ai/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://pytorch.org/
https://www.h2o.ai/

Neural Networks

4 . 1

What are neural networks?

▪ The phrase neural network is thrown around almost like a buzz word

▪ Neural networks are actually a specific type class algorithms

▪ There are many implementations with different primary uses

4 . 2

What are neural networks?

▪ Originally, the goal was to construct an algorithm that behaves like a human brain

▪ Thus the name

▪ Current methods don’t quite reflect human brains, however:

1. We don’t fully understand how our brains work, which makes replication rather difficult

2. Most neural networks are constructed for specialized tasks (not general tasks)

3. Some (but not all) neural networks use tools our brain may not have

▪ I.e., backpropogation is , but it is not pinned down how such a function

occurs (if it does occur)

potentially possible in brains

4 . 3

https://www.frontiersin.org/articles/10.3389/fncom.2016.00094/full

What are neural networks?

▪ Neural networks are a method by which a computer can learn from observational data

▪ In practice:

▪ They were not computationally worthwhile until the mid 2000s

▪ They have been known since the 1950s (perceptrons)

▪ They can be used to construct algorithms that, at times, perform better than humans themselves

▪ But these algorithms are o�en quite computationally intense, complex, and difficult to understand

▪ Much work has been and is being done to make them more accessible

4 . 4

Types of neural networks

▪ There are a lot of neural network types

▪ See The

▪ Some of the more interesting ones which we will see or have seen:

▪ RNN: Recurrent Neural Network

▪ LSTM: Long/Short Term Memory

▪ CNN: Convolutional Neural Network

▪ DAN: Deep Averaging Network

▪ GAN: Generative Adversarial Network

▪ Others worth noting

▪ VAE (Variational Autoencoder): Generating new data from datasets

▪ Not in the Zoo, but of note:

▪ : Networks with “attention”

▪ From

“Neural Network Zoo”

Transformer

Attention is All You Need

4 . 5

http://www.asimovinstitute.org/neural-network-zoo/
http://jalammar.github.io/illustrated-transformer/
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

RNN: Recurrent NN

▪ Recurrent neural networks embed a history of information in the network

▪ The previous computation affects the next one

▪ Leads to a short term memory

▪ Used for speech recognition, image captioning, anomaly detection, and many others

▪ Also the foundation of LSTM

▪ ()SketchRNN live demo

4 . 6

https://ai.googleblog.com/2017/04/teaching-machines-to-draw.html
https://magenta.tensorflow.org/assets/sketch_rnn_demo/index.html

LSTM: Long Short Term Memory

▪ LSTM improves the long term memory of the network while explicitly modeling a short term memory

▪ Used wherever RNNs are used, and then some

▪ Ex.: (machine translation)Seq2seq

4 . 7

https://google.github.io/seq2seq/

CNN: Convolutional NN

▪ Networks that excel at object detection (in images)

▪ Can be applied to other data as well

▪ Ex.: Inception-v3

4 . 8

https://ai.googleblog.com/2016/03/train-your-own-image-classifier-with.html

DAN: Deep Averaging Network

▪ DANs are simple networks that simply average their inputs

▪ Averaged inputs are then processed a few times

▪ These networks have found a home in NLP

▪ Ex.: Universal Sentence Encoder

4 . 9

https://tfhub.dev/google/universal-sentence-encoder/2

GAN: Generative Adversarial Network

▪ Feature two networks working against each other

▪ Many novel uses

▪ Ex.: Anonymizing clinical trial data by simulating an attack on the dataset

▪ Ex.: Aging images

4 . 10

https://medium.com/syncedreview/face-aging-with-conditional-generative-adversarial-networks-d41076379047

VAE: Variational Autoencoder

▪ An autoencoder (AE) is an algorithm that can recreate input data

▪ Variational means this type of AE can vary other aspects to generate completely new output

▪ Good for creating

▪ Like a simpler, noisier GAN

fake data

4 . 11

https://github.com/yzwxx/vae-celebA

Transformer

▪ Shares some similarities with RNN and LSTM: Focuses on attention

▪ Currently being applied to solve many types of problems

▪ Examples: BERT, GPT-3, XLNEt

4 . 12

Image data

5 . 1

Thinking about images as data

▪ Images are data, but they are very unstructured

▪ No instructions to say what is in them

▪ No common grammar across images

▪ Many, many possible subjects, objects, styles, etc.

▪ From a computer’s perspective, images are just 3-dimensional matrices

▪ Rows (pixels)

▪ Columns (pixels)

▪ Color channels (usually Red, Green, and Blue)

5 . 2

▪ Source: Twitter

▪ 798 rows

▪ 1200 columns

▪ 3 color channels

▪ 798 1,200 3 2,872,800

▪ The number of ‘variables’ per image like this!

Using images as data

▪ We can definitely use numeric matrices as data

▪ We did this plenty with XGBoost, for instance

▪ However, images have a lot of different numbers tied to each observation.

5 . 3

Using images in practice

▪ There are a number of strategies to shrink images’ dimensionality

1. Downsample the image to a smaller resolution like 256x256x3

2. Convert to grayscale

3. Cut the image up and use sections of the image as variables instead of individual numbers in the matrix

▪ O�en done with convolutions in neural networks

4. Drop variables that aren’t needed, like LASSO

5 . 4

A simple example: MNIST

6 . 1

MNIST

▪ MINST is a set of handwritten numbers with annotations

▪ It has prespecified training and testing samples

▪ Ensures comparability

▪ 60,000 for training, 10,000 for testing

▪ It’s available in , so we will import from theretensorflow

(train_X, train_Y), (test_X, test_Y) = keras.datasets.mnist.load_data()

print('Train, X:%s, Y:%s' % (train_X.shape, train_Y.shape))

print('Test, X:%s, Y:%s' % (test_X.shape, test_Y.shape))

Train, X:(60000, 28, 28), Y:(60000,)
Test, X:(10000, 28, 28), Y:(10000,)

6 . 2

https://www.tensorflow.org/

A look at the MNIST data

images = np.random.randint(0, train_X.shape[0], size=25)

for i in range(0, 25):

 # define subplot

 image = images[i]

 plt.subplot(5, 5, i+1)

 # plot raw pixel data

 plt.imshow(train_X[image], cmap=plt.get_cmap('gray'))

 plt.title(train_Y[image])

plt.tight_layout()

6 . 3

Simple neural network

▪ We will ignore the 2D nature of the image – instead, we will treat it as a vector of values between 0 and 1

▪ To do this, we need to…

1. Scale by 255 (the max value in the data/

2. Reshape our data into vectors

Scale data

train_X = train_X.astype("float32") / 255

test_X = test_X.astype("float32") / 255

convert to vectors

rows = train_X.shape[0]

dim1 = train_X.shape[1]

dim2 = train_X.shape[2]

train_X = train_X.reshape((rows, dim1 * dim2))

rows = test_X.shape[0]

test_X = test_X.reshape((rows, dim1 * dim2))

print('Train, X:%s, Y:%s' % (train_X.shape, train_Y.shape))

print('Test, X:%s, Y:%s' % (test_X.shape, test_Y.shape))

Train, X:(60000, 784), Y:(60000,)
Test, X:(10000, 784), Y:(10000,)

6 . 4

Dealing with categorical DVs

▪ We need to take special care that the Y values are interpreted as categories

▪ Otherwise, the default behavior would be to treat them as a continuous numeric measure

▪ We can use keras.utils.to_categorical to convert our data into the right format

train_Y = keras.utils.to_categorical(train_Y, 10)

test_Y = keras.utils.to_categorical(test_Y, 10)

print('Train, X:%s, Y:%s' % (train_X.shape, train_Y.shape))

print('Test, X:%s, Y:%s' % (test_X.shape, test_Y.shape))

Train, X:(60000, 784), Y:(60000, 10)
Test, X:(10000, 784), Y:(10000, 10)

Note that Y is now 10-dimensional – it is one hot encoded now

6 . 5

Constructing a simple neural network

▪ This model is a very simplistic algorithm

▪ The data streams in as 784-dim vectors (InputLayer)

▪ The data is compressed by 10 fully-connected neurons all in the same layer (Dense)

▪ Each neuron will take on one category to try to pick up

▪ The highest probability neuron will be the category guess (softmax)

Parameters for the model

num_classes = 10

input_shape = (784)

model_dense = keras.Sequential(

 [

 keras.layers.InputLayer(input_shape=input_shape),

 keras.layers.Dense(num_classes, activation="softmax")

]

)

model_dense.summary()

Model: "sequential_3"

Layer (type) Output Shape Param #
===
dense_4 (Dense) (None, 10) 7850
===
Total params: 7,850
Trainable params: 7,850
Non-trainable params: 0
___ 6 . 6

Run the neural network

▪ There are 2 steps to running a neural network:

1. Compile the model: We previously described the network shape, but didn’t build the network itself

2. Fit the model to our data

▪ The loss function tells the model what to optimize in training

▪ categorical_crossentropy corresponds to multiclass classification accuracy

▪ The optimizer is the function used for training the model – adam is a good default

▪ Metrics are what you want it to track and report back to you

▪ Within the fit command, note that epochs is the number of rounds to train the model

▪ Higher is o�en better, but not always

▪ The model itself runs quickly

batch_size = 128

epochs = 10

model_dense.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

history = model_dense.fit(train_X, train_Y, batch_size=batch_size, epochs=epochs, validation_split=0.1)

6 . 7

Model performance

▪ The model we compiled is 92.45% accurate in-sample, with 93.78% accuracy on validation data

▪ However, what matters most is the accuracy on the testing data

▪ will test this for us

▪ We will also make lists of what it got right and wrong

model.evaluate()

score = model_dense.evaluate(test_X, test_Y, verbose=0)

print("Test loss:", score[0])

print("Test accuracy:", score[1])

Test loss: 0.26733914017677307
Test accuracy: 0.9259999990463257

correct = np.where(np.argmax(model_dense.predict(test_X), axis=-1) == np.argmax(test_Y, axis=-1))[0]

incorrect = np.where(np.argmax(model_dense.predict(test_X), axis=-1) != np.argmax(test_Y, axis=-1))[0]

6 . 8

https://www.tensorflow.org/api_docs/python/tf/keras/Model#evaluate

What does the model get right?

6 . 9

What does the model get wrong?

6 . 10

For those using

▪ CPU Based, works on any computer

▪ Nvidia GPU based

▪ Install the first

Using your own python setup

▪ Follow Google’s

▪ Install keras from a terminal with

pip install keras

▪ R Studio’s keras package will automatically find

it

▪ May require a reboot to work on Windows

Addendum: Using R

▪ There is a port of for R made by the RStudio team

▪ It calls TensorFlow in python, however

▪ Install with: devtools::install_github("rstudio/keras")

▪ Finish the install in one of two ways:

By R Studio: details here

keras

Conda

library(keras)

install_keras()

So�ware requirements

library(keras)

install_keras(tensorflow = "gpu")

install instructions for

TensorFlow

6 . 11

https://keras.rstudio.com/index.html
https://keras.rstudio.com/
https://docs.conda.io/en/latest/
https://www.tensorflow.org/install/gpu
https://www.tensorflow.org/install

MNIST: Extending to a CNN

7 . 1

Setup

▪ The setup is similar, except we don’t need to reshape our X data

▪ We do need to add an additional dimension to our images though, which does for usnp.expand_dims()

(train_X, train_Y), (test_X, test_Y) = keras.datasets.mnist.load_data()

train_X = train_X.astype("float32") / 255

test_X = test_X.astype("float32") / 255

train_X = np.expand_dims(train_X, -1)

test_X = np.expand_dims(test_X, -1)

train_Y = keras.utils.to_categorical(train_Y, 10)

test_Y = keras.utils.to_categorical(test_Y, 10)

print('Train, X:%s, Y:%s' % (train_X.shape, train_Y.shape))

print('Test, X:%s, Y:%s' % (test_X.shape, test_Y.shape))

Train, X:(60000, 28, 28, 1), Y:(60000, 10)
Test, X:(10000, 28, 28, 1), Y:(10000, 10)

7 . 2

https://numpy.org/doc/stable/reference/generated/numpy.expand_dims.html

Build the model

▪ Here we use layers for the convolution

▪ The layers downsample (shrink) the data

▪ The layer reshapes the output to a vector

▪ Relu is essentially the same as a call option payoff (“hockey stick”)

Conv2D()

MaxPooling2D()

Flatten()

Parameters for the model

num_classes = 10

input_shape = (28, 28, 1)

model_cnn = keras.Sequential(

 [

 keras.layers.InputLayer(input_shape=input_shape),

 keras.layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),

 keras.layers.MaxPooling2D(pool_size=(2, 2)),

 keras.layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),

 keras.layers.MaxPooling2D(pool_size=(2, 2)),

 keras.layers.Flatten(),

 keras.layers.Dropout(0.5),

 keras.layers.Dense(num_classes, activation="softmax"),

]

)

model_cnn.summary()

7 . 3

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Flatten

Build the model

Model: "sequential_4"

Layer (type) Output Shape Param #
===
conv2d_2 (Conv2D) (None, 26, 26, 32) 320

max_pooling2d_2 (MaxPooling2 (None, 13, 13, 32) 0

conv2d_3 (Conv2D) (None, 11, 11, 64) 18496

max_pooling2d_3 (MaxPooling2 (None, 5, 5, 64) 0

flatten_1 (Flatten) (None, 1600) 0

dropout_2 (Dropout) (None, 1600) 0

dense_5 (Dense) (None, 10) 16010
===
Total params: 34,826
Trainable params: 34,826
Non-trainable params: 0

7 . 4

Fit the model and evaluate

▪ Fitting and evaluating is the same as before

batch_size = 128

epochs = 10

model_cnn.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

model_cnn.fit(train_X, train_Y, batch_size=batch_size, epochs=epochs, validation_split=0.1)

score = model_cnn.evaluate(test_X, test_Y, verbose=0)

print("Test loss:", score[0])

print("Test accuracy:", score[1])

print("""Test loss: 0.0291274506598711

Test accuracy: 0.9897000193595886""")

Test loss: 0.0291274506598711
Test accuracy: 0.9897000193595886

7 . 5

What does the model get right?

7 . 6

What does the model get wrong?

7 . 7

More advanced image techniques

8 . 1

How CNNs work

▪ CNNs use repeated convolution, usually looking at slightly bigger chunks of data each iteration

▪ But what is convolution? It is illustrated by the following graphs (from):

Wikipedia

Further reading

8 . 2

https://en.wikipedia.org/wiki/Convolution
http://colah.github.io/posts/2014-07-Understanding-Convolutions/

Example output of AlexNet The first (of 5) layers learned

CNN

▪ AlexNet ()paper

8 . 3

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

8 . 4

8 . 5

Transfer Learning

▪ The previous slide is an example of style transfer

▪ This is also done using CNNs

▪ More details here

8 . 6

https://medium.com/data-science-group-iitr/artistic-style-transfer-with-convolutional-neural-network-7ce2476039fd

What is transfer learning?

▪ It is a method of training an algorithm on one domain and then applying the algorithm on another domain

▪ It is useful when…

▪ You don’t have enough data for your primary task

▪ And you have enough for a related task

▪ You want to augment a model with even more

There are a couple papers using this for BERT models in accounting

8 . 7

Inputs:

If you want to try it out…

▪ Colab file available at

▪ Largely based off of

▪ It just took a few tweaks to get it working in a Google Colaboratory environment properly

this link

dsgiitr/Neural-Style-Transfer

8 . 8

https://colab.research.google.com/drive/1fepwhtxIyqE9VQ02Hb7A7RpMpVKBFGkp
https://github.com/dsgiitr/Neural-Style-Transfer

Recent attempts at explaining CNNs

▪ Google & Stanford’s “Automated Concept-based Explanation”

8 . 9

https://venturebeat.com/2019/10/14/googles-ai-explains-how-image-classifiers-made-their-decisions/

Explaining a CNN with SHAP

9 . 1

SHAP and TensorFlow

▪ Recall that Wich, Bauer and Groh (2020 WOAH) used to analyze a neural

network

▪ We can do the same!

▪ First, feed SHAP the model and some sample images

▪ Then we will select 1 of each digit that the CNN got correct and incorrect

shap.DeepExplainer()

images = np.random.randint(0, train_X.shape[0], size=25)

e = shap.DeepExplainer(model_cnn, train_X[images])

correct = [np.where((np.argmax(model_cnn.predict(test_X), axis=-1) == np.argmax(test_Y, axis=-1)) & \

 (np.argmax(test_Y, axis=-1) == i))[0][0] for i in range(0, 10)]

incorrect = [np.where((np.argmax(model_cnn.predict(test_X), axis=-1) != np.argmax(test_Y, axis=-1)) & \

 (np.argmax(test_Y, axis=-1) == i))[0][0] for i in range(0, 10)]

9 . 2

https://shap.readthedocs.io/en/latest/example_notebooks/image_examples/image_classification/Front%20Page%20DeepExplainer%20MNIST%20Example.html

SHAP for correct images

shap_values = e.shap_values(test_X[correct])

shap.image_plot(shap_values, -test_X[correct])

9 . 3

SHAP for incorrect images

shap_values = e.shap_values(test_X[incorrect])

shap.image_plot(shap_values, -test_X[incorrect])

9 . 4

Working with pretrained models

10 . 1

Where can I find pretrained models?

▪ There are many pretrained models on

▪ There are also models contained in the TensorFlow Github page:

▪

▪

▪ Google Brain also maintains a collection of models in

▪ PyTorch has

▪ Hugging Face maintains a

▪ ONNX maintains a collection of

TensorFlow Hub

Research models

Community models

trax

Other platforms also maintain model collections

PyTorch Hub

large collection of text models

framework-agnostic models

We will look at TensorFlow Hub today

10 . 2

https://tfhub.dev/
https://github.com/tensorflow/models/tree/master/research
https://github.com/tensorflow/models/tree/master/community
https://github.com/google/trax
https://pytorch.org/hub/
https://huggingface.co/models
https://github.com/onnx/models

MNIST off-the-shelf

▪ The model we will be using is GAN-based MNIST classifier

▪

▪ Use to load in a model

▪ Apply it to our testing data, same as before

▪ Just apply the model to our data

tfgan/eval/mnist/logits

hub.load()

model_tfgan = hub.load("https://tfhub.dev/tensorflow/tfgan/eval/mnist/logits/1")

logits = model_tfgan(test_X).numpy()

Check accuracy

sum(np.argmax(logits,-1) == np.argmax(test_Y, -1))

10 . 3

https://tfhub.dev/tensorflow/tfgan/eval/mnist/logits/1
https://www.tensorflow.org/hub/api_docs/python/hub/load

Examine incorrect answers

10 . 4

Sentence embeddings off-the-shelf

▪ The model we will be using is the by Cer et al. (2018)

▪ Converts text that is between phrase and paragraph length into 512-dimensional vectors

▪ Used in a couple of my papers

Universal Sentence Encoder (USE)

embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder-large/5")

messages = ['Two words',

 'This is a sentence.',

 'This is a few sentences. They are strung together. They are in one string'

]

embeddings = embed(messages)

embeddings

<tf.Tensor: shape=(3, 512), dtype=float32, numpy=
array([[-1.0184747e-02, -3.1019164e-02, -4.2781506e-02, ...,
1.0805108e-01, 7.7099161e-05, -6.1001875e-03],
[-1.2058644e-02, -3.8627390e-02, 1.5427187e-03, ...,
3.3353332e-02, -7.0963770e-02, -1.7223844e-03],
[3.6280617e-02, 1.7835487e-03, -7.6090815e-03, ...,
5.9779502e-02, -1.0792013e-01, -6.0476218e-03]], dtype=float32)>

10 . 5

https://tfhub.dev/google/universal-sentence-encoder-large/5

Compare sentences with USE

messages = ["How are you feeling?","How are you?","What's up?",

 "How old are you?","How old are you, in years?","What is your age?"]

embeddings = embed(messages)

plot_similarity(messages, embeddings, 90)

10 . 6

Object detection off-the-shelf

▪ There are a lot of options for this

▪ We will use a model trained on from CenterNet

▪

▪ This can detect 80 different object types, including people

COCO

centernet/hourglass_512x512

Full list of object types

labels = load_COCO_labelmap()

print(list(labels.values()))

['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter',
'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase',
'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle',
'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven',
'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
'teddy bear', 'hair drier', 'toothbrush']

10 . 7

https://cocodataset.org/#home
https://tfhub.dev/tensorflow/centernet/hourglass_512x512/1

Using the model

centernet = hub.load('https://tfhub.dev/tensorflow/centernet/hourglass_512x512/1')

image1, image1_np = load_image('../Data/S6_1.jpeg')

image2, image2_np = load_image('https://pbs.twimg.com/media/E8ZIIKGXIAAipIh?format=jpg&name=small')

10 . 8

Applying the model

▪ We apply the model to the numpy matrix representation of the image

▪ result is just a numpy version of results

▪ This contains four types of information

results = centernet(image1_np)

result = {key:value.numpy() for key,value in results.items()}

print(result.keys())

dict_keys(['detection_scores', 'num_detections', 'detection_boxes', 'detection_classes'])

10 . 9

Applying the model

▪ The below functions are defined out of convenience

▪ The first function reports the top objects detected, based on weights assigned by the model

▪ The second function reports the highest probability that a person was included in the image

def top_k_objects(result, k=3):

 top_scores = result['detection_scores'][0][0:k]

 top_ids = [labels[str(int(i))] for i in result['detection_classes'][0]][0:k]

 for row in zip(top_scores, top_ids):

 print('Object: ' + row[1] + ', score: ' + str(row[0]))

def prob_person(result):

 id_person = 1

 top_person_loc = np.where(result['detection_classes'][0] == 1)[0][0]

 prob = result['detection_scores'][0][top_person_loc]

 print('Probability of a person in the photo: ' + str(prob))

10 . 10

Analyzing the first image

top_k_objects(result, 3)

Object: tie, score: 0.56596684
Object: person, score: 0.45707893
Object: tv, score: 0.3345726

prob_person(result)

Probability of a person in the photo: 0.45707893

10 . 11

Applying to the second image

results = centernet(image2_np)

result = {key:value.numpy() for key,value in results.items()}

top_k_objects(result, 3)

Object: book, score: 0.7087656
Object: tv, score: 0.10406752
Object: book, score: 0.07747121

prob_person(result)

No person found

10 . 12

Video data

11 . 1

Working with video

▪ Video data is challenging – very storage intensive

▪ Ex.: Uber’s self driving cars would generate >100GB of data per hour per car

▪ Video data is very promising

▪ Think of how many task involve vision!

▪ Driving

▪ Photography

▪ Warehouse auditing…

▪ At the end of the day though, video is just a sequence of images

11 . 2

One method for video

▪ You

▪ Only

▪

▪ Once

YOLOv3

11 . 3

Video unavailable

Watch on YouTube

Video link

11 . 4

http://www.youtube.com/watch?v=MPU2HistivI
https://www.youtube.com/
https://www.youtube.com/watch?v=MPU2HistivI&feature=youtu.be

What does YOLO do?

▪ It spots objects in videos and labels them

▪ It also figures out a bounding box – a box containing the object inside the video frame

▪ It can spot overlapping objects

▪ It can spot multiple of the same or different object types

▪ The baseline model (using the COCO dataset) can detect 80 different object types

▪ There are other datasets with more objects

11 . 5

How does Yolo do it? Map of Tiny YOLO

Yolo model and graphing tool from lutzroeder/netron

11 . 6

https://github.com/lutzroeder/netron

How does Yolo do it?

Diagram from by Ayoosh KathuriaWhat’s new in YOLO v3

11 . 7

https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b

Final word on object detection

▪ An algorithm like YOLO v3 is somewhat tricky to run

▪ Preparing the algorithm takes a long time

▪ The final output, though, can run on much cheaper hardware

▪ These algorithms just recently became feasible so their impact has yet to be felt so strongly

Think about how facial recognition showed up everywhere for images over the past few

years

11 . 8

Where to get video data

▪ One extensive source is

▪ 6.1M videos, 3-10 minutes each

▪ Each video has >1,000 views

▪ 350,000 hours of video

▪ 237,000 labeled 5 second segments

▪ 1.3B video features that are machine labeled

▪ 1.3B audio features that are machine labeled

Youtube-8M

11 . 9

https://research.google.com/youtube8m/

Conclusion

12 . 1

Wrap-up

▪ Highly flexible, nonparametric algorithms

▪ Good for multiclass classification

▪ Good for generating measures

▪ Many options available

▪ A lot of state of the art text models are freely available

▪ Decent image processing models are also available

▪ Many other model types are also available, such as translation algorithms

Neural networks

Off-the-shelf models

12 . 2

Course wrap-up

1. Simple econometric models like LASSO

2. More complex, nonlinear or nonparametric models like SVM/SVR and XGBoost

3. Working with text in python, including ML-based grammar and dependency parsing

4. Simpler text models including word embeddings (word2vec) and topic modeling (LDA)

5. Economics-oriented ML: bias detection with SHAP and causality with DoubleML

6. Neural networks

Over the past 6 sessions, we have covered a wide variety of practical machine learning

algorithms for accounting research

Hopefully this course gave you a lot to think about and jogged some interesting research

ideas!

12 . 3

Python

▪ matplotlib

▪ numpy

▪ pandas

▪ PIL (pillow)

▪ requests

▪ seaborn

▪ shap

▪ tensorflow

▪ tensorflow_gan

▪ tensorflow_hub

R

▪ kableExtra

▪ knitr

▪ reticulate

▪ revealjs

Packages used for these slides

12 . 4

References

▪ Cer, Daniel, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Constant et

al. “Universal sentence encoder.” arXiv preprint arXiv:1803.11175 (2018).

▪ Wich, Maximilian, Jan Bauer, and Georg Groh. “Impact of politically biased data on hate speech

classification.” In Proceedings of the Fourth Workshop on Online Abuse and Harms, pp. 54-64. 2020.

12 . 5

Custom code

USE helper code

Efficient distance calculation
def distance_matrix_np(pts):
 """Returns matrix of pairwise Euclidean distances. Vectorized numpy version."""
 return np.sum((pts[None,:] - pts[:, None])**2, -1)**0.5

Plot USE similarity
def plot_similarity(messages, embeddings, rotation):
 messages2 = []
 for message in messages:
 if len(message.split()) > 4:
 c = 0
 temp = ''
 for m in message.split():
 temp += m
 c += 1
 if c==4:
 temp += '\n'
 c = 0
 else:
 temp += ' '
 temp = temp[:-1]
 messages2.append(temp)
 else:
 messages2.append(message)
 messages = messages2
 corr = distance_matrix_np(embeddings)
 corr = 1 - corr/2
 sns.set(font_scale=1.2)
 g = sns.heatmap(
 corr,
 xticklabels=messages,
 yticklabels=messages,
 vmin=0,
 vmax=1,
 cmap="YlOrRd")
 g.set_xticklabels(messages, rotation=rotation)
 g.set_yticklabels(messages, rotation=0)
 g.set_title("Semantic Textual Similarity")
 return g

12 . 6

Custom code

Object detection helper code

Image loader -- works for local or internet files
def load_image(path):
 if path.startswith('http'):
 response = requests.get(path)
 image_data = io.BytesIO(response.content)
 image = Image.open(image_data)
 else:
 image_data = tf.io.gfile.GFile('../Data/S6_1.jpeg', 'rb').read()
 image = Image.open(io.BytesIO(image_data))
 (im_width, im_height) = image.size
 image_np = np.array(image.getdata()).reshape((1, im_height, im_width, 3)).astype(np.uint8)
 return image, image_np

Load in the COCO labels from disk
def load_COCO_labelmap():
 with open('../Data/S6_COCO_labelmap.txt', 'rt') as f:
 text = f.readlines()
 output = {}
 for row in text:
 if 'id' in row:
 id = row[6:8]
 if '\n' in id:
 id = id[0]
 elif 'display_name' in row:
 output[id] = row.split('"')[1]
 return output

12 . 7

