
ACCT 420: Textual analysis

Session 8

Dr. Richard M. Crowley

1

Front matter

2 . 1

▪ Theory:

▪ Natural Language

Processing

▪ Application:

▪ Analyzing a Citigroup annual

report

▪ Methodology:

▪ Text analysis

▪ Machine learning

Learning objectives

2 . 2

Datacamp

▪

▪ Just the first chapter is required

▪ You are welcome to do more, of course

▪ I will generally follow the same “tidy text” principles as the Datacamp

course does – the structure keeps things easy to manage

▪ We will sometimes deviate to make use of certain libraries, which,

while less tidy, make our work easy than the corresponding tidy-

oriented packages (if they even exist!)

Sentiment analysis in R the Tidy way

2 . 3

https://www.datacamp.com/courses/sentiment-analysis-in-r-the-tidy-way

Notes on the homework

▪ A few clarifications based on your emails:

1. Exercise 1: The distribution of class action lawsuits by year only

need to show the year and the number of lawsuits that year

2. Exercise 2: The percent of firm-year observations with lawsuits b

industry should have 4 calculations:

▪ Ex.: (# of retail lawsuits) / (# of retail firm years)

3. Exercise 3: The coefficient to explain is the coefficent of legal on

fps – the only coefficient in the model

2 . 4

Textual data and textual analysis

3 . 1

Review of Session 7

▪ Last session we saw that textual measures can help improve our fraud

detection algorithm

▪ We looked at a bunch of textual measures:

▪ Sentiment

▪ Readability

▪ Topic/content

▪ We didn’t see how to make these though…

▪ Instead, we had a nice premade dataset with everything already

done

We’ll get started on these today – sentiment and

readability

We will cover making topic models in a later session

3 . 2

Why is textual analysis harder?

▪ Thus far, everything we’ve worked with is what is known as structured

data

▪ Structured data is numeric, nicely indexed, and easy to use

▪ Text data is unstructured

▪ If we get an annual report with 200 pages of text…

▪ Where is the information we want?

▪ What do we want?

▪ How do we crunch 200 pages into something that is…

1. Manageable?

2. Meaningful?

This is what we will work on today, and we will revist some

of this in the remaining class sessions

3 . 3

Wide format Long format

Structured data

▪ Our long or wide format data

A tibble: 3 x 3
quarter level_3 value
<chr> <chr> <chr>
1 1995-Q1 Wholesale Trade 17
2 1995-Q1 Retail Trade -18
3 1995-Q1 Accommodation 16

A tibble: 3 x 4
RegionID `1996-04` `1996-05` `1996-06`
<int> <int> <int> <int>
1 84654 334200 335400 336500
2 90668 235700 236900 236700
3 91982 210400 212200 212200

The structure is given by the IDs, dates, and variables

3 . 4

Unstructured data

▪ Text

▪ Open responses to question, reports, etc.

▪ What it isn’t:

▪ "JANUARY", "ONE", "FEMALE"

▪ Months, numbers, genders

▪ Anything with clear and concise categories

▪ Images

▪ Satellite imagery

▪ Audio

▪ Phone call recordings

▪ Video

▪ Security camera footage

All of these require us to determine and impose structure

3 . 5

Some ideas of what we can do

1. Text extraction

▪ Find all references to the CEO

▪ Find if the company talked about global warming

▪ Pull all telephone numbers or emails from a document

2. Text characteristics

▪ How varied is the vocabulary?

▪ Is it positive or negative (sentiment)

▪ Is it written in a strong manner?

3. Text summarization or meaning

▪ What is the content of the document?

▪ What is the most important content of the document?

▪ What other documents discuss similar issues?

3 . 6

Where might we encounter text data in

business

1. Business contracts

2. Legal documents

3. Any paperwork

4. News

5. Customer reviews or feedback

▪ Including transcription (call centers)

6. Consumer social media posts

7. Chatbots and AI assistants

3 . 7

Natural Language Processing (NLP)

▪ NLP is the subfield of computer science focused on analyzing large

amounts of unstructured textual information

▪ Much of the work builds from computer science, linguistics, and

statistics

▪ Unstructured text actually has some structure – language

▪ Word selection

▪ Grammar

▪ Word relations

▪ NLP utilizes this implicit structure to better understand textual data

3 . 8

NLP in everyday life

▪ Autocomplete of the next word in phone keyboards

▪ Demo below from

▪ Voice assistants like Google Assistant, Siri, Cortana, and Alexa

▪ Article suggestions on websites

▪ Search engine queries

▪ Email features like missing attachment detection

Google’s blog

3 . 9

https://www.blog.google/products/search/gboard-now-on-android/

Case: How leveraging NLP helps call centers

▪

▪ Short link:

How Analytics, Big Data and AI Are Changing Call Centers Forever

rmc.link/420class8

What are call centers using NLP for?

How does NLP help call centers with their business?

3 . 10

https://www.forbes.com/sites/bernardmarr/2016/09/06/how-analytics-big-data-and-ai-are-changing-call-centers-forever/#19cd55973a32
https://rmc.link/420class8

Consider

▪ We can use it for call centers

▪ We can make products out of it (like Google and other tech firms)

▪ Where else?

Where an we make use of NLP in business?

3 . 11

Working with 1 text file

4 . 1

Before we begin: Special characters

▪ Some characters in R have special meanings for string functions

▪ \ | () [{ } ^ $ * + ? . !

▪ To type a special character, we need to precede it with a \

▪ Since \ is a special character, we’ll need to put \ before \…

▪ To type $, we would use \\$

▪ Also, some spacing characters have special symbols:

▪ \t is tab

▪ \r is newline (files from Macs)

▪ \r\n is newline (files from Windows)

▪ \n is newline (files from Unix, Linux, etc.)

4 . 2

Loading in text data from files

▪ Use from ’s package to read in

text data

▪ We’ll use

▪ Note that there is a full text link at the bottom which is a .txt file

▪ I will instead use a cleaner version derived from the linked file

▪ The cleaner version can be made using the same techniques we

will discuss today

read_file() tidyverse readr

Citigroup’s annual report from 2014

Read text from a .txt file using read_file()

doc <- read_file("../../Data/0001104659-14-015152.txt")
str_wrap is from stringr from tidyverse

cat(str_wrap(substring(doc,1,500), 80))

UNITED STATES SECURITIES AND EXCHANGE COMMISSION WASHINGTON, D.C. 20549 FORM
10-K ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE
ACT OF 1934 For the fiscal year ended December 31, 2013 Commission file number
1-9924 Citigroup Inc. (Exact name of registrant as specified in its charter)
Securities registered pursuant to Section 12(b) of the Act: See Exhibit 99.01
Securities registered pursuant to Section 12(g) of the Act: none Indicate by
check mark if the registrant is a

4 . 3

https://www.rdocumentation.org/packages/readr/versions/1.1.1/topics/read_file
https://www.tidyverse.org/
https://readr.tidyverse.org/
https://www.sec.gov/Archives/edgar/data/831001/000110465914015152/0001104659-14-015152-index.htm

Loading from other file types

▪ Ideally you have a .txt file already – such files are generally just the text

of the documents

▪ Other common file types:

▪ HTML files (particularly common from web data)

▪ You can load it as a text file – just note that there are html tags

embedded in it

▪ Things like <a>, <table>, , etc.

▪ You can load from a URL using

▪ In R, you can use or to parse out specific pieces of

html files

▪ If you use python, use lxml or BeautifulSoup 4 (bs4) to quickly

turn these into structured documents

RCurl

XML rvest

4 . 4

https://cran.r-project.org/web/packages/RCurl/index.html
https://cran.r-project.org/web/packages/XML/index.html
https://github.com/hadley/rvest

Loading from other file types

▪ Ideally you have a .txt file already – such files are generally just the text

of the documents

▪ Other common file types:

▪ PDF files

▪ Use and you can extract text into a vector of pages of

text

▪ Use and you can extract tables straight from PDF

files!

▪ This is very painful to code by hand without this package

▪ The package itself is a bit difficult to install, requiring Java and

, though

pdftools

tabulizer

rJava

4 . 5

https://cran.r-project.org/web/packages/pdftools/index.html
https://github.com/ropensci/tabulizer
http://rforge.net/rJava/

Example using html

library(RCurl)
library(XML)

html <- getURL('https://coinmarketcap.com/currencies/ethereum/')
cat(str_wrap(substring(html, 46320, 46427), 80))

n class="h2 text-semi-bold details-panel-item--price__value" data-currency-
value>208.90 <span class="

xpath <- '//*[@id="quote_price"]/span[1]/text()'
hdoc = htmlParse(html, asText=TRUE) # from XML
price <- xpathSApply(hdoc, xpath, xmlValue)
print(paste0("Ethereum was priced at $", price,
 " when these slides were compiled"))

[1] "Ethereum was priced at $208.90 when these slides were compiled"

4 . 6

Automating crypto pricing in a document

The actual version I use (with caching to avoid repeated lookups) is in the appendix

cryptoMC <- function(name) {
 html <- getURL(paste('https://coinmarketcap.com/currencies/',name,'/',sep=''))
 xpath <- '//*[@id="quote_price"]/span[1]/text()'
 hdoc = htmlParse(html, asText=TRUE)
 plain.text <- xpathSApply(hdoc, xpath, xmlValue)
 plain.text
}

paste("Ethereum was priced at", cryptoMC("ethereum"))

[1] "Ethereum was priced at 208.90"

paste("Litecoin was priced at", cryptoMC("litecoin"))

[1] "Litecoin was priced at 54.71"

4 . 7

▪ Subsetting text

▪ Transformation

▪ Changing case

▪ Adding or combining text

▪ Replacing text

▪ Breaking text apart

▪ Finding text

Basic text functions in R

▪ Every function in can take a vector of strings for the first

argument

We will cover these using as opposed to base R –

’s commands are much more consistent

stringr

stringr

stringr

4 . 8

https://stringr.tidyverse.org/
https://stringr.tidyverse.org/
https://stringr.tidyverse.org/

Subsetting text

▪ Base R: Use or

▪ : use

▪ First argument is a vector of strings

▪ Second argument is the starting position (inclusive)

▪ Third argument is that ending position (inclusive)

substr() substring()

stringr str_sub()

cat(str_wrap(str_sub(doc, 9896, 9929), 80))

Citis net income was $13.5 billion

cat(str_wrap(str_sub(doc, 28900,29052), 80))

Net income decreased 14%, mainly driven by lower revenues and lower loan loss
reserve releases, partially offset by lower net credit losses and expenses.

4 . 9

https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/substr
https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/substr
https://stringr.tidyverse.org/
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_sub

Transforming text

▪ Commonly used functions:

▪ or : make the text lowercase

▪ or : MAKE THE TEXT UPPERCASE

▪ : Make the Text Titlecase

▪ to combine text

▪ It puts spaces between by default

▪ You can change this with the sep= option

▪ If everything to combine is in 1 vector, use collapse= with the

desired separator

▪ is paste with sep=""

tolower() str_to_lower()

toupper() str_to_lower()

str_to_title()

paste()

paste0()

4 . 10

https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/chartr
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/case
https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/chartr
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/case
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/case
https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/paste
https://www.rdocumentation.org/packages/base/versions/3.5.1/topics/paste

Examples: Case

▪ The str_ prefixed functions support non-English languages as well

sentence <- str_sub(doc, 9896, 9929)
str_to_lower(sentence)

[1] "citis net income was $13.5 billion"

str_to_upper(sentence)

[1] "CITIS NET INCOME WAS $13.5 BILLION"

str_to_title(sentence)

[1] "Citis Net Income Was $13.5 Billion"

You can run this in an R terminal! (It doesn't work in Rmarkdown though)

str_to_upper("Citis net income was $13.5 billion", locale='tr') # Turkish

4 . 11

Examples: pastepaste

board is a list of director names

titles is a list of the director's titles

paste(board, titles, sep=", ")

[1] "Michael L. Corbat, CEO"
[2] "Michael E. O’Neill, Chairman"
[3] "Anthony M. Santomero, Former president, Fed (Philidelphia)"
[4] "William S. Thompson, Jr., CEO, Retired, PIMCO"
[5] "Duncan P. Hennes, Co-Founder/Partner, Atrevida Partners"
[6] "Gary M. Reiner, Operating Partner, General Atlantic"
[7] "Joan E. Spero, Senior Research Scholar, Columbia University"
[8] "James S. Turley, Former Chairman & CEO, E&Y"
[9] "Franz B. Humer, Chairman, Roche"
[10] "Judith Rodin, President, Rockefeller Foundation"
[11] "Robert L. Ryan, CFO, Retired, Medtronic"
[12] "Diana L. Taylor, MD, Wolfensohn Fund Management"
[13] "Ernesto Zedillo Ponce de Leon, Professor, Yale University"
[14] "Robert L. Joss, Professor/Dean Emeritus, Stanford GSB"

cat(str_wrap(paste0("Citi's board consists of: ",
 paste(board[1:length(board)-1], collapse=", "),
 ", and ", board[length(board)], "."), 80))

Citi's board consists of: Michael L. Corbat, Michael E. O’Neill, Anthony M.
Santomero, William S. Thompson, Jr., Duncan P. Hennes, Gary M. Reiner, Joan E.
Spero, James S. Turley, Franz B. Humer, Judith Rodin, Robert L. Ryan, Diana L.
Taylor, Ernesto Zedillo Ponce de Leon, and Robert L. Joss.

4 . 12

Transforming text

▪ Replace text with

▪ First argument is text data

▪ Second argument is what you want to remove

▪ Third argument is the replacement

▪ If you only want to replace the first occurrence, use

instead

str_replace_all()

str_replace()

sentence

[1] "Citis net income was $13.5 billion"

str_replace_all(sentence, "\\$13.5", "over $10")

[1] "Citis net income was over $10 billion"

4 . 13

https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_replace
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_replace

Transforming text

▪ Split text using

▪ This function returns a list of vectors!

▪ This is because it will turn every string passed to it into a vector,

and R can’t have a vector of vectors

▪ [[1]] can extract the first vector

▪ You can also limit the number of splits using n=

▪ A bit more elegant solution is using with n=

▪ Returns a character matrix (nicer than a list)

str_split()

str_split_fixed()

4 . 14

https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_split
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_split

Example: Splitting text

paragraphs <- str_split(doc, '\n')[[1]]

number of paragraphs

length(paragraphs)

[1] 206

Last paragraph

cat(str_wrap(paragraphs[206], 80))

The total amount of securities authorized pursuant to any instrument defining
rights of holders of long-term debt of the Company does not exceed 10% of the
total assets of the Company and its consolidated subsidiaries. The Company
will furnish copies of any such instrument to the SEC upon request. Copies of
any of the exhibits referred to above will be furnished at a cost of $0.25 per
page (although no charge will be made for the 2013 Annual Report on Form 10-
K) to security holders who make written request to Citigroup Inc., Corporate
Governance, 153 East 53 rd Street, 19 th Floor, New York, New York 10022. *
Denotes a management contract or compensatory plan or arrangement. + Filed
herewith.

4 . 15

Finding phrases in text

▪ How did I find the previous examples?
str_locate_all(tolower(doc), "net income")

[[1]]
start end
[1,] 8508 8517
[2,] 9902 9911
[3,] 16549 16558
[4,] 17562 17571
[5,] 28900 28909
[6,] 32197 32206
[7,] 35077 35086
[8,] 37252 37261
[9,] 40187 40196
[10,] 43257 43266
[11,] 45345 45354
[12,] 47618 47627
[13,] 51865 51874
[14,] 51953 51962
[15,] 52663 52672
[16,] 52748 52757
[17,] 54970 54979
[18,] 58817 58826
[19,] 96022 96031
[20,] 96717 96726
[21,] 99297 99306
[22,] 188340 188349
[23,] 189049 189058
[24,] 201462 201471
[25,] 456097 456106

4 . 16

Finding phrases in text

▪ 4 primary functions:

1. : Reports TRUE or FALSE for the presence of a

string in the text

2. : Reports the number of times a string is in the text

3. : Reports the first location of a string in the text

▪ : Reports every location as a list of

matrices

4. : Reports the matched phrases

▪ All take a character vector as the first argument, and something to

match for the second argument

str_detect()

str_count()

str_locate()

str_locate_all()

str_extract()

4 . 17

https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_detect
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_count
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_locate
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_locate
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_extract

Example: Finding phrases

▪ How many paragraphs mention net income in any case?

▪ What is the most net income is mentioned in any paragraph

x <- str_detect(str_to_lower(paragraphs), "net income")
x[1:10]

[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE

sum(x)

[1] 13

x <- str_count(str_to_lower(paragraphs), "net income")
x[1:10]

[1] 0 0 0 0 0 4 0 0 2 2

max(x)

[1] 4

4 . 18

Example: Finding phrases

▪ Where is net income first mentioned in the document?

▪ First mention of net income

▪ This function may look useless now, but it’ll be on of the most useful

later

str_locate(str_to_lower(doc), "net income")

start end
[1,] 8508 8517

str_extract(str_to_lower(doc), "net income")

[1] "net income"

4 . 19

R Practice

▪ Text data is already loaded, as if it was loaded using

▪ Try:

▪ Subsetting the text data

▪ Transforming the text data

▪ To all upper case

▪ Replacing a phrase

▪ Finding specific text in the document

▪ Do exercises 1 through 3 in today’s practice file

▪

▪ Shortlink:

read_file()

R Practice

rmc.link/420r8

4 . 20

https://www.rdocumentation.org/packages/readr/versions/1.1.1/topics/read_file
http://rmc.link/Slides/acct420/Session_6/Session_8_R.html
http://rmc.link/Slides/acct420/Session_8/Session_8_R.html

Pattern matching

5 . 1

Finding patterns in the text (regex)

▪ Regular expressions, aka regex or regexp, are ways of finding patterns

in text

▪ This means that instead of looking for a specific phrase, we can match

a set of phrases

▪ Most of the functions we discussed accept regexes for matching

▪ , , ,

, , and , plus

their variants

▪ This is why is so great!

▪ We can extract anything from a document with it!

str_replace() str_split() str_detect()

str_count() str_locate() str_extract()

str_extract()

5 . 2

https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_replace
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_split
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_detect
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_count
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_locate
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_extract
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/str_extract

Regex example

▪ Breaking down an email

1. A local name

2. An @ sign

3. A domain, which will have a . in it

▪ Local names can have many different characters in them

▪ Match it with [:graph:]+

▪ The domain is pretty restrictive, generally just alphanumeric and .

▪ There can be multiple . though

▪ Match it with [:alnum:]+\\.[.[:alnum:]]+

Extract all emails from the annual report

str_extract_all(doc,'[:graph:]+@[:alnum:]+\\.[.[:alnum:]]+')

[[1]]
[1] "shareholder@computershare.com" "shareholder@computershare.com"
[3] "docserve@citi.com" "shareholderrelations@citi.com"

5 . 3

Breaking down the example

▪ @ was itself – it isn’t a special character in strings in R

▪ \\. is just a period – we need to escape . because it is special in R

▪ Anything in brackets with colons, [: :], is a set of characters

▪ [:graph:] means any letter, number, or punctuation

▪ [:alnum:] means any letter or number

▪ + is used to indicate that we want 1 or more of the preceding element

– as many as it can match

▪ [:graph:]+ meant “Give us every letter, number, and

punctuation you can, but make sure there is at least 1.”

▪ Brackets with no colons, [], ask for anything inside

▪ [.[:alnum:]]+ meant “Give us every letter, number, and . you

can, but make sure there is at least 1.”

5 . 4

Breaking down the example

▪ Let’s examine the output shareholder@computershare.com

▪ Our regex was [:graph:]+@[:alnum:]+\\.[.[:alnum:]]+

▪ Matching regex components to output:

▪ [:graph:]+ ⇒ shareholder

▪ @ ⇒ @

▪ [:alnum:]+ ⇒ computershare

▪ \\. ⇒ .

▪ [.[:alnum:]]+ ⇒ com

5 . 5

Useful regex components: Content

▪ There’s a

▪

▪ Matching collections of characters

▪ . matches everything

▪ [:alpha:] matches all letters

▪ [:lower:] matches all lowercase letters

▪ [:upper:] matches all UPPERCASE letters

▪ [:digit:] matches all numbers 0 through 9

▪ [:alnum:] matches all letters and numbers

▪ [:punct:] matches all punctuation

▪ [:graph:] matches all letters, numbers, and punctuation

▪ [:space:] or \s match ANY whitespace

▪ \S is the exact opposite

▪ [:blank:] matches whitespace except newlines

nice cheat sheet here

More detailed documentation here

5 . 6

https://github.com/rstudio/cheatsheets/raw/master/strings.pdf
https://cran.r-project.org/web/packages/stringr/vignettes/regular-expressions.html

Example: Regex content

text alpha lower upper digit alnum

abcde TRUE TRUE FALSE FALSE TRUE

ABCDE TRUE FALSE TRUE FALSE TRUE

12345 FALSE FALSE FALSE TRUE TRUE

!?!?. FALSE FALSE FALSE FALSE FALSE

ABC123? TRUE FALSE TRUE TRUE TRUE

With space TRUE TRUE TRUE FALSE TRUE

New line TRUE TRUE TRUE FALSE TRUE

text <- c("abcde", 'ABCDE', '12345', '!?!?.', 'ABC123?', "With space", "New\nline")
html_df(data.frame(
 text=text,
 alpha=str_detect(text,'[:alpha:]'),
 lower=str_detect(text,'[:lower:]'),
 upper=str_detect(text,'[:upper:]'),
 digit=str_detect(text,'[:digit:]'),
 alnum=str_detect(text,'[:alnum:]')
))

5 . 7

Example: Regex content

text punct graph space blank period

abcde FALSE TRUE FALSE FALSE TRUE

ABCDE FALSE TRUE FALSE FALSE TRUE

12345 FALSE TRUE FALSE FALSE TRUE

!?!?. TRUE TRUE FALSE FALSE TRUE

ABC123? TRUE TRUE FALSE FALSE TRUE

With space FALSE TRUE TRUE TRUE TRUE

New line FALSE TRUE TRUE FALSE TRUE

text <- c("abcde", 'ABCDE', '12345', '!?!?.', 'ABC123?', "With space", "New\nline")
html_df(data.frame(
 text=text,
 punct=str_detect(text,'[:punct:]'),
 graph=str_detect(text,'[:graph:]'),
 space=str_detect(text,'[:space:]'),
 blank=str_detect(text,'[:blank:]'),
 period=str_detect(text,'.')
))

5 . 8

Useful regex components: Form

▪ [] can be used to create a class of characters to look for

▪ [abc] matches anything that is a, b, c

▪ [^] can be used to create a class of everything else

▪ [^abc] matches anything that isn’t a, b, or c

▪ Quantity, where x is some element

▪ x? looks for 0 or 1 of x

▪ x* looks for 0 or more of x

▪ x+ looks for 1 or more of x

▪ x{n} looks for n (a number) of x

▪ x{n, } looks for at least n of x

▪ x{n,m} looks for at least n and at most m of x

▪ Lazy operators

▪ Append ? to any quantity operator to make it prefer the shortest

match possible

5 . 9

Useful regex components: Form

▪ Position

▪ ^ indicates the start of the string

▪ $ indicates the end of the string

▪ Grouping

▪ () can be used to group components

▪ | can be used within groups as a logical or

▪ Groups can be referenced later using the position of the group

within the regex

▪ \\1 refers to the first group

▪ \\2 refers to the second group

▪ …

5 . 10

Example: Regex form (292 Real estate firms)

Real estate firm names with 3 vowels in a row

str_subset(RE_names, '[AEIOU]{3}')

[1] "STADLAUER MALZFABRIK" "JOAO FORTES ENGENHARIA SA"

Real estate firm names with no vowels

str_subset(RE_names, '^[^AEIOU]+$')

[1] "FGP LTD" "MBK PCL" "MYP LTD" "MCT BHD" "R T C L LTD"

Real estate firm names with at least 12 vowels

str_subset(RE_names, '([^AEIOU]*[AEIOU]){11,}')

[1] "INTERNATIONAL ENTERTAINMENT" "PREMIERE HORIZON ALLIANCE"
[3] "JOAO FORTES ENGENHARIA SA" "OVERSEAS CHINESE TOWN (ASIA)"
[5] "COOPERATIVE CONSTRUCTION CO" "FRANCE TOURISME IMMOBILIER"
[7] "BONEI HATICHON CIVIL ENGINE"

Real estate firm names with a repeated 4 letter pattern

str_subset(RE_names, '([:upper:]{4}).*\\1')

[1] "INTERNATIONAL ENTERTAINMENT" "CHONG HONG CONSTRUCTION CO"
[3] "ZHONGHONG HOLDING CO LTD" "DEUTSCHE GEOTHERMISCHE IMMOB"

5 . 11

Why is regex so important?

▪ Regex can be used to match anything in text

▪ Simple things like phone numbers

▪ More complex things like addresses

▪ It can be used to parse through large markup documents

▪ HTML, XML, LaTeX, etc.

▪ Very good for validating the format of text

▪ For birthday in the format YYYYMMDD, you could validate with:

▪ YYYY: [12][90][:digit:][:digit:]

▪ MM: [01][:digit:]

▪ DD: [0123][:digit:]

Cavaet: Regexes are generally slow. If you can code

something to avoid them, that is often better. But often

that may be infeasible.

5 . 12

Some extras

▪ While the str_*() functions use regex by default, they actually have

four modes

1. You can specify a regex normally

▪ Or you can use to construct more customized ones,

such as regexes that operate by line in a string

2. You can specify an exact string to match using – fast but

fragile

3. You can specify an exact string to match using – slow but

robust; recognizes characters that are equivalent

4. You can ask for boundaries with such as words,

using boundary("word")

regex()

fixed()

coll()

boundary()

5 . 13

https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/modifiers
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/modifiers
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/modifiers
https://www.rdocumentation.org/packages/stringr/versions/1.3.1/topics/modifiers

Expanding usage

▪ Anything covered so far can be used for text in data

▪ Ex.: Firm names or addresses in Compustat
Compustat firm names example

df_RE_names <- df_RE %>%
 group_by(isin) %>%
 slice(1) %>%
 mutate(SG_in_name = str_detect(conm, "(SG|SINGAPORE)"),
 name_length = str_length(conm),
 SG_firm = ifelse(fic=="SGP",1,0)) %>%
 ungroup()

Warning: package 'bindrcpp' was built under R version 3.5.1

df_RE_names %>%
 group_by(SG_firm) %>%
 mutate(pct_SG = mean(SG_in_name) * 100) %>%
 slice(1) %>%
 ungroup() %>%
 select(SG_firm, pct_SG)

A tibble: 2 x 2
SG_firm pct_SG
<dbl> <dbl>
1 0 0.369
2 1 4.76

5 . 14

Expanding usage

library(DT)
df_RE_names %>%
 group_by(fic) %>%
 mutate(avg_name_length = mean(name_length)) %>%
 slice(1) %>%
 ungroup() %>%
 select(fic, avg_name_length) %>%
 arrange(desc(avg_name_length), fic) %>%
 datatable(options = list(pageLength = 5))

Show 5 entries Search:

Showing 1 to 5 of 41 entries

…

fic avg_name_length

1 TUR 27

2 VNM 25.5

3 EGY 25

4 CHN 24.5714285714286

5 ISR 24.3333333333333

Previous 1 2 3 4 5 9 Next
5 . 15

R Practice 2

▪ This practice explores the previously used practice data using regular

expressions for various purposes

▪ Do exercises 4 and 5 in today’s practice file

▪

▪ Shortlink:

R Practice

rmc.link/420r8

5 . 16

http://rmc.link/Slides/acct420/Session_6/Session_8_R.html
http://rmc.link/Slides/acct420/Session_8/Session_8_R.html

Readability and Sentiment

6 . 1

Readability

▪ Thanks to the package, readability is very easy to calculate

in R

▪ Use the function

▪ There are many readability measures, however

▪ Flesch Kinkaid: A measure of readability developed for the U.S. Navy

to ensure manuals were written at a level any 15 year old should be

able to understand

▪ Fog: An index that was commonly used in business and publishing

▪ Coleman-Liau: An index with a unique calculation method

quanteda

textstat_readability()

6 . 2

https://quanteda.io/
https://www.rdocumentation.org/packages/quanteda/versions/1.3.4/topics/textstat_readability

Readability: Flesch Kincaid

206.835 − 1.015 − 84.6

▪ A score generally below 100

▪ Higher is more readable

▪ Conversational English should be around 80-90

▪ A JC or poly graduate should be able to read anything 50 or higher

▪ A Bachelor’s degree could be necessary for anything below 30

(
sentences

words) (
words

syllables)

library(quanteda)

Warning: package 'quanteda' was built under R version 3.5.1

textstat_readability(doc, "Flesch.Kincaid")

document Flesch.Kincaid
1 text1 17.56528

6 . 3

Readability: Fog

▪ An approximate grade level required for reading a document

▪ A JC or poly graduate should read at a level of 12

▪ New York Times articles are usually around 13

▪ A Bachelor’s degree holder should read at 17

Mean(W ords per sentence)+[
(% of words > 3 syllables) × 0.4]

textstat_readability(doc, "FOG")

document FOG
1 text1 21.63388

6 . 4

Readability: Coleman-Liau

5.88 − 29.6 − 15.8

▪ Provides an approximate grade level like Fog, on the same scale as Fog

(
words

letters) (
words

sentences)

textstat_readability(doc, "Coleman.Liau")

document Coleman.Liau
1 text1 29.03967

6 . 5

Converting text to words

▪ Tidy text is when you have when token per document per row, in a data

frame

▪ Token is the unit of text you are interested in

▪ Words: “New”

▪ Phrases: “New York Times”

▪ Sentences: “The New York Times is a publication.”

▪ etc.

▪ The package can handle this conversion for us!

▪ Use the function

▪ Note: it also converts to lowercase. Use the option

to_lower=FALSE to avoid this if needed

tidytext

unnest_tokens()

Example of "tokenizing"

library(tidytext)
df_doc <- data.frame(ID=c("0001104659-14-015152"), text=c(doc),
 stringsAsFactors = F) %>%
 unnest_tokens(word, text)
word is the name for the new column

text is the name of the string column in the input data

6 . 6

https://github.com/juliasilge/tidytext
https://www.rdocumentation.org/packages/tidytext/versions/0.1.9/topics/unnest_tokens

The details

▪ uses the package in the backend to do the

conversion

▪ You can call that package directly instead if you want to

▪ Available tokenizers include: (specify with token=)

▪ “word”: The default, individual words

▪ “ngram”: Collections of words (default of 2, specify with n=)

▪ A few other less commonly used tokenizers

tidytext tokenizers

6 . 7

https://github.com/juliasilge/tidytext
https://cran.r-project.org/web/packages/tokenizers/index.html

Word case

▪ Why convert to lowercase?

▪ How much of a difference is there between “The” and “the”?

▪ “Singapore” and “singapore” – still not much difference

▪ Only words like “new” versus “New” matter

▪ “New York” versus “new yorkshire terrier”

▪ Benefit: We get rid of a bunch of distinct words!

▪ Helps with the curse of dimensionality

6 . 8

The Curse of dimensionality

▪ There are a lot of words

▪ A LOT OF WORDS

▪ At least 171,476 according to

▪ What happens if we make a matrix of words per document?

Oxford Dictionary

6 . 9

https://en.oxforddictionaries.com/explore/how-many-words-are-there-in-the-english-language/

Stopwords

▪ Stopwords – words we remove because they have little content

▪ the, a, an, and, …

▪ Also helps with our curse a bit – removes the words entirely

▪ We’ll use the tm package to remove stopwords

▪ Uses a mix of SMART and Snowball stemmer under the hood
get a list of stopwords

library(stopwords)
stop_en <- stopwords("english") # Snowball English
paste0(length(stop_en), " words: ", paste(stop_en[1:5], collapse=", "))

[1] "175 words: i, me, my, myself, we"

stop_SMART <- stopwords(source="smart") # SMART English
paste0(length(stop_SMART), " words: ", paste(stop_SMART[1:5], collapse=", "))

[1] "571 words: a, a's, able, about, above"

stop_fr <- stopwords("french") # Snowball French
paste0(length(stop_fr), " words: ", paste(stop_fr[1:5], collapse=", "))

[1] "164 words: au, aux, avec, ce, ces"
6 . 10

Applying stopwords to a corpus

▪ When we have a tidy set of text, we can just use for this!

▪ ’s function is like a merge, but where all

matches are deleted

dplyr

dplyr anti_join()

df_doc_stop <- df_doc %>%
 anti_join(data.frame(word=stop_SMART, stringsAsFactors = F))

Joining, by = "word"

nrow(df_doc)

[1] 128728

nrow(df_doc_stop)

[1] 74985

6 . 11

https://dplyr.tidyverse.org/index.html
https://dplyr.tidyverse.org/index.html
https://www.rdocumentation.org/packages/dplyr/versions/0.7.6/topics/join

Converting to term frequency

terms <- df_doc_stop %>%
 count(ID, word, sort=TRUE) %>%
 ungroup()
total_terms <- terms %>%
 group_by(ID) %>%
 summarize(total = sum(n))
tf <- left_join(terms, total_terms) %>% mutate(tf=n/total)

Joining, by = "ID"

tf

A tibble: 5,543 x 5
ID word n total tf
<chr> <chr> <int> <int> <dbl>
1 0001104659-14-015152 citi 826 74985 0.0110
2 0001104659-14-015152 2013 743 74985 0.00991
3 0001104659-14-015152 credit 704 74985 0.00939
4 0001104659-14-015152 citis 660 74985 0.00880
5 0001104659-14-015152 risk 624 74985 0.00832
6 0001104659-14-015152 december 523 74985 0.00697
7 0001104659-14-015152 financial 513 74985 0.00684
8 0001104659-14-015152 31 505 74985 0.00673
9 0001104659-14-015152 loans 495 74985 0.00660
10 0001104659-14-015152 assets 488 74985 0.00651
... with 5,533 more rows

6 . 12

Sentiment

▪ Sentiment works similarly to stopwords, except we are identifying

words with specific, useful meanings

▪ We can grab off-the-shelf sentiment measures using

 from get_sentiments() tidytext

get_sentiments("afinn") %>%
 group_by(score) %>%
 slice(1) %>%
 ungroup()

A tibble: 11 x 2
word score
<chr> <int>
1 bastard -5
2 ass -4
3 abhor -3
4 abandon -2
5 absentee -1
6 some kind 0
7 aboard 1
8 abilities 2
9 admire 3
10 amazing 4
11 breathtaking 5

get_sentiments("bing") %>%
 group_by(sentiment) %>%
 slice(1) %>%
 ungroup()

A tibble: 2 x 2
word sentiment
<chr> <chr>
1 2-faced negative
2 a+ positive

6 . 13

https://www.rdocumentation.org/packages/tidytext/versions/0.1.9/topics/get_sentiments
https://github.com/juliasilge/tidytext

Loughran & McDonald dictionary

– finance specific, targeted at

annual reports

Sentiment

get_sentiments("nrc") %>%
 group_by(sentiment) %>%
 slice(1) %>%
 ungroup()

A tibble: 10 x 2
word sentiment
<chr> <chr>
1 abandoned anger
2 abundance anticipation
3 aberration disgust
4 abandon fear
5 absolution joy
6 abandon negative
7 abba positive
8 abandon sadness
9 abandonment surprise
10 abacus trust

get_sentiments("loughran") %>%
 group_by(sentiment) %>%
 slice(1) %>%
 ungroup()

A tibble: 6 x 2
word sentiment
<chr> <chr>
1 abide constraining
2 abovementioned litigious
3 abandon negative
4 able positive
5 aegis superfluous
6 abeyance uncertainty

6 . 14

Merging in sentiment data

tf_sent <- tf %>% left_join(get_sentiments("loughran"))

Joining, by = "word"

tf_sent[1:5,]

A tibble: 5 x 6
ID word n total tf sentiment
<chr> <chr> <int> <int> <dbl> <chr>
1 0001104659-14-015152 citi 826 74985 0.0110 <NA>
2 0001104659-14-015152 2013 743 74985 0.00991 <NA>
3 0001104659-14-015152 credit 704 74985 0.00939 <NA>
4 0001104659-14-015152 citis 660 74985 0.00880 <NA>
5 0001104659-14-015152 risk 624 74985 0.00832 uncertainty

tf_sent[!is.na(tf_sent$sentiment),][1:5,]

A tibble: 5 x 6
ID word n total tf sentiment
<chr> <chr> <int> <int> <dbl> <chr>
1 0001104659-14-015152 risk 624 74985 0.00832 uncertainty
2 0001104659-14-015152 loss 267 74985 0.00356 negative
3 0001104659-14-015152 losses 265 74985 0.00353 negative
4 0001104659-14-015152 approximately 232 74985 0.00309 uncertainty
5 0001104659-14-015152 regulatory 216 74985 0.00288 litigious

6 . 15

Summarizing document sentiment

tf_sent %>%
 spread(sentiment, tf, fill=0) %>%
 select(constraining, litigious, negative, positive, superfluous, uncertainty) %>%
 colSums()

constraining litigious negative positive superfluous
0.013242649 0.020750817 0.034780289 0.007054744 0.000373408
uncertainty
0.025325065

6 . 16

visualizing sentiment

6 . 17

Visualizing a document as a word cloud

▪ also provides an easy way to make a word cloud

▪

▪ There are also the and packages for this

quanteda

textplot_wordcloud()

wordcloud wordcloud2

corp <- corpus(df_doc_stop, docid_field="ID", text_field="word")
textplot_wordcloud(dfm(corp), color = RColorBrewer::brewer.pal(10, "RdBu"))

6 . 18

https://quanteda.io/
https://www.rdocumentation.org/packages/quanteda/versions/1.3.4/topics/textplot_wordcloud
https://cran.r-project.org/web/packages/wordcloud/index.html
https://cran.r-project.org/web/packages/wordcloud2/vignettes/wordcloud.html

Another reason to use stopwords

▪ Without removing stopwords, the word cloud shows almost nothing

useful
corp <- corpus(df_doc, docid_field="ID", text_field="word")
textplot_wordcloud(dfm(corp), color = RColorBrewer::brewer.pal(10, "RdBu"))

6 . 19

R Practice 3

▪ Using the same data as before, we will explore

▪ Readability

▪ Sentiment

▪ Word clouds

▪ Note: Due to missing packages, you will need to run the code in

RStudio, not in the DataCamp light console

▪ Do exercises 6 through 8 in today’s practice file

▪

▪ Shortlink:

R Practice

rmc.link/420r8

6 . 20

http://rmc.link/Slides/acct420/Session_6/Session_8_R.html
http://rmc.link/Slides/acct420/Session_8/Session_8_R.html

Groups of documents

7 . 1

End matter

8 . 1

For next week

▪ For next week:

▪ Finish the third assignment

▪ Submit on eLearn

▪ Datacamp

▪ Do the assigned chapter on text analysis

▪ Keep working on the group project

8 . 2

Packages used for these slides

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪ , ,

▪

kableExtra

knitr

magrittr

quanteda

RColorBrewer

RCurl

readtext

revealjs

tidytext

tidyverse

dplyr readr stringr

XML

8 . 3

https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_html.html
https://yihui.name/knitr/
https://magrittr.tidyverse.org/
https://quanteda.io/
https://cran.r-project.org/web/packages/RColorBrewer/index.html
https://cran.r-project.org/web/packages/RCurl/index.html
https://readtext.quanteda.io/
https://github.com/rstudio/revealjs
https://github.com/juliasilge/tidytext
https://www.tidyverse.org/
https://dplyr.tidyverse.org/index.html
https://readr.tidyverse.org/
https://stringr.tidyverse.org/
https://cran.r-project.org/web/packages/XML/index.html

Custom code

library(knitr)
library(kableExtra)
html_df <- function(text, cols=NULL, col1=FALSE, full=F) {
 if(!length(cols)) {
 cols=colnames(text)
 }

 if(!col1) {
 kable(text,"html", col.names = cols, align = c("l",rep('c',length(cols)-1))) %>%
 kable_styling(bootstrap_options = c("striped","hover"), full_width=full)
 } else {
 kable(text,"html", col.names = cols, align = c("l",rep('c',length(cols)-1))) %>%
 kable_styling(bootstrap_options = c("striped","hover"), full_width=full) %>%
 column_spec(1,bold=T)
 }

}

cryptoMC <- function(name) {
 if (exists(name)) {
 get(name)
 } else{
 html <- getURL(paste('https://coinmarketcap.com/currencies/',name,'/',sep=''))
 xpath <- '//*[@id="quote_price"]/span[1]/text()'

 doc = htmlParse(html, asText=TRUE)
 plain.text <- xpathSApply(doc, xpath, xmlValue)
 assign(name, gsub("\n","",gsub(" ", "", paste(plain.text, collapse = ""), fixed = TRUE), fixed = TRUE),envir = .GlobalEnv)
 get(name)
 }

}

Loads line-by-line by default

This makes it document-by-document

library(textreadr)
df2 <- read_dir("G:/2014/2014/") %>%
 group_by(document) %>%
 mutate(text=paste(content, collapse="\n")) %>%
 select(document,text)
 slice(1) %>%
 ungroup()

8 . 4

Custom code

Create a plot of the top words by sentiment

tf_sent %>%
 filter(!is.na(sentiment)) %>%
 group_by(sentiment) %>%
 arrange(desc(n)) %>%
 mutate(row = row_number()) %>%
 filter(row < 10) %>%
 ungroup() %>%
 mutate(word = reorder(word, n)) %>%
 ggplot(aes(y=n, x=word)) + geom_col() + theme(axis.text.x = element_text(angle=90, hjust=1)) +
 facet_wrap(~sentiment, ncol=3, scales="free_x")

8 . 5

