ACCT 420: Logistic Regression

Session 5

Dr. Richard M. Crowley

Front matter

Learning objectives

- Theory:
 - Further understand:
 - Binary problems
- Application:
 - Detecting shipping delays caused by typhoons
- Methodology:
 - Logistic regression

Datacamp

- Explore on your own
- No specific required class this week

Assignment 2

- Looking at Singaporean retail firms
 - Mostly focused on time and cyclicality
 - Some visualization
 - A little of what we cover today
- Optional:
 - You can work in *pairs* on the homework.
 - If you choose to do this, please only make 1 submission and include both your names on the submission

Weekly revenue prediction

The question

How can we weekly departmental revenue for Walmart, leveraging our knowledge of Walmart, its business, and some limited historical information

- Predict weekly for 115,064 (Store, Department, Week) tuples
 - From 2012-11-02 to 2013-07-26
- Using [incomplete] weekly revenue data from 2010-02-015 to 2012-10-26
 - By department (some weeks missing for some departments)

More specifically...

- Consider time dimensions
 - What matters:
 - Time of the year?
 - Holidays?
 - Do different stores or departments behave differently?
- Wrinkles:
 - Walmart won't give us testing data
 - But they'll tell us how well the algorithm performs
 - We can't use past week sales for prediction because we won't have it for most of the prediction...

The data

- Revenue by week for each department of each of 45 stores
 - Department is just a number between 1 and 99
 - Date of that week
 - If the week is considered a holiday for sales purposes
 - Super Bowl, Labor Day, Black Friday, Christmas
- Store data:
 - Which store the data is for, 1 to 45
 - Store type (A, B, or C)
 - Store size
- Other data, by week and location:
 - Temperature, gas price, sales (by department), CPI, Unemployment,
 Holidays

Walmart's evaluation metric

- Walmart uses MAE (mean absolute error), but with a twist:
 - They care more about holidays, so any error on holidays has **5 times** the penalty
 - They call this WMAE, for *weighted* mean absolute error

$$WMAE = rac{1}{\sum w_i} \sum_{i=1}^n w_i \left| y_i - \hat{y}_i
ight|$$

- n is the number of test data points
- \hat{y}_i is your prediction
- y_i is the actual sales
- w_i is 5 on holidays and 1 otherwise

```
wmae <- function(actual, predicted, holidays) {
  sum(abs(actual-predicted)*(holidays*4+1)) / (length(actual) + 4*sum(holidays))
}</pre>
```

Before we get started...

- The data isn't very clean:
 - Markdowns are given by 5 separate variables instead of 1
 - Date is text format instead of a date
 - CPI and unemployment data are missing in around a third of the testing data
 - There are some (week, store, department) groups missing from our training data!

We'll have to fix these

Also...

- Some features to add:
 - Year
 - Week
 - A unique ID for tracking (week, firm, department) tuples
 - The ID Walmart requests we use for submissions
 - Average sales by (store, department)
 - Average sales by (week, store, department)

Load data and packages

```
library(tidyverse) # we'll extensively use dplyr here
library(lubridate) # Great for simple date functions
library(broom)
weekly <- read.csv("../../Data/WMT_train.csv", stringsAsFactors=FALSE)
weekly.test <- read.csv("../../Data/WMT_test.csv", stringsAsFactors=FALSE)
weekly.features <- read.csv("../../Data/WMT_features.csv", stringsAsFactors=FALSE)
weekly.stores <- read.csv("../../Data/WMT_stores.csv", stringsAsFactors=FALSE)
```

- weekly is our training data
- weekly.test is our testing data no Weekly_Sales column
- weekly.features is general information about (week, store) pairs
 - Temperature, pricing, etc.
- weekly.stores is general information about each store

Cleaning

```
preprocess_data <- function(df) {</pre>
 # Merge the data together (Pulled from outside of function -- "scoping")
 df <- inner_join(df, weekly.stores)</pre>
 df <- inner_join(df, weekly.features[,1:11])</pre>
 # Compress the weird markdown information to 1 variable
 df$markdown <- 0
 df[!is.na(df$MarkDown1),]$markdown <- df[!is.na(df$MarkDown1),]$MarkDown1
 df[!is.na(df$MarkDown2),]$markdown <- df[!is.na(df$MarkDown2),]$MarkDown2
 df[!is.na(df$MarkDown3),]$markdown <- df[!is.na(df$MarkDown3),]$MarkDown3
 df[!is.na(df$MarkDown4),]$markdown <- df[!is.na(df$MarkDown4),]$MarkDown4
 df[!is.na(df$MarkDown5),]$markdown <- df[!is.na(df$MarkDown5),]$MarkDown5
 # Fix dates and add useful time variables
 df$date <- as.Date(df$Date)</pre>
 df$week <- week(df$date)
 df$year <- year(df$date)
 df
df <- preprocess data(weekly)</pre>
df_test <- preprocess_data(weekly.test)</pre>
```

Merge data, fix markdown, build time data

What this looks like

df[91:94,] %>%
select(Store, date, markdown, MarkDown3, MarkDown4, MarkDown5) %>%
html_df()

	Store	date	markdown	MarkDown3	MarkDown4	MarkDown5
91	1	2011-10-28	0.00	NA	NA	NA
92	1	2011-11-04	0.00	NA	NA	NA
93	1	2011-11-11	6551.42	215.07	2406.62	6551.42
94	1	2011-11-18	5988.57	51.98	427.39	5988.57

df[1:2,] %>% select(date, week, year) %>% html_df()

date	week	year
2010-02-05	6	2010
2010-02-12	7	2010

Cleaning: Missing CPI and Unemployment

```
# Fill in missing CPI and Unemployment data

df_test <- df_test %>%

group_by(Store, year) %>%

mutate(CPI=ifelse(is.na(CPI), mean(CPI,na.rm=T), CPI),

Unemployment=ifelse(is.na(Unemployment),

mean(Unemployment,na.rm=T),

Unemployment)) %>%

ungroup()
```


Apply the (year, Store)'s CPI and Unemployment to missing data

Cleaning: Adding IDs

- Build a unique ID
 - Since Store, week, and department are all 2 digits, make a 6 digit number with 2 digits for each
 - sswwdd
- Build Walmart's requested ID for submissions
 - ss_dd_YYYY-MM-DD

```
# Unique IDs in the data

df$id <- df$Store *10000 + df$week * 100 + df$Dept

df_test$id <- df_test$Store *10000 + df_test$week * 100 + df_test$Dept

# Unique ID and factor building

swd <- c(df$id, df_test$id) # Pool all IDs

swd <- unique(swd) # Only keep unique elements

swd <- data.frame(id=swd) # Make a data frame

swd$swd <- factor(swd$id) # Extract factors for using later

# Add unique factors to data -- ensures same factors for both data sets

df <- left_join(df,swd)

df_test <- left_join(df_test,swd)

df_test$Id <- pasteO(df_test$Store,'_',df_test$Dept,"_",df_test$date)
```

What the IDs look like

html_df(df_test[c(20000,40000,60000),c("Store","week","Dept","id","swd","Id")])

Store	week	Dept	id	swd	Id
8	27	33	82733	82733	8_33_2013-07-05
15	46	91	154691	154691	15_91_2012-11-16
23	52	25	235225	235225	23_25_2012-12-28

Add in (store, department) average sales

```
# Calculate average by store-dept and distribute to df_test
df <- df %>%
 group_by(Store, Dept) %>%
 mutate(store_avg=mean(Weekly_Sales, rm.na=T)) %>%
 ungroup()
df_sa <- df %>%
 group_by(Store, Dept) %>%
 slice(1) %>%
 select(Store, Dept, store_avg) %>%
 ungroup()
df_test <- left_join(df_test, df_sa)</pre>
## Joining, by = c("Store", "Dept")
# 36 observations have messed up department codes -- ignore (set to 0)
df_test[is.na(df_test$store_avg),]$store_avg <- 0
# Calculate multipliers based on store avg (and removing NaN and Inf)
df$Weekly_mult <- df$Weekly_Sales / df$store_avg
df[!is.finite(df$Weekly_mult),]$Weekly_mult <- NA
```

Add in (week, store, dept) average sales

```
# Calculate mean by week-store-dept and distribute to df_test

df <- df %>%

group_by(Store, Dept, week) %>%

mutate(naive_mean=mean(Weekly_Sales, rm.na=T)) %>%

ungroup()

df_wm <- df %>%

group_by(Store, Dept, week) %>%

slice(1) %>%

ungroup() %>%

select(Store, Dept, week, naive_mean)

df_test <- df_test %>% arrange(Store, Dept, week)

df_test <- left_join(df_test, df_wm)

## Joining, by = c("Store", "Dept", "week")
```

ISSUE: New (week, store, dept) groups

- This is in our testing data!
 - So we'll need to predict out groups we haven't observed at all

```
table(is.na(df_test$naive_mean))
```

```
## ## FALSE TRUE
## 113827 1237
```

- Fix: Fill with 1 or 2 lags where possible using ifelse() and lag()
- Fix: Fill with 1 or 2 leads where possible using ifelse() and lag()
- Fill with store_avg when the above fail
- Code is available in the code file a bunch of code like:

```
df_test <- df_test %>%
    arrange(Store, Dept, date) %>%
    group_by(Store, Dept) %>%
    mutate(naive_mean=ifelse(is.na(naive_mean), lag(naive_mean), naive_mean)) %>%
    ungroup()
```

Cleaning is done

- Data is in order
 - No missing values where data is needed
 - Needed values created

```
df %>%
  group_by(week, Store) %>%
  mutate(sales=mean(Weekly_Sales)) %>%
  slice(1) %>%
  ungroup() %>%
  ggplot(aes(y=sales, x=week, color=factor(Store))) +
  geom_line() + xlab("Week") + ylab("Sales for Store (dept average)") +
  theme(legend.position="none")
```


Tackling the problem

First try

- Ideal: Use last week top predict next week!
 - Like week 3

No data for testing...

- First instinct: try to use a linear regression to solve this
 - Like from week 3

We have this

What to put in the model?

First model

```
## # A tibble: 8 x 5
## term
                   estimate std.error statistic p.value
                             <dbl>
                                   <dbl> <dbl>
## <chr>
                     <dbl>
                          0.0370
                                   33.5 4.10e-245
## 1 (Intercept)
                   1.24
## 2 factor(IsHoliday)TRUE 0.0868
                               0.0124
                                         6.99 2.67e-12
## 3 factor(markdown > 0)TRUE 0.0531
                                 0.00885
                                           6.00 2.00e- 9
                    ## 4 markdown
                   -0.000763 0.000181
                                       -4.23 2.38e- 5
## 5 Temperature
## 6 Fuel Price
                   -0.0706
                           0.00823
                                     -8.58 9.90e- 18
## 7 CPI
                 ## 8 Unemployment
                     0.00410
                              0.00182
                                        2.25 2.45e- 2
```

glance(mod1)

```
## # A tibble: 1 x 11  
## r.squared adj.r.squared sigma statistic p.value df logLik AIC  
## * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <1 0.000481 0.000464 2.03 29.0 2.96e-40 8 -8.96e5 1.79e6  
## # ... with 3 more variables: BIC <dbl>, deviance <dbl>, df.residual <int>
```

Prep submission and check in sample WMAE

```
# Out of sample result
df_test$Weekly_mult <- predict(mod1, df_test)</pre>
df_test$Weekly_Sales <- df_test$Weekly_mult * df_test$store_avg
# Required to submit a csv of Id and Weekly_Sales
write.csv(df_test[,c("Id","Weekly_Sales")],
      "WMT linear.csv",
      row.names=FALSE)
# track
df_test$WS_linear <- df_test$Weekly_Sales
# Check in sample WMAE
df$WS_linear <- predict(mod1, df) * df$store_avg
w <- wmae(actual=df$Weekly Sales, predicted=df$WS linear, holidays=df$IsHoliday)
names(w) <- "Linear"</pre>
wmaes <- c(w)
wmaes
```

Linear ## 3073.57

Visualizing in sample WMAE

Back to the drawing board...

Second model: Including week

```
## # A tibble: 60 x 5
    term
               estimate std.error statistic p.value
##
                                  <dbl>
##
    <chr>
                  <dbl>
                          <dbl>
                                          <dbl>
## 1 (Intercept)
                  1.000
                          0.0452
                                   22.1 3.11e-108
## 2 factor(week)2 -0.0648 0.0372
                                      -1.74 8.19e- 2
                            0.0373
## 3 factor(week)3 -0.169
                                     -4.54 5.75e- 6
## 4 factor(week)4 -0.0716 0.0373
                                     -1.92 5.47e- 2
                            0.0372
## 5 factor(week)5
                    0.0544
                                     1.46 1.44e- 1
## 6 factor(week)6
                    0.161
                            0.0361
                                      4.45 8.79e- 6
                            0.0345
## 7 factor(week)7
                    0.265
                                      7.67 1.72e- 14
## 8 factor(week)8
                    0.109
                            0.0340
                                      3.21 1.32e- 3
                                     2.42 1.55e- 2
## 9 factor(week)9
                    0.0823
                            0.0340
## 10 factor(week)10 0.101
                             0.0341
                                       2.96 3.04e- 3
## # ... with 50 more rows
```

glance(mod2)

```
## # A tibble: 1 x 11
## r.squared adj.r.squared sigma statistic p.value df logLik AIC
## * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> = 1.79e6
## # ... with 3 more variables: BIC <dbl>, deviance <dbl>, df.residual <int>
```

Prep submission and check in sample WMAE

```
# Out of sample result
df_test$Weekly_mult <- predict(mod2, df_test)</pre>
df_test$Weekly_Sales <- df_test$Weekly_mult * df_test$store_avg
# Required to submit a csv of Id and Weekly_Sales
write.csv(df_test[,c("Id","Weekly_Sales")],
      "WMT linear2.csv",
      row.names=FALSE)
# track
df_test$WS_linear2 <- df_test$Weekly_Sales
# Check in sample WMAE
df$WS_linear2 <- predict(mod2, df) * df$store_avg
w <- wmae(actual=df$Weekly Sales, predicted=df$WS linear2, holidays=df$IsHoliday)
names(w) <- "Linear 2"</pre>
wmaes <- c(wmaes, w)
wmaes
```

Linear Linear 2 ## 3073.570 3230.643

Visualizing in sample WMAE

Visualizing in sample WMAE by Store

Visualizing in sample WMAE by Dept

Back to the drawing board...

Third model: Including week x Store x Dept

```
mod3 <- Im(Weekly_mult ~ factor(week):factor(Store):factor(Dept) + factor(IsHoliday) + factor(markdown>
markdown + Temperature +
Fuel_Price + CPI + Unemployment,
data=df)
## Error: cannot allocate vector of size 606.8Gb
```

1 11

Third model: Including week x Store x Dept

Use Ife's felm() – it really is more efficient!

```
## # A tibble: 5 x 5
              estimate std.error statistic p.value
## term
                 <dbl>
                          <dbl>
                                  <dbl> <dbl>
## <chr>
## 1 markdown
                -0.00000139 0.000000581
                                         -2.40 1.65e- 2
                                       3.05 2.28e- 3
## 2 Temperature 0.00135 0.000442
                                 -9.17 4.89e-20
## 3 Fuel Price -0.0637
                        0.00695
## 4 CPI
              0.00150 0.00102
                                   1.46 1.43e- 1
## 5 Unemployment -0.0303
                           0.00393
                                       -7.70 1.32e-14
```

glance(mod3)

```
## # A tibble: 1 x 7
## r.squared adj.r.squared sigma statistic p.value df df.residual
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> = dbl> =
```

PROBLEM

■ We need to be able to predict out of sample to make our submission

felm() models don't support predict

■ So build it:

```
predict.felm <- function(object, newdata, use.fe=T, ...) {</pre>
 # compatible with tibbles
 newdata <- as.data.frame(newdata)</pre>
 co <- coef(object)
 y.pred <- t(as.matrix(unname(co))) %*% t(as.matrix(newdata[,names(co)]))
 fe.vars <- names(object$fe)</pre>
 all.fe <- getfe(object)
 for (fe.var in fe.vars) {
  level <- all.fe[all.fe$fe == fe.var,]
  frows <- match(newdata[[fe.var]],level$idx)</pre>
  myfe <- level$effect[frows]
  myfe[is.na(myfe)] = 0
  y.pred <- y.pred + myfe
 as.vector(y.pred)
```

Prep submission and check in sample WMAE

```
# Out of sample result
df_test$Weekly_mult <- predict(mod3, df_test)</pre>
df_test$Weekly_Sales <- df_test$Weekly_mult * df_test$store_avg
# Required to submit a csv of Id and Weekly_Sales
write.csv(df_test[,c("Id","Weekly_Sales")],
      "WMT FE.csv",
      row.names=FALSE)
# track
df test$WS FE <- df test$Weekly Sales
# Check in sample WMAE
df$WS_FE <- predict(mod3, df) * df$store_avg
w <- wmae(actual=df$Weekly Sales, predicted=df$WS FE, holidays=df$IsHoliday)
names(w) <- "FE"</pre>
wmaes <- c(wmaes, w)
wmaes
```

```
## Linear Linear 2 FE ## 3073.570 3230.643 1552.173
```

Visualizing in sample WMAE

Maybe the data is part of the problem?

- What problems might there be for our testing sample?
 - What is different from testing to training?
- Can we fix them?
 - If so, how?

This was a real problem!

- Walmart provided this data back in 2014 as part of a recruiting exercise
 - Details here
 - Discussion of first place entry
 - Code for first place entry
 - Discussion of second place entry
- This is what the group project will be like
 - 4 to 5 group members tackling a real life data problem
 - You will have training data but testing data will be withheld
 - Submit on Kaggle

Project deliverables

- 1. Kaggle submission
- 2. Your code for your submission, walking through what you did
- 3. A 15 minute presentation on the last day of class describing:
 - Your approach
- 4. A report discussing
 - Main points and findings
 - Exploratory analysis of the data used
 - Your model development, selection, implementation, evaluation, and refinement
 - A conclusion on how well your group did and what you learned in the process

Binary outcomes

What are binary outcomes?

- Thus far we have talked about events with continuous outcomes
 - Revenue: Some positive number
 - Earnings: Some number
 - ROA: Some percentage
- Binary outcomes only have two possible outcomes
 - Did something happen, *yes* or *no*?
 - Is a statement *true* or *false*?

Accounting examples of binary outcomes

- Financial:
 - Will the company's earnings meet analysts' expectations
 - Will the company have positive earnings?
- Managerial:
 - Will we have ____ problem with our supply chain?
 - Will our customer go bankrupt?
- Audit:
 - Is the company committing fraud?
- Tax:
 - Is the company too aggressive in their tax positions

We can assign a probability to any of these

Regression approach: Logistic regression

- When approaching a binary outcome, we use a logistic regression
 - A.k.a. logit model
- The *logit* function is $logit(x) = log(\frac{x}{1-x})$
 - Also called log odds

$$\log\left(rac{ ext{Prob}(y=1|X)}{1- ext{Prob}(y=1|X)}
ight) = lpha + eta_1 x_1 + eta_2 x_2 + \ldots + arepsilon$$

Implementation: Logistic regression

■ The logistic model is related to our previous linear models as such:

Both linear and logit models are under the class of General Linear Models (GLMs)

- To regress a GLM, we use the glm() command.
 - In fact, the lm() command we have been using is actually glm() when you specify the option family=gaussian
- To run a Logit regression:

```
mod \leftarrow glm(y \sim x1 + x2 + x3 + ..., data=df, family=binomial)
summary(mod)
```

Interpreting logit values

- The sign of the coefficients means the same as before
 - +: *increases* the likelihood of y occurring
 - -: decreases the likelihood of y occurring
- The level of the coefficient is different
 - The relationship isn't linear between x_i and y now
 - Instead, coefficient is in log odds
 - Thus, e^{β_i} gives you the *odds*, o
 - To get probability, p, we can calculate $p = \frac{o}{1+o}$
- You can directly interpret the log odds for a coefficient (increased by $\beta\%$)
- You can directly interpret the odds for a coefficient (increased by (o-1)%)
- You need to sum all relevant log odds before converting to probability!

Odds vs probability

We have the following 10 objects: The **probability** of green is: 3/10 The odds of green is: 3 to 7

Example logit regression

Do holidays increase the likelihood that a department more than doubles its store's average weekly sales across departments?

```
# Create the binary variable
df$double <- ifelse(df$Weekly_Sales > df$store_avg*2,1,0)
fit <- glm(double ~ IsHoliday, data=df, family=binomial)
summary(fit)
```

```
##
## Call:
## glm(formula = double ~ IsHoliday, family = binomial, data = df)
##
## Deviance Residuals:
     Min
             1Q Median
                             3Q
                                    Max
## -0.3260 -0.2504 -0.2504 -0.2504 2.6375
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -3.446804 0.009236 -373.19 <2e-16 ***
## IsHolidayTRUE 0.538640 0.027791 19.38 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

Converting logit coefficients

- coef() extracts model coefficients from regression models
- \blacksquare exp() is exponentiation: exp(x) is e^x

```
odds <- exp(coef(fit))
odds

## (Intercept) IsHolidayTRUE
## 0.03184725 1.71367497

probability <- odds / (1 + odds)
probability

## (Intercept) IsHolidayTRUE
## 0.03086431 0.63149603
```

R practice: Logit

- A continuation of last week's practices answering:
 - Is Walmart more likely to see a year over year decrease in quarterly revenue during a recession?
- Practice using mutate() and glm()
- Do exercises 1 and 2 in today's practice file
 - R Practice
 - Shortlink: rmc.link/420r5

Today's Application: Shipping delays

The question

Can we leverage global weather data to predict shipping delays?

A bit about shipping data

- WRDS doesn't have shipping data
- There are, however, vendors for shipping data, such as:

- They pretty much have any data you could need:
 - Over 650,000 ships tracked using ground and satellite based AIS
 - AIS: Automatic Identification System
 - Live mapping
 - Weather data
 - Fleet tracking
 - Port congestion
 - Inmarsat support for ship operators

What can we see from naval data?

What can we see from naval data?

Shipping route via the Panama canal

River shipping on the Mississippi river, USA

What can we see from naval data?

Busiest ports by containers and tons (Shanghai & Ningbo-Zhoushan, China)

Busiest port for transshipment (Singapore)

Examining Singaporean owned ships

Code for last slide's map

- plot_geo() is from plotly
- add_markers() adds points to the map
- layout() adjusts the layout
- Within geo, a list, the following makes the map a globe
 - projection=list(type="orthographic")

Singaporean ship movement

Link to ship movement animation

Code for last slide's map

- world1 contains the map data
- geom_sf() plots map data passed to ggplot()
- geom_point() plots ship locations as longitude and latitude
- ggplotly() converts the graph to html and animates it
 - Animation follows the frame aesthetic

What might matter for shipping?

What observable events or data might provide insight as to whether a naval shipment will be delayed or not?

Typhoon Jebi

Your browser does not currently recognize any of the video formats available.

Click here to visit our frequently asked questions about HTML5 video.

link

Typhoons in the data

- Cargo
- Tanker
- Typhoon Jebi

Code for last slide's map

■ This map is made the same way as the first map

Typhoons in the data using leaflet

Code for last slide's map

```
library(leaflet)
library(leaflet.extras)
# icons
typhoonicons <- pulselcons(color='red',
 heartbeat = ifelse(typhoon_Jebi$intensity_vmax > 150/1.852, 0.8,
  ifelse(typhoon$intensity_vmax < 118, 1.6, 1.2)),</pre>
 iconSize=ifelse(typhoon_Jebi$intensity_vmax > 150/1.852, 12,
  ifelse(typhoon Jebi$intensity vmax < 118, 3, 8)))
shipicons <- iconList(</pre>
 ship = makelcon("../Figures/ship.png", NULL, 18, 18))
# plot
leaflet() %>%
 addTiles() %>%
 setView(Ing = 136, lat = 34, zoom=4) %>%
 addPulseMarkers(data=typhoon_Jebi, lng=~lon, lat=~lat, label=~date,
            icon=typhoonicons) %>%
 addMarkers(data=df_all[df_all$frame == 14,], lng=~lon, lat=~lat,
        label=~shipname, icon=shipicons)
```

- pulselcons(): pulsing icons from leaflet.extras
- iconList(): pulls icons stored on your computer
- leaflet(): start the map; addTiles() pulls from OpenStreetMap
- setView(): sets the frame for the map
- addPulseMarkers(): adds pulsing markers
- addMarkers(): adds normal markers

R Practice on mapping

- Practice mapping typhoon data
 - 1 map using plotly
 - 1 map using leaflet
- Practice using plotly and leaflet
 - No practice using ggplot2 as sf is missing on DataCamp light
- Do exercises 3 and 4 in today's practice file
 - R Practice
 - Shortlink: rmc.link/420r5

Predicting delays due to typhoons

Data

- If the ship will report a delay of at least 3 hours in the next 12-24 hours
- Ship location
- Typhoon location
- Typhoon wind speed

We need to calculate distance between ships and typhoons

Distance for geo

- There are a number of formulas for this
 - Haversine for a simple calculation
 - Vincenty's formulae for a complex, incredibly accurate calculation
 - Accurate within 0.5mm
- Use distVincentyEllipsoid() from geosphere to get a reasonably quick and accurate calculation
 - Calculates distance between two sets of points, x and y, structured as matrices
 - Matrices must have longitude in the first column and latitude in the second column
 - Provides distance in meters by default

```
library(geosphere)
x <- as.matrix(df3[,c("lon","lat")]) # ship location
y <- as.matrix(df3[,c("ty_lon","ty_lat")]) # typhoon location

df3$dist_typhoon <- distVincentyEllipsoid(x, y) / 1000</pre>
```

Clean up

Some indicators to cleanly capture how far away the typhoon is

Do typhoons delay shipments?

```
##
## Call:
## glm(formula = delayed ~ typhoon 500 + typhoon 1000 + typhoon 2000,
    family = binomial, data = df3)
##
##
## Deviance Residuals:
##
     Min
            1Q Median
                          3Q
                                Max
## -0.2502 -0.2261 -0.2261 -0.2261 2.7127
##
## Coefficients:
          Estimate Std. Error z value Pr(>|z|)
##
## typhoon_500  0.14073  0.16311  0.863  0.3883
## typhoon_1000 0.20539 0.12575
                                1.633 0.1024
## typhoon 2000 0.16059 0.07106 2.260 0.0238 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
```

Interpretation of coefficients

```
odds1 <- exp(coef(fit1))
odds1
## (Intercept) typhoon_500 typhoon_1000 typhoon_2000
## 0.02589334 1.15111673 1.22800815 1.17420736
```

Ships 1,000 to 2,000 km from a typhoon have 17% higher odds of having a delay

 Ships 1,000 to 2,000 km from a typhoon have a 3% chance of having a delay (baseline of 2.5%)

What about typhoon intensity?

- Hong Kong's typhoon classification: Official source
 - 1. 41-62 km/h: Tropical depression
 - 2. 63-87 km/h: Tropical storm
 - 3. 88-117 km/h: Severe tropical storm
 - 4. 118-149 km/h: Typhoon
 - 5. 150-184 km/h: Severe typhoon
 - 6. 185+km/h: Super typhoon

```
# Cut makes a categorical variable out of a numerical variable using specified bins df3$Super <- ifelse(df3$intensity_vmax * 1.852 > 185, 1, 0) df3$Moderate <- ifelse(df3$intensity_vmax * 1.852 >= 88 & df3$intensity_vmax * 1.852 < 185, 1, 0) df3$Weak <- ifelse(df3$intensity_vmax * 1.852 >= 41 & df3$intensity_vmax * 1.852 < 88, 1, 0) df3$HK_intensity <- cut(df3$intensity_vmax ,c(41, 63, 88, 118, 150, 1000)/1.852) table(df3$HK_intensity)
```

```
## ## (22.1,34] (34,47.5] (47.5,63.7] (63.7,81] (81,540] ## 13715 13228 9238 2255 21141
```

Typhoon intensity and delays

```
## # A tibble: 10 x 5
                estimate std.error statistic p.value
   term
##
                          <dbl>
                                 <dbl> <dbl>
##
   <chr>
                   <dbl>
                  -3.65
                          0.0290 -126.
## 1 (Intercept)
## 2 typhoon 500:Weak
                      -0.00879 0.213 -0.0413 0.967
## 3 typhoon_500:Moderate 0.715
                               0.251
                                      2.86 0.00430
## 4 typhoon 500:Super -8.91 123.
                                   -0.0726 0.942
## 5 typhoon_1000:Weak
                       0.250
                               0.161
                                      1.55 0.121
## 7 typhoon 1000:Super -0.0269
                              0.414
                                     -0.0648 0.948
## 8 typhoon 2000:Weak
                       0.182
                               0.101
                                     1.80 0.0723
## 9 typhoon 2000:Moderate 0.0253
                                0.134
                                     0.189 0.850
## 10 typhoon 2000:Super
                               0.136
                       0.311
                                     2.29 0.0217
```

Moderate storms predict delays when within 500km

Super typhoons predict delays when 1,000 to 2,000km away

Interpretation of coefficients

```
odds2 <- exp(coef(fit2))
odds2[c(1, 3, 10)]

## (Intercept) typhoon_500:Moderate typhoon_2000:Super

## 0.02589637 2.04505487 1.36507575
```

- Ships within 500km of a moderately strong storm have 104% higher odds of being delayed
- Ships 1,000 to 2,000km from a super typhoon have 36% higher odds

- Ships within 500km of a moderately strong storm have a 5% chance of being delayed (baseline: 2.5%)
- Ships 1,000 to 2,000km from a super typhoon have a 3.4% chance

What might matter for shipping?

What other observable events or data might provide insight as to whether a naval shipment will be delayed or not?

- What is the reason that this event or data would be useful in predicting delays?
 - I.e., how does it fit into your mental model?

For next week

- For next week:
 - Second individual assignment
 - Finish by the end of *next* Thursday
 - Submit on eLearn
 - Think about who you want to work with for the project

Packages used for these slides

- broom
- geosphere
- kableExtra
- knitr
- leaflet
- leaflet.extras
- Iubridate
- magrittr
- maps
- maptools
- plotly
- revealjs
- rgeos
- sf
- tidyverse

Custom code

```
# styling for plotly maps
geo <- list(
showland = TRUE,
showlakes = TRUE,
 showcountries = TRUE,
showocean = TRUE,
 countrywidth = 0.5,
landcolor = toRGB("grey90"),
lakecolor = toRGB("aliceblue"),
oceancolor = toRGB("aliceblue"),
 projection = list(
  type = 'orthographic', # detailed at https://plot.ly/r/reference/#layout-geo-projection
   lon = 100,
   lat = 1,
   roll = 0
 lonaxis = list(
  showgrid = TRUE,
  gridcolor = toRGB("gray40"),
  gridwidth = 0.5
 lataxis = list(
  showgrid = TRUE,
  gridcolor = toRGB("gray40"),
  gridwidth = 0.5
```