| _.-"'-- i .-"F- I .-"r-. x\\""-- I b -"l-l HH"' " o

ACCT 420: Textual anaysi

Session 8

Dr. Richard M. Crowley

Learning objectives

= Theory:

* Natural Language

Processing
= Application:
Forecasiing | = Analyzing a Citigroup annual
report
= Methodology:

= Text analysis
= Machine learning

Foundations J i

Binary
classification

Advanced
methods . IG) I./;J

Datacamp

= Sentiment analysis in R the Tidy way
= Just the first chapter is required
= You are welcome to do more, of course
= | will generally follow the same “tidy text” principles as the Datacamp
course does - the structure keeps things easy to manage
= We will sometimes deviate to make use of certain libraries, which,
while less tidy, make our work easy than the corresponding tidy-
oriented packages (if they even exist!)

——y

https://www.datacamp.com/courses/sentiment-analysis-in-r-the-tidy-way

Notes on the homework

= Afew clarifications based on your emails:
1. Exercise 1: The distribution of class action lawsuits by year only

need to show the year and the number of lawsuits that year

. Exercise 2: The percent of firm-year observations with lawsuits b
industry should have 4 calculations:
= Ex.: (# of retail lawsuits) / (# of retail firm years)

. Exercise 3: The coefficient to explain is the coefficent of 1egal on
fps - the only coefficient in the model

Review of Session 7 !

= Last session we saw that textual measures can help improve our fraud
detection algorithm
 We looked at a bunch of textual measures:
= Sentiment
= Readability
= Topic/content
 We didn’t see how to make these though...
* |nstead, we had a nice premade dataset with everything already
done

readability

We will cover making topic models in a later session

N | R —— g

| We’ll get started on these today - sentiment and

Why is textual analysis harder?

Thus far, everything we’ve worked with is what is known as structured
data

= Structured data is numeric, nicely indexed, and easy to use
Text data is unstructured
= |f we get an annual report with 200 pages of text...
= Where is the information we want?
= What do we want?
* How do we crunch 200 pages into something that is...
1. Manageable?
2. Meaningful?

This is what we will work on today, and we will revist some
of this in the remaining class sessions

Z
!

Structured data

= Qurlong orwide format data

Wide format Long format

A tibble: 3 x 3 # A tibble: 3 x 4
quarter level 3 RegionID 1996-04" "199%96-05" "19
<chr> <chr> <int> <int> <int>
1995-01 Wholesale Trade 84654 334200 335400
1995-Q1 Retail Trade 90668 235700 236900
1995-Q1 Accommodation 91982 210400 212200

The structure is given by the IDs, dates, and variables

Unstructured data

= Text
= Open responses to question, reports, etc.
= Whatitisn’t:
= "JANUARY", "ONE", "FEMALE"
= Months, numbers, genders
= Anything with clear and concise categories

= |mages

= Satellite imagery
= Audio

= Phone call recordings
= Video

= Security camera footage

All of these require us to determine and impose structure

Some ideas of what we can do

1. Text extraction

= Find all references to the CEO

* Find if the company talked about global warming

= Pull all telephone numbers or emails from a document
2. Text characteristics

= How varied is the vocabulary?

» |s it positive or negative (sentiment)

= [s it written in a strong manner?
3. Text summarization or meaning
nat is the content of the document?
nat is the most important content of the document?
nat other documents discuss similar issues?

Where might we encounter text data in
business

1. Business contracts
2. Legal documents
3. Any paperwork
4. News
5. Customer reviews or feedback
* Including transcription (call centers)
6. Consumer social media posts
7. Chatbots and Al assistants

Natural Language Processing (NLP)

= NLPis the subfield of computer science focused on analyzing large
amounts of unstructured textual information
= Much of the work builds from computer science, linguistics, and
statistics
= Unstructured text actually has some structure - language
= Word selection
= Grammar
* Word relations
= NLP utilizes this implicit structure to better understand textual data

S

NLP in everyday life

Autocomplete of the next word in phone keyboards

* Demo below from Google’s blog

Voice assistants like Google Assistant, Siri, Cortana, and Alexa
Article suggestions on websites

Search engine queries

Email features like missing attachment detection

+

{5 The | Hi 4

q': w.' E.i II--I t!: F.': u.' ic D-.I p:l
asdfgh j k|

4 zZz x ¢c vbnm @

7723, @ BN+ ES _ e

https://www.blog.google/products/search/gboard-now-on-android/

Case: How leveraging NLP helps call centers

» How Analytics, Big Data and Al Are Changing Call Centers Forever
= Short link: rmc.link/420class8

| What are call centers using NLP for?

| How does NLP help call centers with their business?

https://www.forbes.com/sites/bernardmarr/2016/09/06/how-analytics-big-data-and-ai-are-changing-call-centers-forever/#19cd55973a32
https://rmc.link/420class8

Consider

Where an we make use of NLP in business?

= \We can use it for call centers
= We can make products out of it (like Google and other tech firms)
= Where else?

=
£5a
e

Before we begin: Special characters

» Some characters in R have special meanings for string functions
"N ()Y [{r>s *+72 . !
» Totype aspecial character, we need to precede it with a \
= Since \ is a special character, we’ll need to put \ before \...
= Totype $,we would use \\'$
= Also, some spacing characters have special symbols:
= \tistab
= \ris newline (files from Macs)
= \r\n is newline (files from Windows)
= \nis newline (files from Unix, Linux, etc.)

Loading in text data from files

Useread file() from tidyverse’s readr package toread in

text data
We’ll use Citigroup’s annual report from 2014
= Note that there is a full text link at the bottom which is a .txt file
= | will instead use a cleaner version derived from the linked file
= The cleanerversion can be made using the same techniques we
will discuss today

Read text from a .txt file using read file()

doc <- read file("../../Data/0001104659-14-015152.txt")
str wrap is from stringr from tidyverse

cat (str_wrap (substring (doc,1,500), 80))

UNITED STATES SECURITIES AND EXCHANGE COMMISSION WASHINGTON, D.C. 20549 FORM
10-K ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE
ACT OF 1934 For the fiscal year ended December 31, 2013 Commission file number
1-9924 Citigroup Inc. (Exact name of registrant as specified in its charter)
Securities registered pursuant to Section 12 (b) of the Act: See Exhibit 99.01
Securities registered pursuant to Section 12(g) of the Act: none Indicate by
check mark if the registrant is a

https://www.rdocumentation.org/packages/readr/versions/1.1.1/topics/read_file
https://www.tidyverse.org/
https://readr.tidyverse.org/
https://www.sec.gov/Archives/edgar/data/831001/000110465914015152/0001104659-14-015152-index.htm

Loading from other file types !

= |deally you have a .txt file already - such files are generally just the text
of the documents
= Other common file types:
= HTML files (particularly common from web data)
= You can load it as a text file - just note that there are html tags
embedded in it
= Things like <a>, <table>, , etc.
= You can load from a URL using RCurl
* InR,you canuse XML or rvest to parse out specific pieces of
ntml files
= |f you use python, use [xml or BeautifulSoup 4 (bs4) to quickly
turn these into structured documents

https://cran.r-project.org/web/packages/RCurl/index.html
https://cran.r-project.org/web/packages/XML/index.html
https://github.com/hadley/rvest

Loading from other file types !

= |deally you have a .txt file already - such files are generally just the text
of the documents
= Other common file types:
= PDF files
» Usepdftools and you can extract text into a vector of pages of
text
» Use tabulizer and you can extract tables straight from PDF
files!
= This is very painful to code by hand without this package
» The package itself is a bit difficult to install, requiring Java and
rJava, though

https://cran.r-project.org/web/packages/pdftools/index.html
https://github.com/ropensci/tabulizer
http://rforge.net/rJava/

Example using html

library (RCurl)
library (XML)

html <- getURL ('https://coinmarketcap.com/currencies/ethereum/")
cat (str_wrap (substring (html, 46320, 46427), 80))

n class="h2 text-semi-bold details-panel-item--price value" data-currency-
value>208.90 <span class="

xpath <- '//*[@id="quote price"]/span[l]/text ()"
hdoc = htmlParse (html, asText=TRUE) # from XML
price <- xpathSApply (hdoc, xpath, xmlValue)
print (pastel ("Ethereum was priced at $", price,

" when these slides were compiled"))

[1] "Ethereum was priced at $208.90 when these slides were compiled"

Automating crypto pricing in a document

The actual version I use (with caching to avoid repeated lookups) 1is 1in the appe
cryptoMC <- function (name) {
html <- getURL (paste('https://coinmarketcap.com/currencies/"',name,"'/"',sep=""))
xpath <- '//*[Q@id="quote price"]/span[l]/text ()"
hdoc = htmlParse (html, asText=TRUE)
plain.text <- xpathSApply (hdoc, xpath, xmlValue)
plain.text
}

£

paste ("Ethereum was priced at", cryptoMC ("ethereum"))

[1] "Ethereum was priced at 208.90"

paste ("Litecoin was priced at", cryptoMC("litecoin"))

[1] "Litecoin was priced at 54.71"

\

Basic text functionsin R

= Subsetting text

= Transformation __
= Changing case ¥\
= Adding or combining text |
= Replacing text
= Breaking text apart

* Finding text

We will cover these using st ringr as opposed to base R -
stringr’s commands are much more consistent

= Every functionin stringr can take a vector of strings for the first
argument

https://stringr.tidyverse.org/
https://stringr.tidyverse.org/
https://stringr.tidyverse.org/

Subsetting text

= Base R:Use substr () orsubstring ()

" stringr:usestr sub ()
= First argument is a vector of strings
= Second argument is the starting position (inclusive)
= Third argument is that ending position (inclusive)

cat (str_wrap (str_sub(doc, 9896, 9929), 80))
Citis net income was $13.5 billion
cat (str wrap (str sub (doc, 28900,29052), 80))

Net income decreased 14%, mainly driven by lower revenues and lower loan loss
reserve releases, partially offset by lower net credit losses and expenses.

https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/substr
https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/substr
https://stringr.tidyverse.org/
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_sub

Transforming text

= Commonly used functions:
* tolower () orstr to lower ():make the textlowercase
* toupper () orstr to lower (): MAKE THE TEXT UPPERCASE
= str to title ():Makethe Text Titlecase
= paste () tocombine text
» |t puts spaces between by default
= You can change this with the sep= option
= |If everything to combine s in 1 vector, use collapse= with the
desired separator
* pastel () is paste with sep=""

https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/chartr
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/case
https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/chartr
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/case
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/case
https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/paste
https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/paste

Examples: Case

sentence <- str sub (doc, 9896, 9929)
str to_lower (sentence)

[1] "citis net income was $13.5 billion"
str to upper (sentence)
[1] "CITIS NET INCOME WAS $13.5 BILLION"
str to_title(sentence)

[1] "Citis Net Income Was $13.5 Billion"

The str prefixed functions support non-English languages as well

You can run this in an R terminal! (It doesn't work in Rmarkdown though)
str to upper ("Citis net income was $13.5 billion", locale='tr') # Turkish

O ==t

Examples: paste

board is a 1list of director names
titles 1is a 1list of the director's titles
paste (board, titles, sep=", ")

[1] "Michael L. Corbat, CEO"

[2] "Michael E. 0O’'Neill, Chairman"

[3] "Anthony M. Santomero, Former president, Fed (Philidelphia)"
[4] "William S. Thompson, Jr., CEO, Retired, PIMCO"

[5] "Duncan P. Hennes, Co-Founder/Partner, Atrevida Partners"

[6] "Gary M. Reiner, Operating Partner, General Atlantic"

[7] "Joan E. Spero, Senior Research Scholar, Columbia University"
[8] "James S. Turley, Former Chairman & CEO, E&Y"

[9] "Franz B. Humer, Chairman, Roche"

[10] "Judith Rodin, President, Rockefeller Foundation"

[11] "Robert L. Ryan, CFO, Retired, Medtronic"

[12] "Diana L. Taylor, MD, Wolfensohn Fund Management"

[13] "Ernesto Zedillo Ponce de Leon, Professor, Yale University"
[14] "Robert L. Joss, Professor/Dean Emeritus, Stanford GSB"

cat (str wrap (pasteO ("Citi's board consists of: ",
paste (board[1l:1length (board)-1], collapse=", "),
", and ", board[length (board)], "."), 80))

Citi's board consists of: Michael L. Corbat, Michael E. 0’'Neill, Anthony M.

Santomero, William S. Thompson, Jr., Duncan P. Hennes, Gary M. Reiner, Joan E.
Spero, James S. Turley, Franz B. Humer, Judith Rodin, Robert L. Ryan, Diana L.
Taylor, Ernesto Zedillo Ponce de Leon, and Robert L. Joss.

Transforming text

= Replace textwithstr replace all ()
= First argument is text data
= Second argument is what you want to remove
* Third argument is the replacement
= Ifyou only want to replace the first occurrence,use str replace ()
instead

sentence
[1l] "Citis net income was $13.5 billion"
str replace all (sentence, "\\$13.5", "over $10")

[1] "Citis net income was over $10 billion"

—

https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_replace
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_replace

Transforming text

= Splittextusing str split ()
= This function returns a list of vectors!
= This is because it will turn every string passed to it into a vector,
and R can’t have a vector of vectors
= [[1]1] canextract the first vector
= You can also limit the number of splits using n=
= Abitmore elegant solutionisusing str split fixed () withn=
= Returns a character matrix (nicer than a list)

https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_split
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_split

Example: Splitting text

paragraphs <- str split(doc, '\n') [[1]]

number of paragraphs
length (paragraphs)

ik

[1] 206

Last paragraph
cat (str_wrap (paragraphs[206], 80))

ik
ik
i
ik
ik
i
ik
ik
i
ik

The total amount of securities authorized pursuant to any instrument defining
rights of holders of long-term debt of the Company does not exceed 10% of the
total assets of the Company and 1ts consolidated subsidiaries. The Company
will furnish copies of any such instrument to the SEC upon request. Copies of
any of the exhibits referred to above will be furnished at a cost of $0.25 per
page (although no charge will be made for the 2013 Annual Report on Form 10-
K) to security holders who make written request to Citigroup Inc., Corporate
Governance, 153 East 53 rd Street, 19 th Floor, New York, New York 10022. *
Denotes a management contract or compensatory plan or arrangement. + Filed
herewith.

ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik

L |
L |
|_\
—_
—_

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

» 0 I Oy U1 i W N EFE O WOoWJo) Ul x»whh k-

[e B e S e B e B mn B e BN s B m B S |

start

8508

9902
16549
17562
28900
32197
35077
37252
40187
43257
45345
47618
51865
51953
52663
52748
54970
58817

Finding phrases in text

= How did | find the previous examples?

str locate_all (tolower (doc),

end
8517
9911
16558
17571
28909
32206
35086
37261
40196
43266
45354
476277
51874
51962
526772
52757
54979
58826

"net income")

Finding phrases in text

= 4 primary functions:

1. str detect ():Reports TRUE or FALSE for the presence of a
string in the text

str count ():Reports the number of times a string is in the text
3. str locate ():Reports the first location of a string in the text

* str locate all ():Reportseverylocation as a list of
matrices

4. str extract ():Reports the matched phrases

= All take a character vector as the first argument, and something to
match for the second argument

https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_detect
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_count
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_locate
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_locate
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_extract

Example: Finding phrases

* How many paragraphs mention net income in any case?
x <- str detect(str_ to lower (paragraphs), "net income")
x[1:10]

[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE

sum (x)

= What s the most net income is mentioned in any paragraph

x <- str count (str to lower (paragraphs), "net income")
x[1:10]

[1] 0 0 0 0O 0 4002 2

Example: Finding phrases

= Where is netincome first mentioned in the document?

str locate(str_to lower(doc), "net income")

4+ start end
[1,] 8508 8517

= First mention of net income
= This function may look useless now, but it’ll be on of the most useful
later

str extract(str_ to lower (doc), "net income")

[1] "net income"

R Practice

= Textdatais already loaded, as if it was loaded using read file ()
= Try:
= Subsetting the text data
» Transforming the text data
= Toalluppercase
» Replacing a phrase
* Finding specific text in the document
» Do exercises 1 through 3 in today’s practice file
= RPractice
= Shortlink: rmc.link/420r8

https://www.rdocumentation.org/packages/readr/versions/1.1.1/topics/read_file
http://rmc.link/Slides/acct420/Session_6/Session_8_R.html
http://rmc.link/Slides/acct420/Session_8/Session_8_R.html

Finding patterns in the text (regex)

* Regular expressions, aka regex or regexp, are ways of finding patterns
In text
* This means that instead of looking for a specific phrase, we can match
a set of phrases
* Most of the functions we discussed accept regexes for matching
" str replace(),str split(),str detect(),
str count(),str locate(),andstr extract(),plus
their variants
* Thisiswhy str extract () isso great!
= We can extract anything from a document with it!

https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_replace
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_split
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_detect
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_count
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_locate
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_extract
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_extract

Regex example

* Breaking down an email
1. Alocal name
2. An @ sign
3. Adomain, whichwill havea . init
= Local names can have many different characters in them
= Matchitwith [:graph:]+
» The domain is pretty restrictive, generally just alphanumeric and .
» There can be multiple . though
= Matchitwith [:alnum:]7+\\.[.[:alnum:]]+

Extract all emails from the annual report

str extract all(doc, '[:graph:]+@[:alnum:]+\\.[.[:alnum:]]+")

[[1]]

[1] "shareholder@computershare.com" "shareholder@computershare.com"
[3] "docserve@citi.com" "shareholderrelations@citi.com"

Breaking down the example

@ was itself - it isn’t a special character in strings in R

\\ . is just a period - we need to escape . because it is special in R

Anything in brackets with colons, [: :],is aset of characters

= [:graph:] means any letter, number, or punctuation

= [:alnum:] means any letter or number

+ is used to indicate that we want 1 or more of the preceding element

— as many as it can match

* [:graph:]+ meant “Give us every letter, number, and
punctuation you can, but make sure there is at least 1.”

Brackets with no colons, [], ask for anything inside

= [.[:alnum:]]+ meant “Give us every letter,number, and . you
can, but make sure there is at least 1.”

Breaking down the example !

= Let’s examine the output shareholder@computershare.com
= OQurregexwas [:graph:]+@[:alnum:]J+\\.[.[:alnum:]]+
= Matching regex components to output:

= [:graph:]+ = shareholder

= 0 =@

= [:alnum:]+ = computershare

= \\. =.

= [.[:alnum:]]+ = com

Useful regex components: Content

There’s a nice cheat sheet here

More detailed documentation here
Matching collections of characters

. matches everything

:alpha: |
[: lower:
| tupper:
[:digit:
:alnum:
 spunct:
:graph:

: space: |

] matc
] matc
] matc
] matc
] matc
] matc
] matc
] or \'s matc

nes all
nes all
nes all
nes all
nes all
nes all

NeS all

letters

lowercase letters

UPPERCASE letters

numbers 0 through 9

letters and numbers

punctuation

etters, numbers, and punctuation

n ANY whitespace

= \Sisthe exact opposite
[:blank:] matches whitespace except newlines

https://github.com/rstudio/cheatsheets/raw/master/strings.pdf
https://cran.r-project.org/web/packages/stringr/vignettes/regular-expressions.html

Example: Regex content

text <- e¢("abcde", 'ABCDE', '12345', '"!?2!?2_ ', 'ABC123?', "With space", "New\nline"

html df (data.frame (
text=text,
alpha=str detect (text, '[:alpha:
lower=str_ detect (text,'[:lower:
upper=str detect (text, '[:upper:
digit=str detect(text, '[:digit:
alnum=str detect (text, '[:alnum:

alpha digit alnum

Example: Regex content

text <- e¢("abcde", 'ABCDE', '12345', '"!?2!?2_ ', 'ABC123?', "With space", "New\nline"
html df (data.frame (
text=text,
punct=str detect (text, ' [:punct:
graph=str detect(text, '[:graph:
space=str_detect (text, ' [:space:
blank=str detect (text,'[:blank:
period=str detect(text,'.')

Useful regex components: Form

[] can be used to create a class of characters to look for

= [abc] matches anything thatis a, b, c

[~] can be used to create a class of everything else

* [~abc] matches anything thatisn’t a, b, or c

Quantity, where x is some element

= x? looks for0 or1 of x

= x* |ooks for 0 or more of x

= x+ looks for 1 or more of x

= x{n} looks forn (a number) of x

= x{n, } looksforatleastn of x

= x{n,m} looks for at least n and at most m of x

Lazy operators

= Append ? to any quantity operator to make it prefer the shortest l
match possible

Useful regex components: Form

= Position
=~ indicates the start of the string
= S indicates the end of the string
= Grouping
= () canbeused to group components
= | can be used within groups as a logical or
= Groups can be referenced later using the position of the group
within the regex
= \\1 refers to the first group
= \\2 refers to the second group

Example: Regex form (292 Real estate firms)

Real estate firm names with 3 vowels 1in a row
str_subset (RE names, '[AEIOU]{3}")

[1] "STADLAUER MALZFABRIK" "JOAO FORTES ENGENHARIA SA"

Real estate firm names with no vowels
str subset (RE names, '~["AEIOU]+S'")

[1] "FGP LTD" "MBK PCL" "MYP LTD" "MCT BHD" "R T C L LTD"

Real estate firm names with at least 12 vowels

str subset (RE names, ' (["AEIOU]*[AEIOU]){11,}")

[1] "INTERNATIONAL ENTERTAINMENT" "PREMIERE HORIZON ALLIANCE"

[3] "JOAO FORTES ENGENHARIA SA" "OVERSEAS CHINESE TOWN (ASIA)"
[5] "COOPERATIVE CONSTRUCTION CO" "FRANCE TOURISME IMMOBILIER"
[7] "BONEI HATICHON CIVIL ENGINE"

Real estate firm names with a repeated 4 letter pattern

str subset (RE names, "([:upper:]{4}).*\\1")
[1] "INTERNATIONAL ENTERTAINMENT" "CHONG HONG CONSTRUCTION CO"
[3] "ZHONGHONG HOLDING CO LTD" "DEUTSCHE GEOTHERMISCHE IMMOR"

}‘”

Why is regex so important?

» Regex can be used to match anything in text
= Simple things like phone numbers
= More complex things like addresses
* |t can be used to parse through large markup documents
= HTML, XML, LaTeX, etc.
= Very good for validating the format of text
= For birthday in the format YYYYMMDD, you could validate with:
= YYYY: [12][90] [:digit:] [:digit:]
= MM: [0O1] [:digit:]
= DD: [0123] [:digit:]

Cavaet: Regexes are generally slow. If you can code
‘ something to avoid them, that is often better. But often
that may be infeasible.

Some extras !

= Whilethe str * () functions use regex by default, they actually have
four modes
1. You can specify a regex normally
= Oryou canuse regex () to construct more customized ones,
such as regexes that operate by line in a string
2. You can specify an exact string to match using fixed () - fast but
fragile
3. You can specify an exact string to match using col11 () - slow but
robust; recognizes characters that are equivalent
4. You can ask for boundaries with boundary () such as words,
using boundary ("word")

https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/modifiers
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/modifiers
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/modifiers
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/modifiers

S

= Anything covered so far can be used for text in data
= Ex.: Firm names or addresses in Compustat

Expanding usage

Compustat firm names example

df RE names <- df RE %>%
group by (isin)
slice (1)
mutate (SG in name

name length

3>%

>%

str_detect(conm, " (SG|SINGAPORE)"),
str length (conm),

SG firm = ifelse(fic=="SGP",1,0)) %>%

ungroup ()

Warning: package

df RE names 3%>%

i
ik
ik
i
ik

>%

>%

group by (SG firm)
mutate (pct SG = me
slice (1)
ungroup ()
select (SG firm, pct SG)

A tibble: 2 x 2
SG firm pct SG
<dbl> <dbl>
1 0 0.369
2 1 4.76

'bindrcpp'

an (SG in name) * 100) %>%

was buillt under R version 3.5.1

Expanding usage

library (DT)
df RE names %>%
group by (fic) %>%

mutate (avg name length = mean (name length)) %>%

slice (1) %>%
ungroup () %>%
select (fic, avg name length) 3%>%

arrange (desc (avg name length), fic
datatable (options = list (pagelengt

Show 5 -~ entries Search

N fic avg_name_length
1 TUR 27
2 VNM 25.5
3 EGY 25
4 CHN 24.5714285714286
5 ISR 24.3333333333333

N Showing 1to 5 of 41 entries

’ Previous 1 2 4 9 Next

R Practice 2

This practice explores the previously used practice data using regular
expressions for various purposes

Do exercises 4 and 5 in today’s practice file
= R Practice

= Shortlink: rmc.link/420r8

5.16

http://rmc.link/Slides/acct420/Session_6/Session_8_R.html
http://rmc.link/Slides/acct420/Session_8/Session_8_R.html

A e v X

| 7 i
| _ 5 e : I
- " y AT,
1 ' "-. ey .l e l."h" b "'l I ...:'I:
- " S -l e fr i
Wik N g ~ o P '.- L
..'\. .- \
Sk 3 \
-. 4 . i
Wb P
i i
.\.'\.
-
,
:
s [/
d -'
.\..'_.l' -1.- - k
iy R T
: » - s ¥
. - | .\.'\.. II Il:. .I
b o L
u | d i 10
- %
b %
- 4 , J{-‘\:"
. ! :‘~Z-
i i B
. H "E-H} B L
= .-__ i h??g
" { - 1.I =
e, Hil s el
% il P 0 el
i — |. == Y
. e i

Readability !

* Thanks to the quanteda package, readability is very easy to calculate
In R
* Usethe textstat readability () function
= There are many readability measures, however
= Flesch Kinkaid: A measure of readability developed for the U.S. Navy
to ensure manuals were written at a level any 15 year old should be
able to understand
= Fog: An index that was commonly used in business and publishing
= Coleman-Liau: An index with a unique calculation method

https://quanteda.io/
https://www.rdocumentation.org/packages/quanteda/versions/1.3.4/topics/textstat_readability

Readability: Flesch Kincaid
words) 846 (# syllables)

+# sentences +# words

206.835 — 1.015 (

= Ascore generally below 100
» Higher is more readable
= Conversational English should be around 80-90
= AJCorpoly graduate should be able to read anything 50 or higher
» ABachelor’s degree could be necessary for anything below 30

library (quanteda)
Warning: package 'quanteda' was built under R version 3.5.1
textstat readability (doc, "Flesch.Kincaid")

#4# document Flesch.Kincaid
1 textl 17.56528

Readability: Fog

[Mean(Words per sentence)+
(% of words > 3 syllables)] x 0.4

* An approximate grade level required for reading a document
= AJCorpoly graduate should read at a level of 12
= New York Times articles are usually around 13
= ABachelor’s degree holder should read at 17

textstat readability (doc, "FOG")

4+ document FOG
1 textl 21.63388

e Wy e

Readability: Coleman-Liau

+# letters +# sentences
588 —+— | — 296 (| ———— | — 15.8
+# words +# words

* Provides an approximate grade level like Fog, on the same scale as Fog

textstat readability (doc, "Coleman.Liau")

#+# document Coleman.lLiau
1 textl 29.039067

Converting text to words ‘

= Tidy text is when you have when token per document per row, in a data
frame
= Token is the unit of text you are interested in
= Words: “New”
= Phrases: “New York Times”
= Sentences: “The New York Times is a publication.”
= etc.
* The tidytext package can handle this conversion for us!
* Usetheunnest tokens () function
= Note: it also converts to lowercase. Use the option
to lower=FALSE to avoid this if needed

Example of "tokenizing"
library (tidytext)

‘ df doc <- data.frame (ID=c("0001104659-14-015152"), text=e(doc),
stringsAsFactors = F) %>%

unnest tokens (word, text)
word 1s the name for the new column

text 1s the name of the string column in the input data

https://github.com/juliasilge/tidytext
https://www.rdocumentation.org/packages/tidytext/versions/0.1.9/topics/unnest_tokens

The details H

tidytext usesthe tokenizers packageinthe backend to do the
conversion

= You can call that package directly instead if you want to

Available tokenizers include: (specify with token=)

= “word”: The default, individual words

* “ngram”: Collections of words (default of 2, specify with n=)

= Afew other less commonly used tokenizers

https://github.com/juliasilge/tidytext
https://cran.r-project.org/web/packages/tokenizers/index.html

Word case

= Why convert to lowercase?
 How much of a difference is there between “The” and “the”?
= “Singapore” and “singapore” - still not much difference
= Only words like “new” versus “New” matter
= “New York” versus “new yorkshire terrier”
= Benefit: We get rid of a bunch of distinct words!
» Helps with the curse of dimensionality

6.

The Curse of dimensionality

There are a lot of words

ALOT OF WORDS

At least 171,476 according to Oxford Dictionary

What happens if we make a matrix of words per document?

3 £y
o =

\L
R

B e - -
! Sl
-.:. """\1\:\-_ e] L
.'|. -
-
s
R

- B :)
" _'\._

o
— =
O o,
N -'.-'\.

[|

W
£

6.

https://en.oxforddictionaries.com/explore/how-many-words-are-there-in-the-english-language/

S

Stopwords

= the,a,an, and,...

get a list of stopwords

library (stopwords)

stop _en <- stopwords ("english'") # Snowball English

pastel (length (stop en), " words: ", paste(stop en[l:5], collapse=", "))

[1] "175 words: i, me, my, myself, we"

stop SMART <- stopwords (source="smart") # SMART English

pastel (length (stop SMART), " words: ", paste(stop SMART[1:5], collapse=",

[1] "571 words: a, a's, able, about, above"

stop fr <- stopwords ("french") # Snowball French
pastel (length (stop fr), " words: ", paste(stop fr[l:5], collapse=", "))

[1] "164 words: au, aux, avec, ce, ces"

Stopwords - words we remove because they have little content ‘
Also helps with our curse a bit - removes the words entirely

= We’ll use the tm package to remove stopwords
= Uses a mix of SMART and Snowball stemmer under the hood

"))

Applying stopwords to a corpus

* When we have a tidy set of text, we can just use dplyr for this!
* dplyr’santi join () functionis like a merge, but where all
matches are deleted

df doc stop <- df doc %>%
anti join (data.frame (word=stop SMART, stringsAsFactors = F))

Joining, by = "word"
nrow (df doc)

[1] 128728

nrow (df doc stop)

[1] 74985

https://dplyr.tidyverse.org/index.html
https://dplyr.tidyverse.org/index.html
https://www.rdocumentation.org/packages/dplyr/versions/0.7.6/topics/join

Converting to term frequency

terms <- df doc stop %>%
count (ID, word, sort=TRUE) %>%
ungroup ()
total terms <- terms %>%
group by (ID) %>%
summarize (total = sum(n))
tf <- left join(terms, total terms) %>% mutate (tf=n/total)

Joining, by = "ID"

A tibble: 5,543 x 5

i ID word n total tf
#4# <chr> <chr> <int> <int> <dbl>
1 0001104659-14-015152 citi 826 74985 0.0110
2 0001104659-14-015152 2013 743 74985 0.00991
3 0001104659-14-015152 credit 704 74985 0.00939
4 0001104659-14-015152 citis 660 74985 0.00880
5 0001104659-14-015152 risk 624 74985 0.00832
o6 0001104659-14-015152 december 523 74985 0.00697
7 0001104659-14-015152 financial 513 74985 0.00684
8 0001104659-14-015152 31 505 74985 0.00673
9 0001104659-14-015152 loans 495 74985 0.00660
10 0001104659-14-015152 assets 488 74985 0.00651
4 with 5,533 more rows

S

= Sentiment works similarly to stopwords, except we are identifying

Sentiment

words with specific, useful meanings
= We can grab off-the-shelf sentiment measures using
get sentiments () fromtidytext

get sentiments ("afinn") %

group by (score)
slice(l) %>%
ungroup ()

A tibble:

ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
9
10
11

O J o U b Wi

word
<chr>
bastard
ass

abhor
abandon
absentee
some kind
aboard
abilities
admire
amazing
breathtaking

11 x 2
score
<int>

get sentiments ("bing")

ik
ik
ik
ik
ik

group by (sentiment) =
slice (1)
ungroup ()

>%

A tibble: 2 x 2

word
<chr>

sentiment
<chr>

1 2-faced negative

2 a+

positive

https://www.rdocumentation.org/packages/tidytext/versions/0.1.9/topics/get_sentiments
https://github.com/juliasilge/tidytext

Sentiment

o°

get sentiments ("nrc") %>
group by (sentiment) %>

roup_b Loughran & McDonald dictionary
slice >%

ungroup () - finance specific, targeted at
annual reports

o°
o°

A tibble: 10 x 2

word sentiment
ki <chr> <chr> get sentiments ("loughran") $%$>%
1 abandoned anger group by (sentiment) %>%
2 abundance anticipation slice (1) %>%
3 aberration disgust ungroup ()
4 abandon fear
5 absolution joy
6 abandon negative ## # A tibble: 6 x 2
7 abba positive ## word sentiment
8 abandon sadness ## <chr> <chr>
9 abandonment surprise ## 1 abide constraining
10 abacus trust ## 2 abovementioned litigious
3 abandon negative
4 able positive
5 aegis superfluous
0 abeyance uncertainty

O ==t

Merging in sentiment data

tf sent <- tf %>% left join(get sentiments ("loughran"))

Joining, by = "word"

tf sent[1:5,]

A tibble: 5 x 6

ik

i

1
2
3
4
5

ID

<chr>
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152

word
<chr>
citi
2013

credit

citis
risk

n
<int>
826
743
704
660
624

total
<int>
74985
74985
74985
74985
74985

tf_sent[!is.na(tf_sent$sentiment),][1:5,]

A tibble: 5 x 6

ik

ik

1
2
3
4
5

ID

<chr>
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152

word
<chr>
risk
loss

losses
approximately

regulatory

<int>

624
2677
265
232
216

O O O O O

tf
<dbl>
.0110
.00991
.00939
.00880
.00832

total
<int>

74985
74985
74985
74985
74985

O O O o O

sentiment
<chr>

<NA>

<NA>

<NA>

<NA>
uncertainty

tf
<dbl>
.00832
.0035606
.00353
.00309
.00288

sentiment
<chr>
uncertainty
negative
negative
uncertainty
litigious

Summarizing document sentiment

tf sent %>%
spread (sentiment, tf, fil11=0) %>%

select (constraining, litigious, negative, positive, superfluous, uncertainty)

colSums ()

constraining litigious negative positive superfluous

0.013242649 0.020750817 0.034780289 0.007054744 0.000373408

uncertainty
0.025325065

Iment

t

izing sen

ViSuad

negative

litigicus

constraining

600 -

400 -
200 -
0=

_ SS0
Sas80|
SUHED
jjnelap
JuauLiedun
553015
flannebau
sjueplalap

uonebyy

foejnbal
SLEE|D
pnos
jebiay

SeJUCd

juawapes

suoapsun|
BN 2BqUoD

sjuepUalap

palinbag

Sjualladinbal
jualedun
suoljefigo

JUSLUJILLALIGD

annbad

padredu

pagiwed

S

uncertainty

superfluous

positive

1 i | i
= = = =
= = o
£L¥ = L |

Hs|
_fajewxoidde
NS

alnsodxa

saInsodxa

Sanslaq
suondunsse
ajgeLe

ajqibusiu

aanend

SEa|auiaucu

paleIInIg

sanubosalap

uonEINig

=T R ETTE
jauan
suief
jusLuanoldun
ueh

_a|gejs
izeab

Aauatuye

_analyde

word

Visualizing a document as a word cloud

* quanteda also provides an easy way to make a word cloud
" textplot wordcloud()
* There are also the wordcloud and wordcloud2 packages for this

corp <- corpus (df doc stop, docid field="ID",
RColorBrewer:

textplot wordcloud (dfm(corp),

podic e BECLITY

Eshrnanss
agenciesOpETRBONEl phihgabions

'Ialz PEINTIIETES
2010

L [=TT
o amefica
£ pames Swands

nnnn.munn.;“;,a Fll"_’r'll.‘]"i _ J-|r~a|

= spesific

migh

H:II“:\' 3¥a claims

a I:I_I:I il gl fess o

ality

-;Elﬂcﬂu-n ting
barkes addltn:_un

raipd 2 @
irputs £ O S pos
rabo prlmar”'_.' o

”ﬂg“’quaﬁﬂfuwnjaf

~ periods M HIE
antites I[1VE «l
EXpNSa

testing uvnrag

hedpged

ECledn E"':L'Fl:"“;l
 ransachan i"ﬂ‘: "':IE vlng

cortnue et ralings PAYMERt und;ﬂg i INCludesales
l.:u o PoSilices Fust= aan rE LEIreTen

ol Wi, Aceount S - 4

h i ligls © act
spplicabier gty & act

s citigroups
rEE.l.ﬁI portfolio

rrada l.'.| :rl_:l'm- ﬂ-"l."-’l'f 51 '::“.'i'- 12nNts

EL,,,.,c,,;l|'||:r.9:2|ﬁec:|

em:nang@ B LIL | y
SHNIET & ammon ::l-:Is..

stgmers Ioea
S eaong m:ia-.E'a - approximately T. rn*uuu llhu1

ANagemen tnafore
I'L:'!-:m-'h |.'l|'|.-\.-El.|:.l.'||‘_-.¢ g:.n“.‘-".i-r-egewe dErl'-l'atl".l'E'llatlliltlE:S citibank egal range ety

CAIMYING pandilicns 'EH:':I mvestmeEnis -
P remuliing PRENSION S0p CSUTE S ing
subatargaly DRIETTE0 B owhaldings BXpASUrE

=
framesork COTY. ™ miatis e v by u:-:p-nﬁ.ﬂ-:
e punchess Precess mode)

anni Clirrenl

operations®{. .
rF—"'«'E*“-f"]:mu.slr'

56, -
coiracia :
= counterpanty rrmglors - FELIT

olions COUNERER BTy

cumencymak: impasment sacuirilizelan sratermani
E compared 8ot o cimenis
™ markets

trading corporate

nformation FE!-.GTF':‘led.: e

Tunds 3

tirria

text field="word")
:brewer.pal (10,

abal e PUMSUATE FREES

[t

H55l

banking & fed

otal

affaciive

manadual

Alowance
subsidiarias III|ErE-:.L':-

AP pafined Toaaih

siales

included= =
Inclgsss 3 oo

Zrequired 2§ eens
saleSUDIECprior SPAMY
= businesses aera,
ssignificant

"'-=-'=. s

5':"1'1"“.-""".""'

wasgatiaon

T I['-..] ,_J uxpg: ad

rules

[O5IE E

PALITE

= Ornce

] By e e e
@ Oterm < & shat
o) Sbalance = 3
0 = EEr".n'I-ELSﬂ |
basis L .:' o kang s -E"-~E Shaies
bank = _'55”5':] " e
e,

1 = D ""tjE'"E' _:n:mf-J-:»E.
fCOmMPanys “deposts caccnal

instruments plapassumgtions

hedgas takavas spresd

higher cha"gﬂnaﬂlﬂ'h Corbrcd ™8Iy

pretan

commertigh cEstanding - Higation

rApAIrcHesa s nicpeas Motgages recered
parfarmAancd v oo idanis] pan 9

repsoited lmn.;ﬂ:r."e:nse-:l orteEr

"RABU"))

https://quanteda.io/
https://www.rdocumentation.org/packages/quanteda/versions/1.3.4/topics/textplot_wordcloud
https://cran.r-project.org/web/packages/wordcloud/index.html
https://cran.r-project.org/web/packages/wordcloud2/vignettes/wordcloud.html

Another reason to use stopwords

= Without removing stopwords, the word cloud shows almost nothing

useful

corp <- corpus (df doc,

textplot wordcloud (dfm(corp)

docid field="ID",
RColorRrewer:

color =

text field="word")
:brewer.pal (10,

TS BT

[

ey "E % _’:.J.I.-I.ﬂ i

L 3
g g PO
L
AIfEESEA

firmnon
CarE

IR porwed

PN i = FEpTmEi TEAOTIE T h:l'll]lh-
BT i EEIE
E - nuimre ™ |
2 | poakc ac Lo
B = dn-:rt-cd
i Bl oy TR [op Jr—- Wl l;.vl.w,c,:.,c._h“ sy
T g T Evanimn ks iy
ST TE S bark fegeqaid! e e i
FaRn] £ CAITRECK & - Py AL SRS BATEGE ey q.-.-.e- 1;_:..,-4..

X
= "f""'" ST iy i
o Tf"r‘*g Fors 43 'PI!;:L.: p:.lrr.t'.r':'- Sl b
B -!'\«.!chr"' Fet T T
= IEENQ re gLk
mearapa el oy ed mull
ﬂ""""""lal!-mr.ﬂil"':l.- Al

e
¥ gy i
fmm wikim
[T
ORI TERITY _|n|.'-!|.'\. diHse
purmunni#30] ""HF & faly
; terinipE S T
P T rmas BicH
i"'k!u-i-d -] yST
.2 refing = By
EF Miurna gE - Erb

li'.illidldl
"-Il o MEHLE

I||I-l

'..y _ﬁrrl-.l

F-r-
prices iy E 1 =
oni e ciusd

.}
u 1%
Sammap L DB pepn lisias RO
prumrind fesy e cigant Dulrw - DEIGESTY

BE ey LT PR LLE-F T}
geneaka r

meman
; E 0 anthese

COre el N
-:m.n.ash-"';;:_, L ——-
o Bl R S e ke oy :u'd'l;

o = ey | arrEsd
g Al MRngage g hcdelireg el ﬁi;lf":.

BTk

ﬁnanl:l.:l raka Wil prrial

o CT—— ZmcEnaEn
"l":,'.# mich chmnpee rarss sdoes 'IIIHCI.
&
wilh 12 '\g L TETTTA .‘U‘"\-'hl"';l Ethry P

g B SHrThCan e
|-"1 midieniadian

LLEELEEEE
BRASH! giwwiivid

—CI fi I-IE-!I irz:,:.rl";:":u::.rc::: a5
he s
Wil Ayl B
'hﬂl 'l " ._'.Ilﬂ:‘"r =y
i] :
“ —

Fe0ipy WOTL ECAn aehids o oot - ELsll
Lan A Ao i
E -E ael *loas it = it i
i "":'""' ¢ whichpal M T sEf
- e P o Tl s BEER E
i (i : .-.Lur- wmindwing was & ol i i
makn | -'a...'_.:.-'\-'p 1f 5 YRING iy L2 iy 8 vy
e - A .
wanga 3 s I TE T -11;‘;.:'“““5'“ Ff Benmsns grpngteo ©
CRETIE E ok . :: Spanad MAPEAAMIN [LT A e e
["""‘"35"" " rd g VR
'\'VLIE.:“ :::_,l:luw.- i flE) wams E ;:n E'?.; I-_:: clar n::_.mpu
K wdpd T E LTy suiely paay ot
ol darered Foon I B :: Y l...-J-I-.n...-.ofc-:rl:-
i el
portizien |. ided coninu i

[F°1 T R —") """'“__I Tl T CATHEY RGN

RAwHIL] AWEE sk mcrizason |,
.

BECITEIREAN p
whNM eganing
Freimmmes

ook

ENNRNES rapcria

IPCLTT

TR e

£z
e P
T = ALAOTTHaz

"RABU"))

R Practice 3

= Using the same data as before, we will explore
= Readability
= Sentiment
= Word clouds
= Note: Due to missing packages, you will need to run the code in
RStudio, not in the DataCamp light console

= Do exercises 6 through 8 in today’s practice file
= R Practice
= Shortlink: rmc.link/420r8

http://rmc.link/Slides/acct420/Session_6/Session_8_R.html
http://rmc.link/Slides/acct420/Session_8/Session_8_R.html

End matter

For next week

= For next week:
= Finish the third assignment
= Submit on elLearn
= Datacamp
* Do the assigned chapter on text analysis
= Keep working on the group project

Packages used for these slides

= kableExtra
knitr
magrittr
quanteda
RColorBrewer
RCurl
readtext
revealjs
tidytext
tidyverse
= dplyr,readr,stringr
XML

https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_html.html
https://yihui.name/knitr/
https://magrittr.tidyverse.org/
https://quanteda.io/
https://cran.r-project.org/web/packages/RColorBrewer/index.html
https://cran.r-project.org/web/packages/RCurl/index.html
https://readtext.quanteda.io/
https://github.com/rstudio/revealjs
https://github.com/juliasilge/tidytext
https://www.tidyverse.org/
https://dplyr.tidyverse.org/index.html
https://readr.tidyverse.org/
https://stringr.tidyverse.org/
https://cran.r-project.org/web/packages/XML/index.html

library (knitr)
library (kableExtra)

Custom code

html df <- function(text, cols=NULL, coll=FALSE, full=F) ({

if (!'length(cols)) {
cols=colnames (text)

}

if('coll) {
kable (text, "html", col.names = cols,
kable styling(bootstrap options =
} else {
kable (text, "html", col.names = cols,

kable styling(bootstrap options =
column_spec (1,bold=T)

cryptoMC <- function (name) {
if (exists (name)) {
get (name)
} else(

align = c¢("1",rep('c’

c("striped", "hover"),

align = c¢("1",rep('c’

c("striped", "hover"),

,length (cols)-1))) %>%

full width=full)

,length (cols)-1)))
full width=full) %>

html <- getURL (paste('https://coinmarketcap.com/currencies/"',name,"'/"',sep="'"))

xpath <- '//*[@id="quote price"]/span[l]/text ()"
doc = htmlParse (html, asText=TRUE)
plain.text <- xpathSApply(doc, xpath, xmlValue)
assign(name, gsub("\n","",gsub(" ", "", paste(plain.text, collapse = ""), fixed
get (name)
}

}

Loads line-by-line by default

This makes it document-by-document

library (textreadr)

df2 <- read dir("G:/2014/2014/") %>%
group_ by (document) $%>%
mutate (text=paste (content, collapse="\n")) %>%

select (document, text)
slice(1l) %>%
ungroup ()

TRUE) ,

TRUE) ,envir

.GlobalEnv)

Custom code

Create a plot of the top words by sentiment

tf sent %>%
filter('is.na(sentiment)) %>%
group by (sentiment) $%$>%
arrange (desc(n)) %>%
mutate (row = row_number ()) %>
filter (row < 10) %>%
ungroup () %>%
mutate (word reorder (word, n)) %>%
ggplot (aes (y=n, x=word)) + geom col() + theme (axis.text.x = element text(angle=90, hjust=1)) +
facet wrap(~sentiment, ncol=3, scales="free x")

