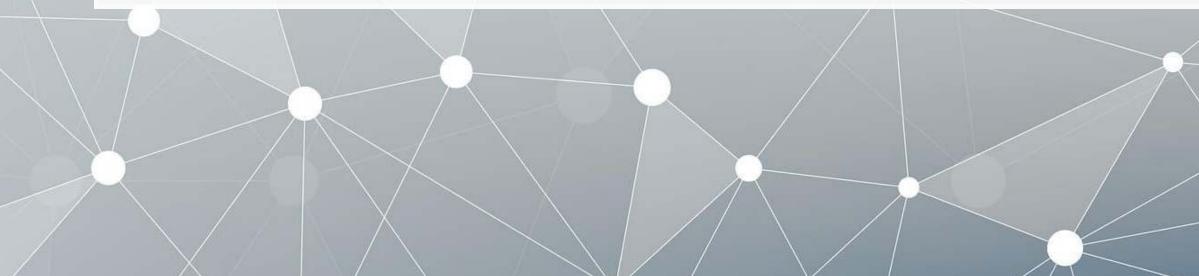
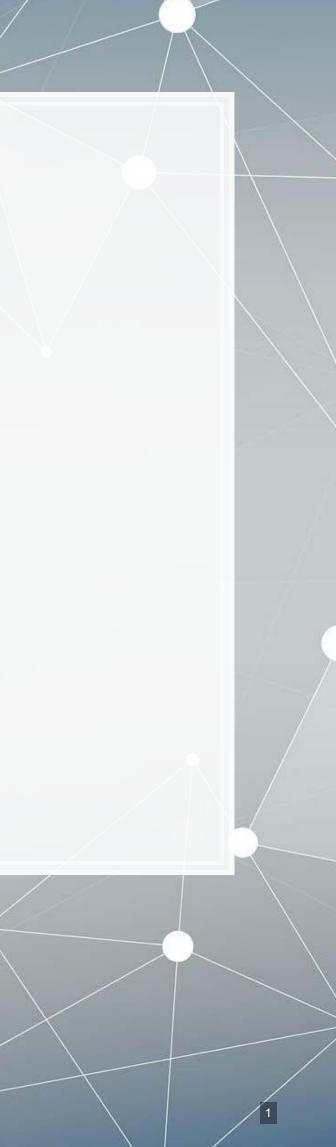
ACCT 420: Linear Regression

Session 2

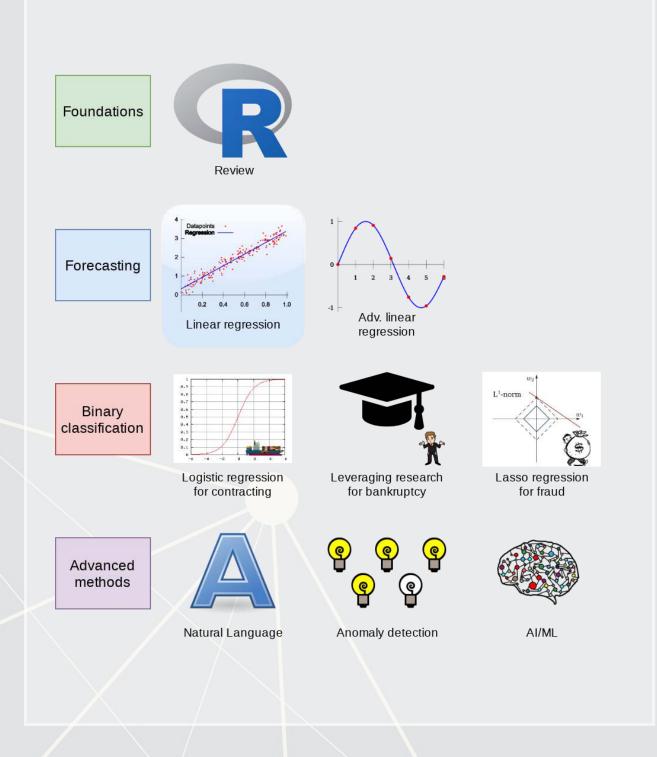
Dr. Richard M. Crowley





Front matter

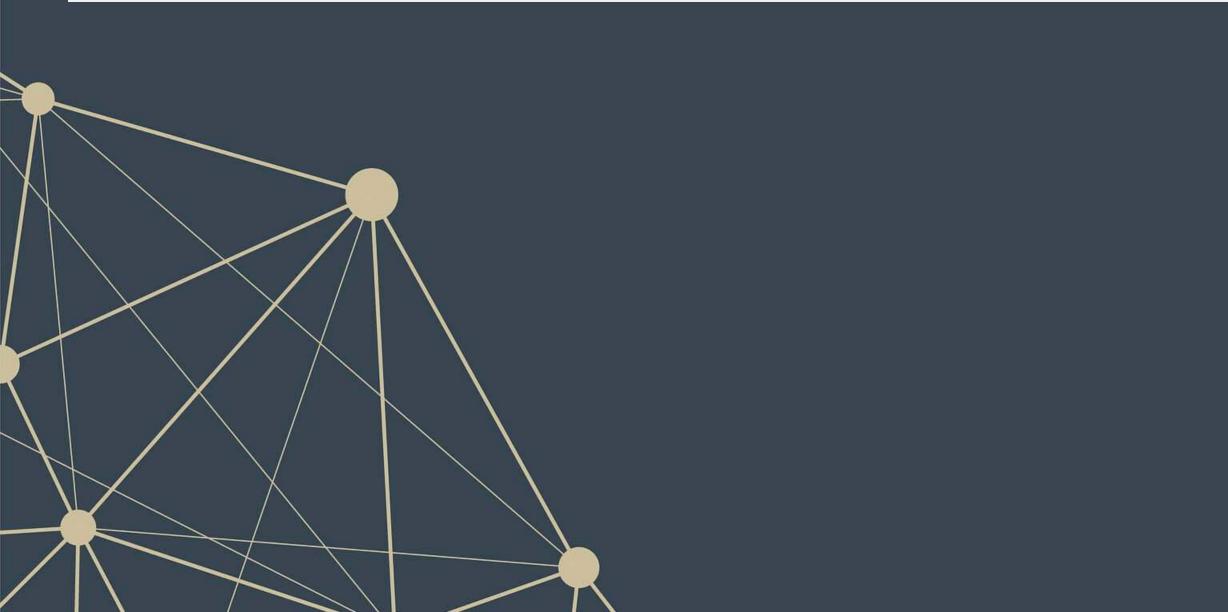
Learning objectives



- **Theory:**
 - Develop a logical approach to problem solving with data
 - Statistics
 - Causation
 - Hypothesis testing
- Application:
 - Predicting revenue for real estate firms
- Methodology:
 - Univariate stats
 - Linear regression
 - Visualization

Datacamp

- For next week:
 - Just 2 chapters:
 - 1 on linear regression
 - 1 on tidyverse methods
- The full list of Datacamp materials for the course is up on eLearn



R Installation

- If you haven't already, make sure to install R and R Studio!
 - Instructions are in Session 1's slides
 - You will need it for this week's assignment
- Please install a few packages using the following code
 - These packages are also needed for the first assignment
 - You are welcome to explore other packages as well, but those will not be necessary for now

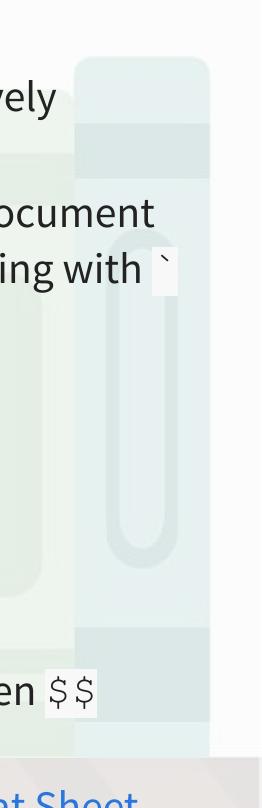
Run this in the R Console inside RStudio install.packages(c("tidyverse", "plotly", "tufte", "reshape2"))

Assignments will be provided as R Markdown files

The format will generally all be filled out – you will just add to it, answer questions, analyze data, and explain your work. Instructions and hints are in the same file

R Markdown: A quick guide

- Headers and subheaders start with # and ##, respectively
- Code blocks starts with ``` {r} and end with ```
 - By default, all code and figures will show up in the document
- Inline code goes in a block starting with `r`` and ending with `
- Italic font can be used by putting * or _ around text
- Bold font can be used by putting ** around text
 - E.g.: **bold text** becomes bold text
- To render the document, click SK nit
- Math can be placed between \$ to use LaTeX notation
 - E.g. \$\frac{revt}{at}\$ becomes $\frac{revt}{at}$
- Full equations (on their own line) can be placed between \$\$
- A block quote is prefixed with >
- For a complete guide, see R Studio's R Markdown::Cheat Sheet

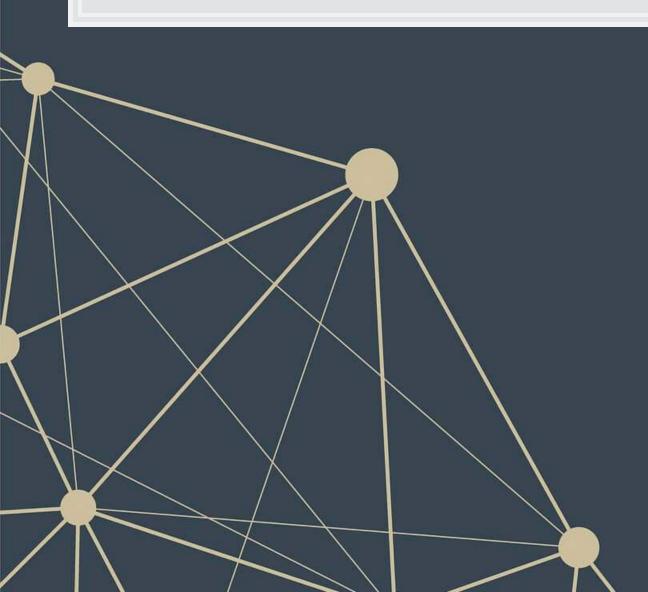


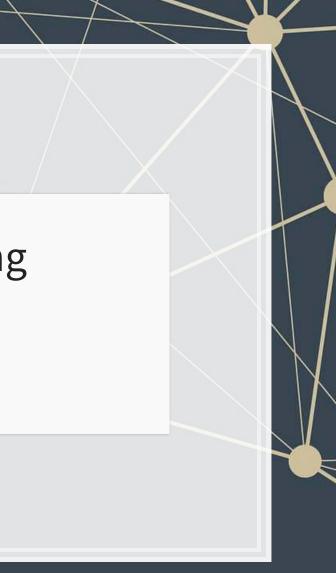
Application: Revenue prediction

The question

How can we predict revenue for a company, leveraging data about that company, related companies, and macro factors

• Specific application: Real estate companies





More specifically...

- Can we use a company's own accounting data to predict it's future revenue?
- Can we use other companies' accounting data to better predict all of their future revenue?
- Can we augment this data with macro economic data to further improve prediction?
 - Singapore business sentiment data

Linear models

What is a linear model?

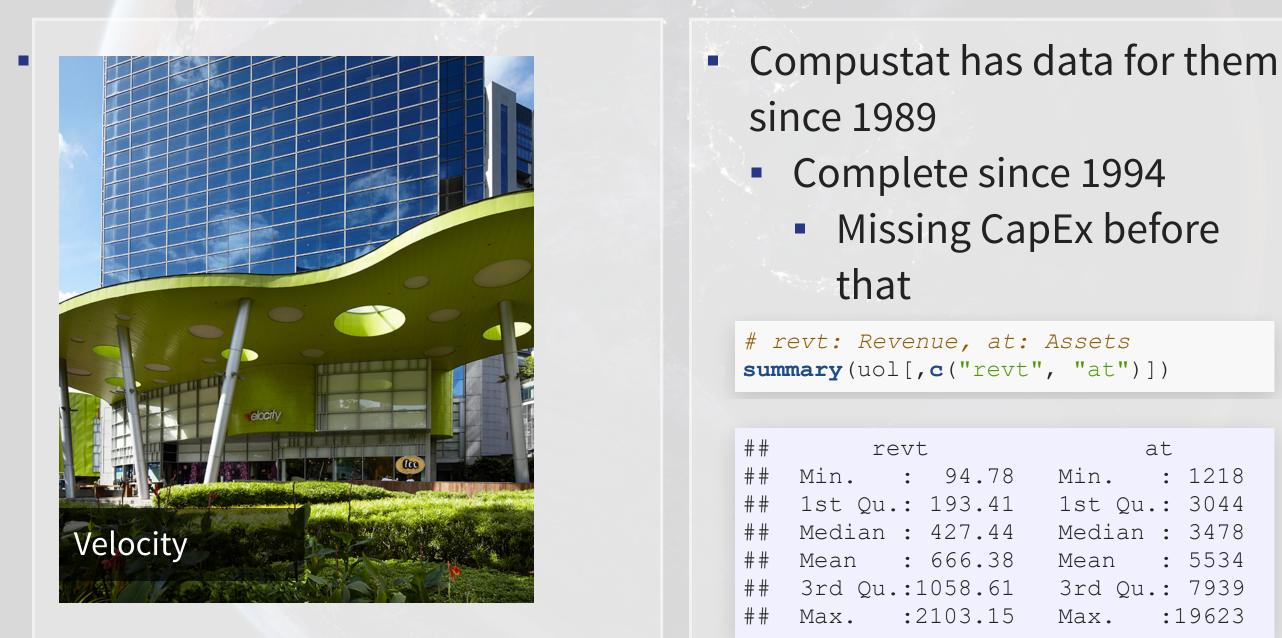
 $\hat{y} = \alpha + \beta \hat{x} + \varepsilon$

- The simplest model is trying to predict some outcome \hat{y} as a function of an input \hat{x}
 - \hat{y} in our case is a firm's revenue in a given year
 - \hat{x} could be a firm's assets in a given year
 - α and β are solved for
 - ε is the error in the measurement

I will refer to this as an OLS model – Ordinary Least Square regression

Example

Let's predict UOL's revenue for 2016

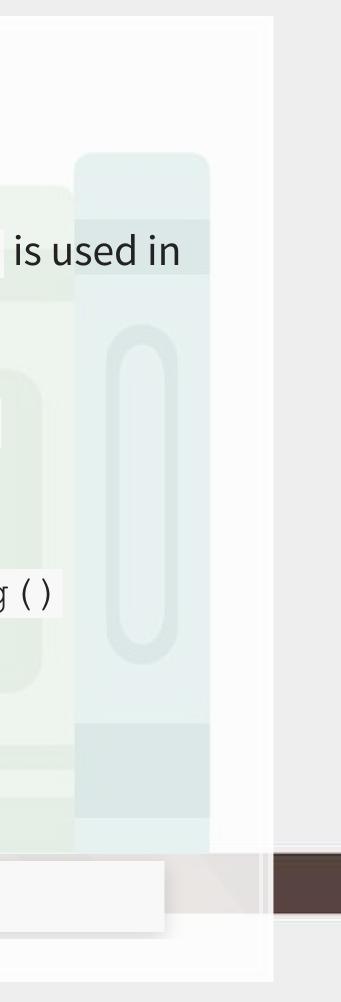


at : 1218 1st Qu.: 3044 Median : 3478 : 5534 3rd Qu.: 7939 :19623

Linear models in R

- To run a linear model, use lm ()
 - The first argument is a formula for your model, where ~ is used in place of an equals sign
 - The left side is what you want to predict
 - The right side is inputs for prediction, separated by +
 - The second argument is the data to use
- Additional variations for the formula:
 - Functions transforming inputs (as vectors), such as log()
 - Fully interacting variables using *
 - I.e., A*B includes, A, B, and A times B in the model
 - Interactions using :
 - I.e., A: B just includes A times B in the model

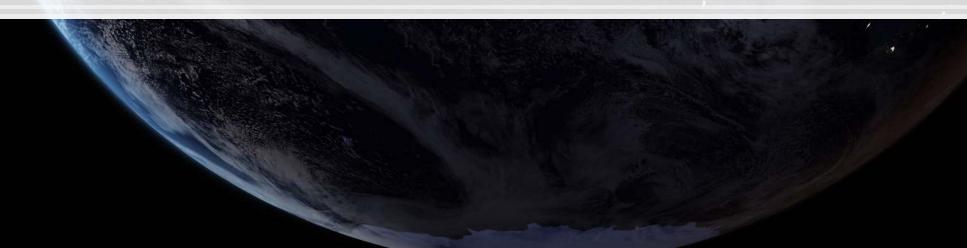
```
# Example:
lm(revt ~ at, data = uol)
```



Example: UOL

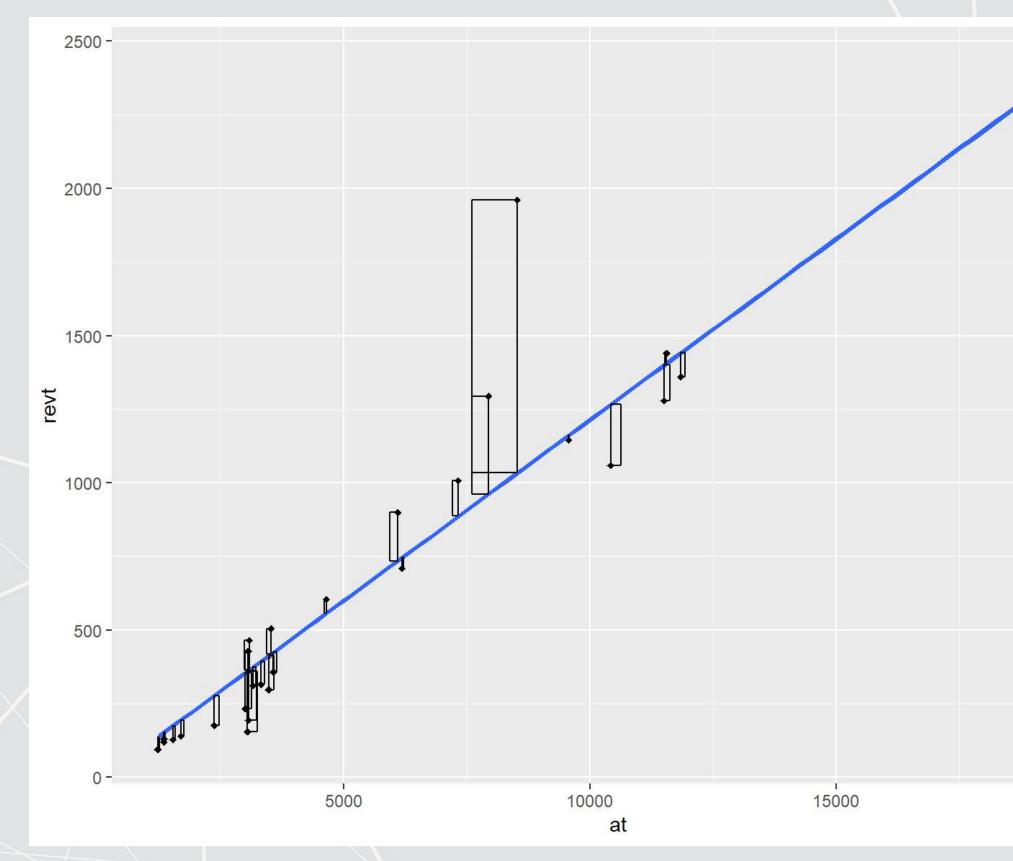
```
mod1 <- lm(revt ~ at, data = uol)
summary(mod1)</pre>
```

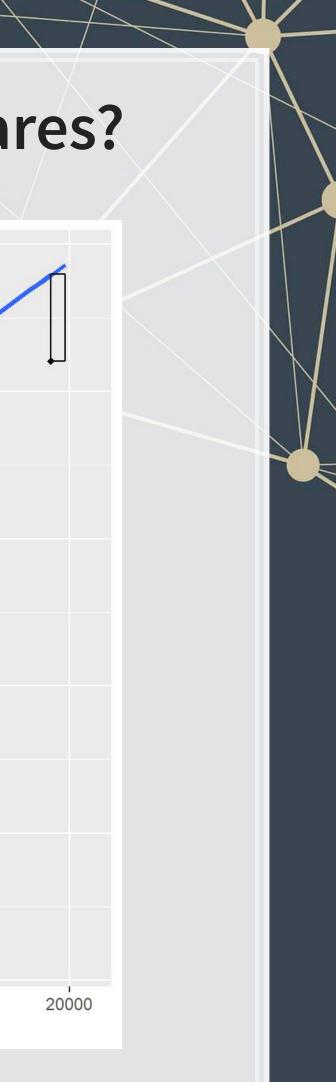
```
##
## Call:
## lm(formula = revt ~ at, data = uol)
##
## Residuals:
##
      Min
               10 Median
                               ЗQ
                                     Max
## -295.01 -101.29 -41.09 47.17 926.29
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -13.831399 67.491305 -0.205 0.839
                0.122914 0.009678 12.701 6.7e-13 ***
## at
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 221.2 on 27 degrees of freedom
## Multiple R-squared: 0.8566, Adjusted R-squared: 0.8513
## F-statistic: 161.3 on 1 and 27 DF, p-value: 6.699e-13
```





Why is it called Ordinary Least Squares?





Example: UOL

- This model wasn't so interesting...
 - Bigger firms have more revenue this is a given
- How about... revenue growth?
- And change in assets
 - i.e., Asset growth

$$\Delta x_t = rac{x_t}{x_{t-1}} - 1$$

Calculating changes in R

- The easiest way is using tidyverse's dplyr
 - This has a lag() function
- The default way to do it is to create a vector manually

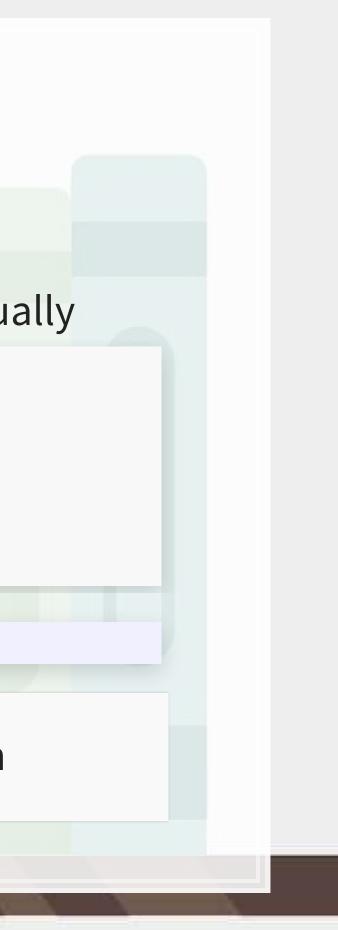
```
# tidyverse
uol <- uol %>%
  mutate(revt_growth1 = revt / lag(revt) - 1)
# R way
```

```
uol$revt_growth2 = uol$revt / c(NA, uol$revt[-length(uol$revt)]) - 1
```

identical(uol\$revt growth1, uol\$revt growth2)

[1] TRUE

You can use whichever you are comfortable with



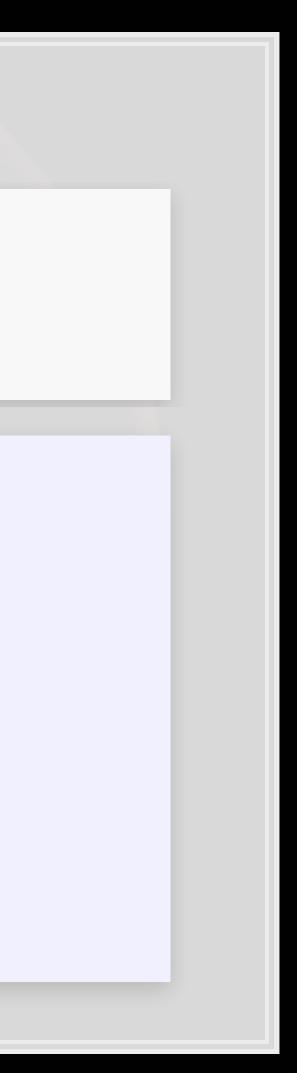
A note on mutate()

- mutate() adds variables to an existing data frame
 - Also mutate all(), mutate at(), mutate if()
 - mutate all() applies a transformation to all values in a data frame and adds these to the data frame
 - mutate at() does this for a set of specified variables
 - mutate if() transforms all variables matching a condition
 - Such as is.numeric
- Mutate can be very powerful when making more complex variables
 - For instance: Calculating growth within company in a multicompany data frame
 - It's way more than needed for a simple ROA though.

Example: UOL with changes

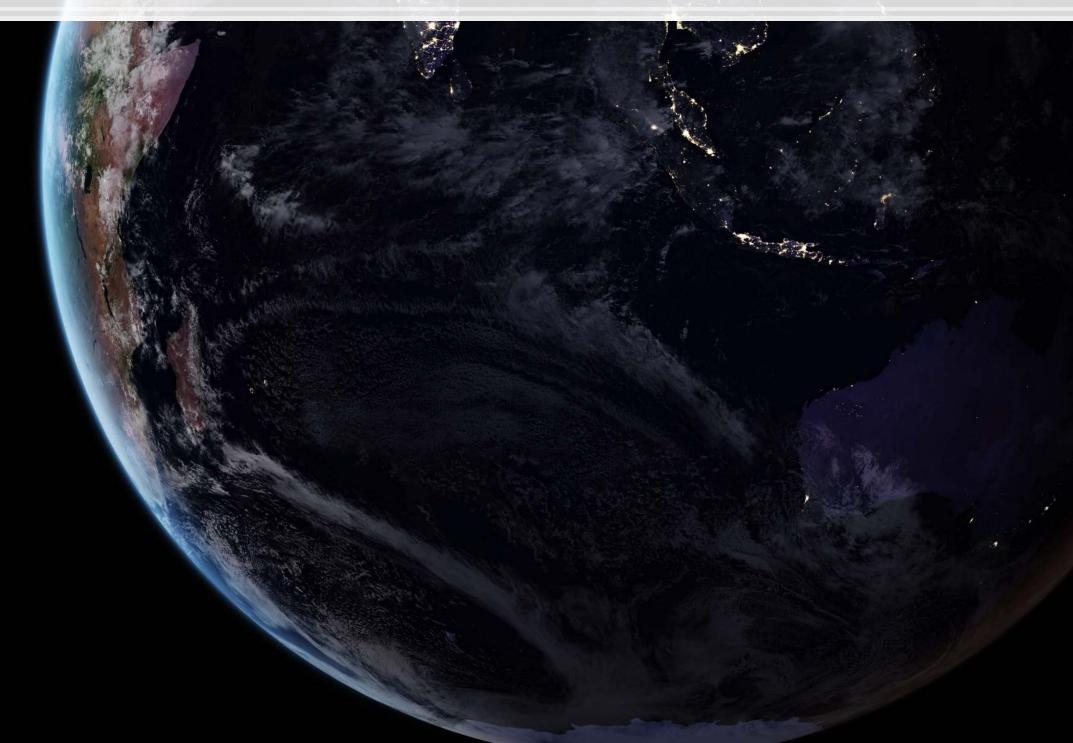
```
# Make the other needed change
uol <- uol %>%
    mutate(at_growth = at / lag(at) - 1) %>% # Calculate asset growth
    rename(revt_growth = revt_growth1) # Rename for readability
# Run the OLS model
mod2 <- lm(revt_growth ~ at_growth, data = uol)
summary(mod2)</pre>
```

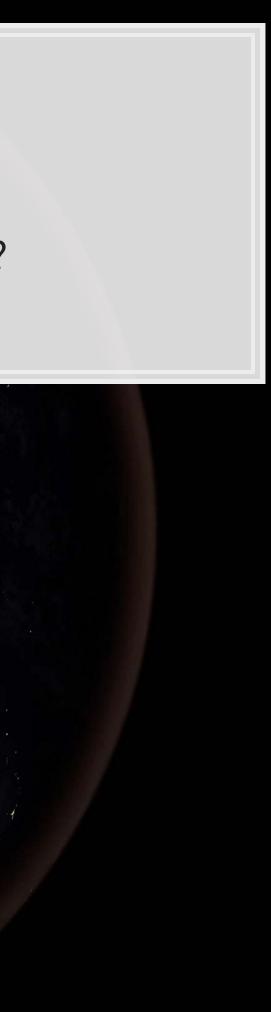
```
##
## Call:
## lm(formula = revt growth ~ at growth, data = uol)
##
## Residuals:
##
      Min
             10 Median 30
                                         Max
## -0.57736 -0.10534 -0.00953 0.15132 0.42284
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.09024 0.05620 1.606 0.1204
## at growth 0.53821 0.27717 1.942 0.0631 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2444 on 26 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.1267, Adjusted R-squared: 0.09307
## F-statistic: 3.771 on 1 and 26 DF, p-value: 0.06307
```



Example: UOL with changes

- Δ Assets doesn't capture Δ Revenue so well
- Perhaps change in total assets is a bad choice?
- Or perhaps we need to expand our model?





Scaling up!

 $\hat{y} = lpha + eta_1 \hat{x}_1 + eta_2 \hat{x}_2 + \ldots + arepsilon$

- OLS doesn't need to be restricted to just 1 input!
 - Not unlimited though (yet)
 - Number of inputs must be less than the number of observations minus 1
- Each \hat{x}_i is an input in our model
- Each β_i is something we will solve for
- \hat{y}, α , and ε are the same as before

Scaling up our model

We have... 464 variables from Compustat Global alone!

Let's just add them all?

- We only have 28 observations...
 - 28 << 464...

Now what?

Scaling up our model

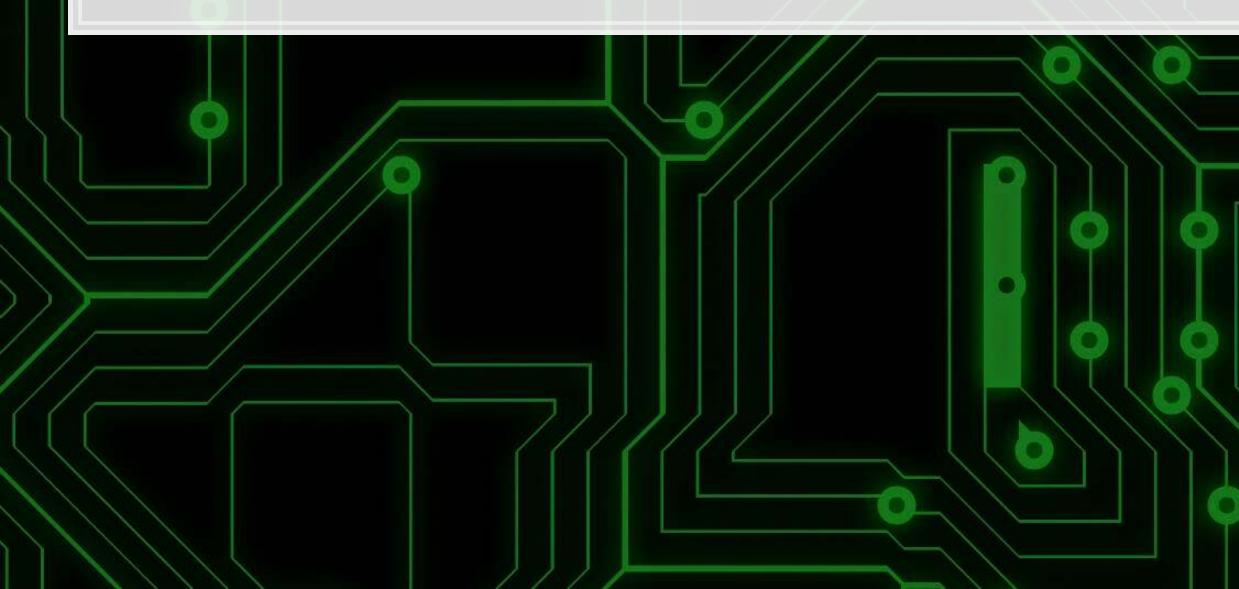
Building a model requires careful thought!

This is where having accounting and business knowledge comes in!

What makes sense to add to our model?

Practice: mutate()

- This practice is to make sure you understand how to use mutate with leads and lags
 - These are very important when dealing with business data!
- Do exercises 1 and 2 on today's R practice file:
 - R Practice
 - Shortlink: rmc.link/420r2



Statistics Foundations

Frequentist statistics

A specific test is one of an infinite number of replications

- The "correct" answer should occur most frequently, i.e., with a high probability
- Focus on true vs false
- Treat unknowns as fixed constants to figure out
 - Not random quantities
- Where it's used
 - Classical statistics methods
 - Like OLS

Bayesian statistics

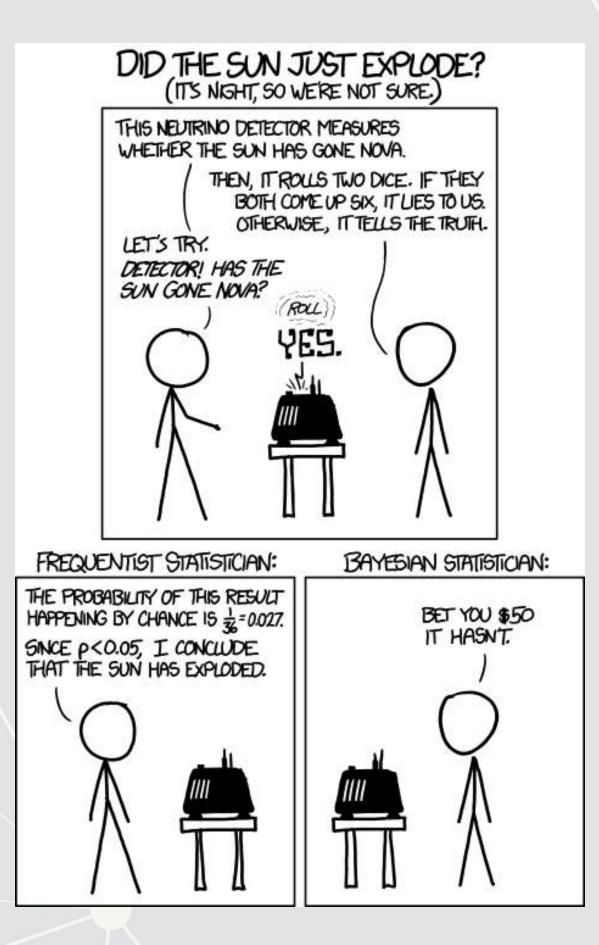
Focus on distributions and beliefs

- Prior distribution what is believed before the experiment
- Posterior distribution: an updated belief of the distribution due to the experiment
- Derive distributions of parameters
- Where it's used:
 - Many machine learning methods
 - Bayesian updating acts as the learning
 - Bayesian statistics

A separate school of statistics thought

t n due to the

Frequentist vs Bayesian methods



Frequentist perspective: Repeat the test

```
detector <- function() {</pre>
  dice <- sample(1:6, size=2, replace=TRUE)</pre>
  if (sum(dice) == 12) {
    "exploded"
  } else {
    "still there"
  }
experiment <- replicate(1000, detector())</pre>
# p value
p <- sum(experiment == "still there") / 1000</pre>
if (p < 0.05) {
  paste("p-value: ", p, "-- Fail to reject H A, sun appears to have exploded")
} else {
  paste("p-value: ", p, "-- Reject H A that sun exploded")
}
```

[1] "p-value: 0.97 -- Reject H A that sun exploded"

Frequentist: The sun didn't explode

Bayes persepctive: Bayes rule

$$P(A|B) = rac{P(B|A)P(A)}{P(B)}$$

- A: The sun exploded
- *B*: The detector said it exploded
- P(A): Really, really small. Say, ~0.

•
$$P(B): \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$$

• $P(B|A): \frac{35}{36}$

$$P(A|B) = rac{P(B|A)P(A)}{P(B)} = rac{rac{35}{36} imes \sim 0}{rac{1}{36}} = 35 imes \sim 0$$

Bayesian: The sun didn't explode

What analytics typically relies on

- Regression approaches
 - Most often done in a frequentist manner
 - Can be done in a Bayesian manner as well
- Artificial Intelligence
 - Often frequentist
 - Sometimes neither "It just works"
- Machine learning
 - Sometimes Bayesian, sometime frequentist
 - We'll see both

We will use both to some extent – for our purposes, we will not debate the merits of either school of thought, but use tools derived from both

Confusion from frequentist approaches

- Possible contradictions:
 - F test says the model is good yet nothing is statistically significant
 - Individual *p*-values are good yet the model isn't
 - One measure says the model is good yet another doesn't

There are many ways to measure a model, each with their own merits. They don't always agree, and it's on us to pick a reasonable measure.

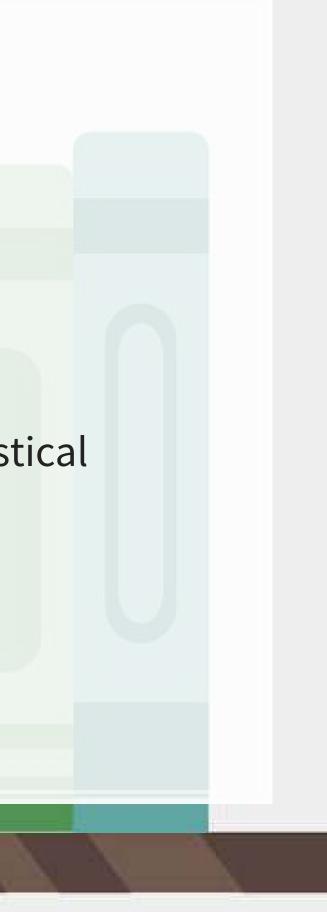
Formalizing frequentist testing

Why formalize?

- Our current approach has been ad hoc
 - What is our goal?
 - How will we know if we have achieved it?
- Formalization provides more rigor

Scientific method

- 1. Question
 - What are we trying to determine?
- 2. Hypothesis
 - What do we think will happen? Build a model
- 3. Prediction
 - What exactly will we test? Formalize model into a statistical approach
- 4. Testing
 - Test the model
- 5. Analysis
 - Did it work?



Hypotheses

- Null hypothesis, a.k.a. H_0
 - The status quo
 - Typically: The model doesn't work
- Alternative hypothesis, a.k.a. H_1 or H_A
 - The model does work (and perhaps how it works)
- Frequentist statistics can never directly support $H_0!$
 - Only can fail to find support for H_A
 - Even if our p-value is 1, we can't say that the results prove the null hypothesis!

We will use test statistics to test the hypotheses

Regression

- Regression (like OLS) has the following assumptions 1. The data is generated following some model
 - E.g., a linear model
 - Next week, a logistic model
 - 2. The data conforms to some statistical properties as required by the test
 - 3. The model coefficients are something to precisely determine
 - I.e., the coefficients are constants
 - 4. *p*-values provide a measure of the chance of an error in a particular aspect of the model
 - For instance, the p-value on eta_1 in $y = lpha + eta_1 x_1 + arepsilon$ essentially gives the probability that the sign of β_1 is wrong

OLS Statistical properties

 $y = lpha + eta_1 x_1 + eta_2 x_2 + \ldots + arepsilon$

 $\hat{y} = lpha + eta_1 \hat{x}_1 + eta_2 \hat{x}_2 + \ldots + \hat{arepsilon}$

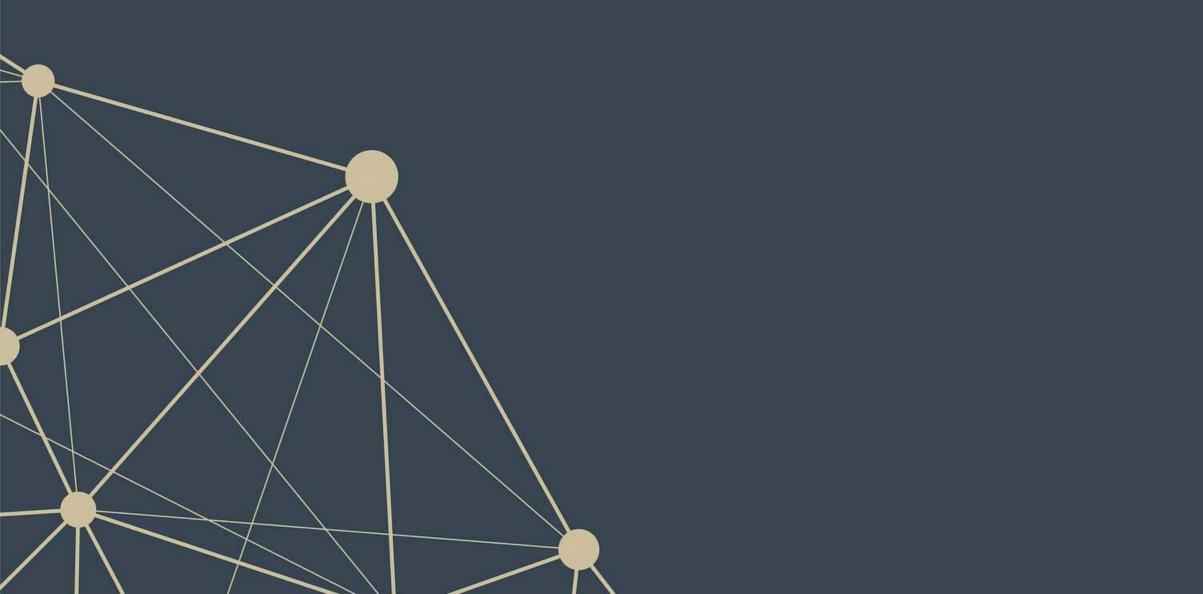
1. There should be a *linear* relationship between y and each x_i

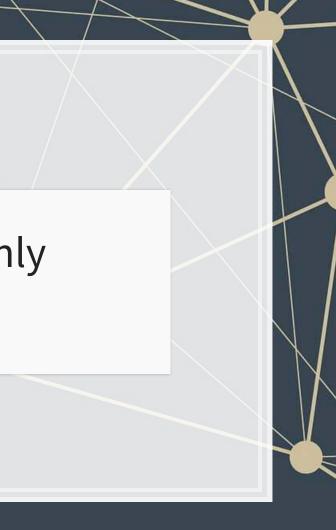
- I.e., y is [approximated by] a constant multiple of each x_i
- Otherwise we shouldn't use a linear regression
- 2. Each \hat{x}_i is normally distributed
 - Not so important with larger data sets, but a good to adhere to
- 3. Each observation is independent
 - We'll violate this one for the sake of *causality*
- 4. Homoskedasticity: Variance in errors is constant
 - This is important
- 5. Not too much multicollinearity
 - Each \hat{x}_i should be relatively independent from the others
 - Some is OK

Practical implications

Models designed under a frequentist approach can only answer the question of "does this matter?"

• Is this a problem?





Linear model implementation

What exactly is a linear model?

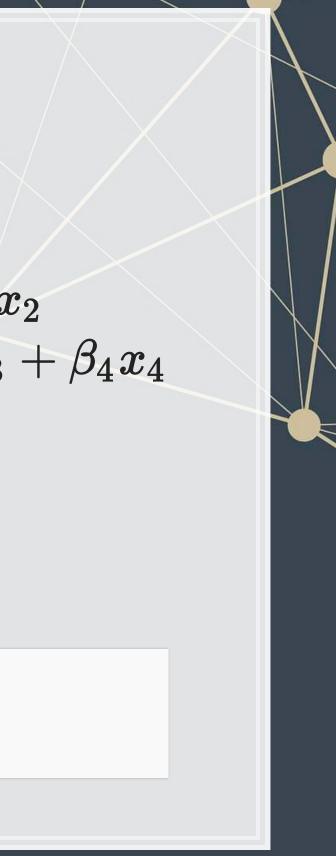
- Anything OLS is linear
- Many transformations can be recast to linear
 - Ex.: $log(y) = lpha + eta_1 x_1 + eta_2 x_2 + eta_3 x_1^2 + eta_4 x_1 \cdot x_2$
 - This is the same as $y' = lpha + eta_1 x_1 + eta_2 x_2 + eta_3 x_3 + eta_4 x_4$ where:

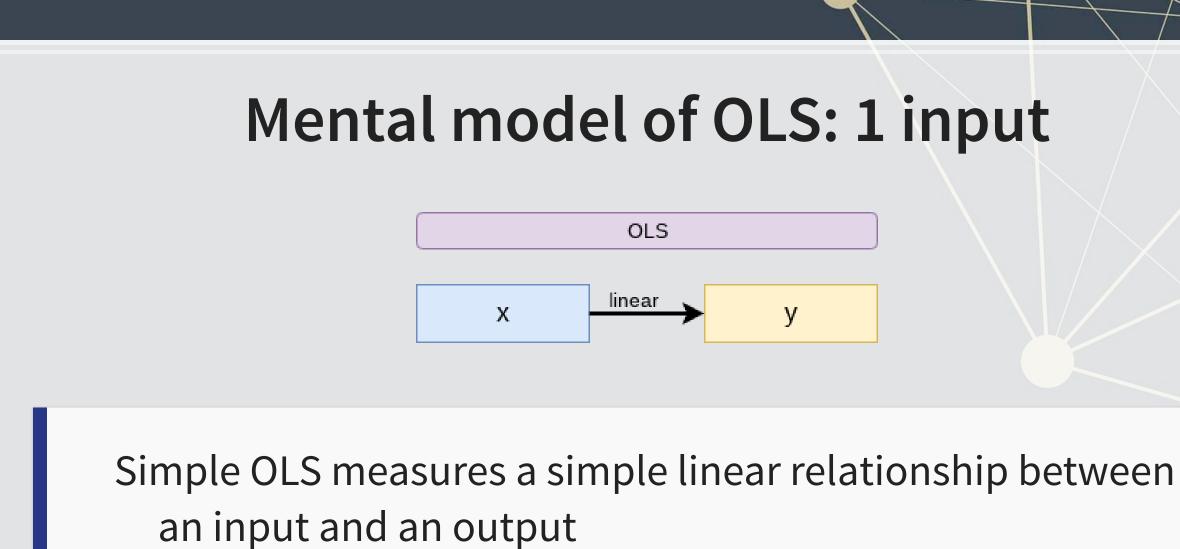
•
$$y' = log(y)$$

•
$$x_3 = {x_1}^2$$

•
$$x_4=x_1\cdot x_2$$

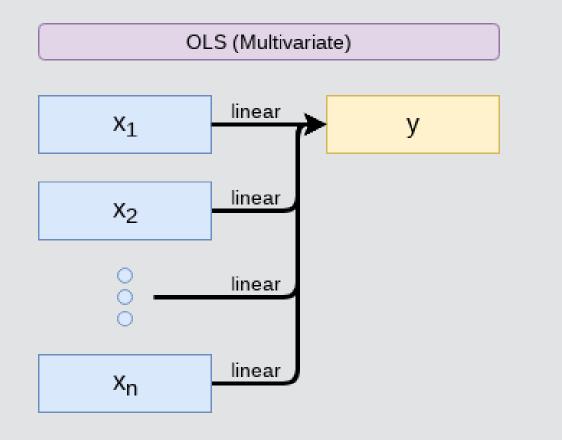
Linear models are *very* flexible





• E.g.: Our first regression this week: Revenue on assets

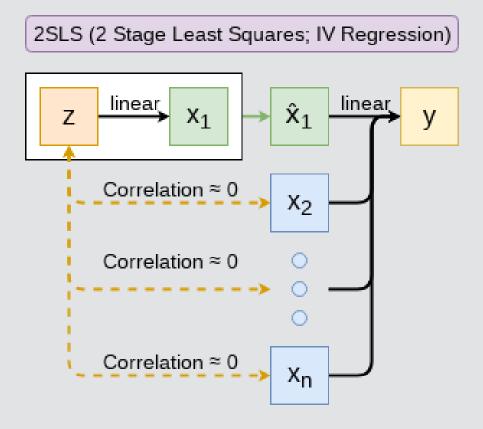
Mental model of OLS: Multiple inputs



OLS measures simple linear relationships between a set of inputs and one output

• E.g.: This is what we did when scaling up earlier this session

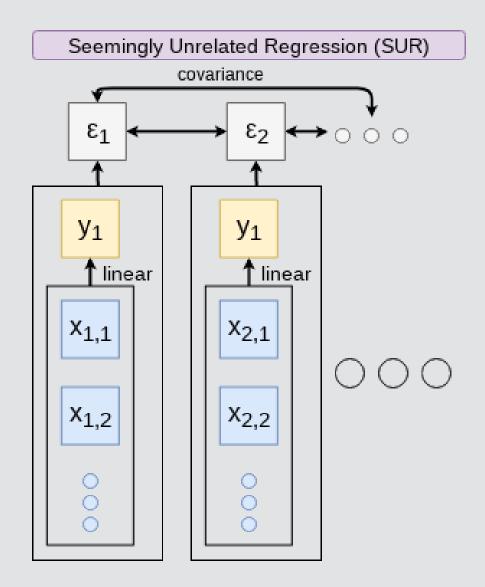
Other linear models: IV Regression (2SLS)



IV/2SLS models linear relationships where the effect of some x_i on y may be confounded by outside factors.

- E.g.: Modeling the effect of management pay duration (like bond duration) on firms' choice to issue earnings forecasts
 - Instrument with CEO tenure (Cheng, Cho, and Kim 2015)

Other linear models: SUR



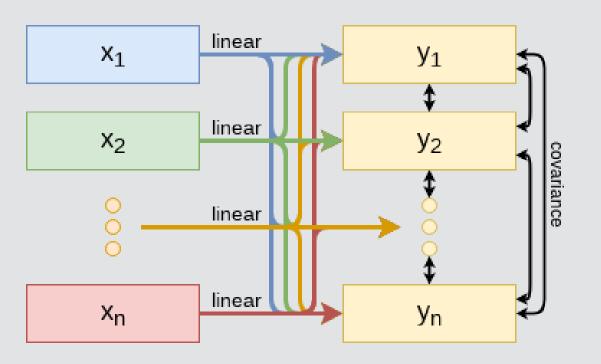
SUR models systems with related error terms

• E.g.: Modeling both revenue and earnings simultaneously

7.6

Other linear models: 3SLS

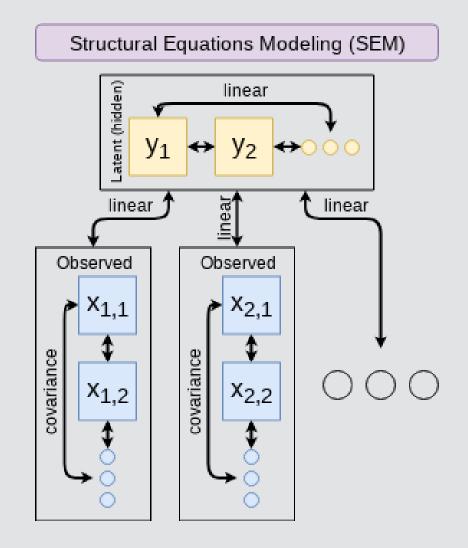
3SLS (Three Stage Least Squares)



3SLS models systems of equations with *related outputs*

E.g.: Modeling both stock return, volatility, and volume simultaneously

Other linear models: SEM



SEM can model abstract and multi-level relationships

E.g.: Showing that organizational commitment leads to higher job satisfaction, not the other way around (Poznanski and Bline 1999)

Modeling choices: Model selection

Pick what fits your problem!

- For forecasting a quantity:
 - Usually some sort of linear model regressed using OLS
 - The other model types mentioned are great for simultaneous forecasting of multiple outputs
- For forecasting a binary outcome:
 - Usually logit or a related model (we'll start this in 2 weeks)
- For forensics:
 - Usually logit or a related model

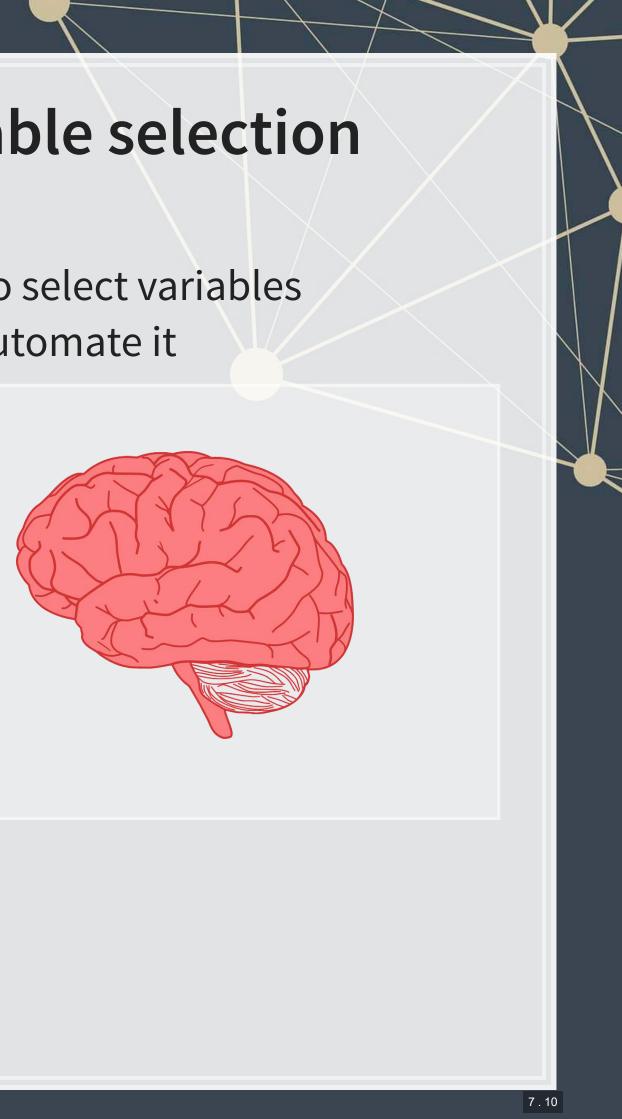
There are many more model types though!

Modeling choices: Variable selection

- The options:
 - 1. Use your own knowledge to select variables
 - 2. Use a selection model to automate it

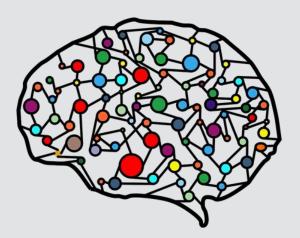
Own knowledge

- Build a model based on your knowledge of the problem and situation
- This is generally better
 - The result should be more interpretable
 - For prediction, you should know relationships better than most algorithms



Modeling choices: Automated selection

- Traditional methods include:
 - Forward selection: Start with nothing and add variables with the most contribution to Adj R^2 until it stops going up
 - Backward selection: Start with all inputs and remove variables with the worst (negative) contribution to Adj R^2 until it stops going up
 - Stepwise selection: Like forward selection, but drops nonsignificant predictors
- Newer methods:
 - Lasso and Elastic Net based models
 - Optimize with high penalties for complexity (i.e., # of inputs)
 - We will discuss these in week 5



The overfitting problem

Or: Why do we like simpler models so much?

- Overfitting happens when a model fits in-sample data *too well*...
 - To the point where it also models any idiosyncrasies or errors in the data
 - This harms prediction performance
 - Directly harming our forecasts

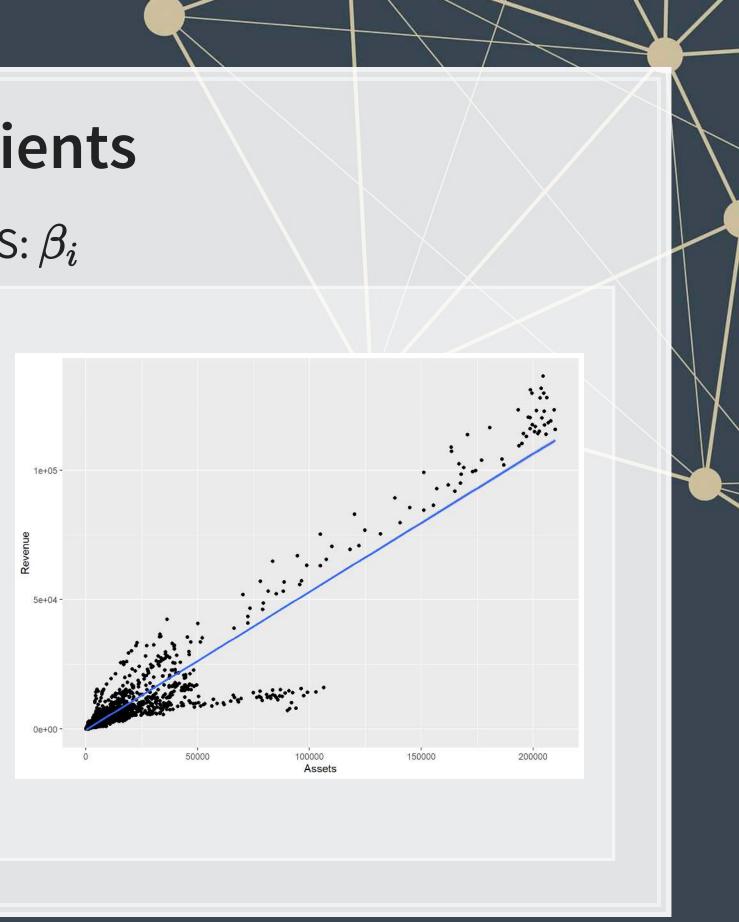
An overfitted model works really well on its own data, and quite poorly on new data

Statistical tests and Interpretation

Coefficients

• In OLS: β_i

- A change in x_i by 1 leads to a change in y by β_i
- Essentially, the slope between
 x and *y*
- The blue line in the chart is the regression line for $\hat{Revenue} = \alpha + \beta_i Assets$ for retail firms since 1960



P-values

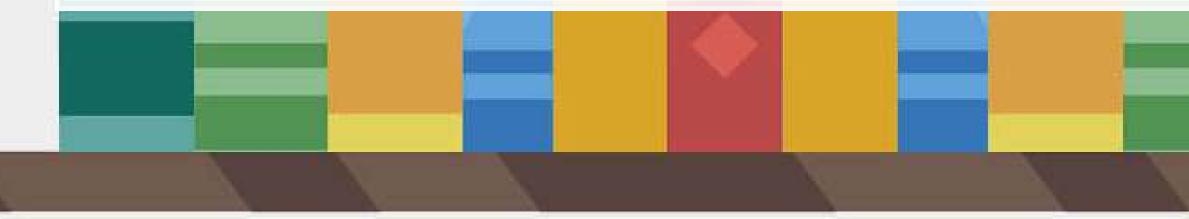
p-values tell us the probability that an individual result is due to random chance

> "The P value is defined as the probability under the assumption of no effect or no difference (null hypothesis), of obtaining a result equal to or more extreme than what was actually observed." – Dahiru 2008

These are very useful, particularly for a frequentist approach First used in the 1700s, but popularized by Ronald Fisher in the 1920s and 1930s

P-values: Rule of thumb

- If p < 0.05 and the coefficient matches our mental model, we can consider this as supporting our model
 - If p < 0.05 but the coefficient is opposite, then it is suggesting a problem with our model
 - If p > 0.10, it is rejecting the alternative hypothesis
- If 0.05 it depends...
 - For a small dataset or a complex problem, we can use 0.10 as a cutoff
 - For a huge dataset or a simple problem, we should use 0.05



One vs two tailed tests

- Best practice:
 - Use a two tailed test
- Second best practice:
 - If you use a 1-tailed test, use a p-value cutoff of 0.025 or 0.05
 - This is equivalent to the best practice, just roundabout
- Common but generally inappropriate:
 - Use a one tailed test with cutoffs of 0.05 or 0.10 because your hypothesis is directional

R^2

- R^2 = Explained variation / Total variation
 - Variation = difference in the observed output variable from its own mean
- A high R^2 indicates that the model fits the data very well
- A low R^2 indicates that the model is missing much of the variation in the output
- \mathbb{R}^2 is technically a *biased* estimator
- Adjusted R^2 downweights R^2 and makes it unbiased

•
$$R^2_{Adj} = PR^2 + 1 - P$$

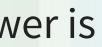
• Where
$$P=rac{n-1}{n-p-1}$$

- *n* is the number of observations
- *p* is the number of inputs in the model

Test statistics

- Testing a coefficient:
 - Use a t or z test
- Testing a model as a whole
 - F-test, check adjusted R squared as well
- Testing across models
 - Chi squared (χ^2) test
 - Vuong test (comparing R^2)
 - Akaike Information Criterion (AIC) (Comparing MLEs, lower is better)

All of these have p-values, except for AIC

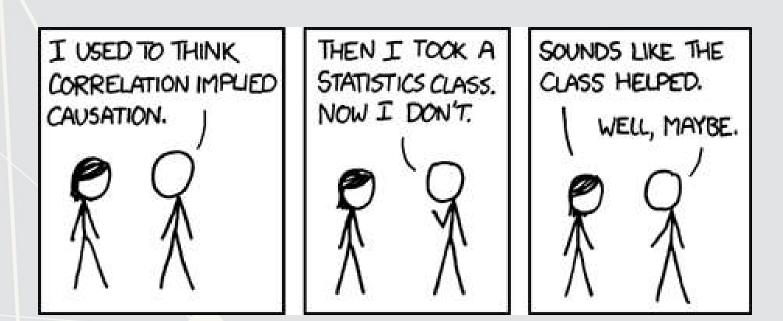


Causality

What is causality?

 $A \rightarrow B$

- Causality is A causing B
 - This means more than A and B are correlated
- I.e., If A changes, B changes. But B changing doesn't mean Achanged
 - Unless B is 100% driven by A
- Very difficult to determine, particularly for events that happen [almost] simultaneously
- Examples of correlations that aren't causation



Time and causality

$A \rightarrow B$ or $A \leftarrow B$?

$A_t ightarrow B_{t+1}$

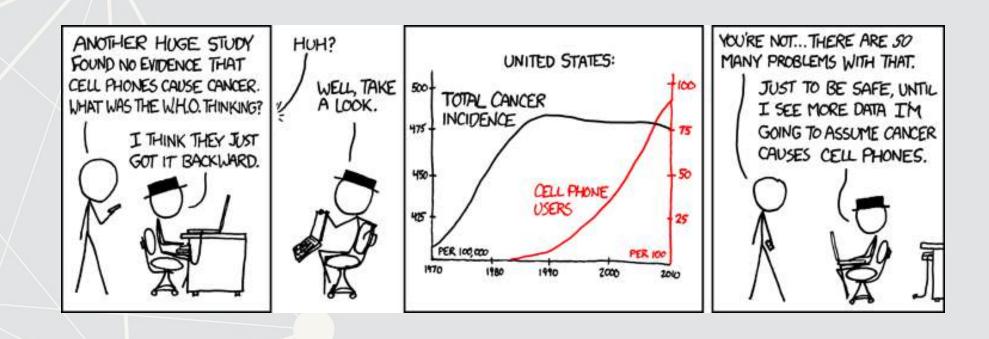
- If there is a separation in time, it's easier to say A caused B
 - Observe *A*, then see if *B* changes after
- Conveniently, we have this structure when forecasting
 - Recall last week's model:

 $Revenue_{t+1} = Revenue_t + \dots$

Time and causality break down

 $A_t
ightarrow B_{t+1}$? OR $C
ightarrow A_t$ and $C
ightarrow B_{t+1}$?

- The above illustrates the Correlated omitted variable problem
 - A doesn't cause B... Instead, some other force C causes both
 - Bane of social scientists everywhere
- This is less important for predictive analytics, as we care more about performance, but...
 - It can complicate interpreting your results
 - Figuring out C can help improve you model's predictions
 - So find C!



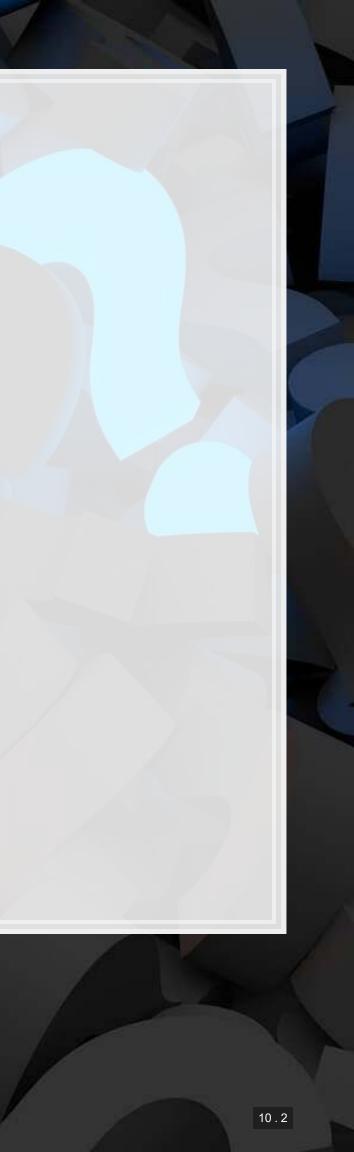


Revisiting the previous problem

Formalizing our last test

1. Question

- 2. Hypotheses
 - H_0 :
- *H*₁:3. Prediction
- 4. Testing:
- 5. Statistical tests:
 - Individual variables:
 - Model:



Is this model better?

```
anova (mod2, mod3, test="Chisq")
```

```
## Analysis of Variance Table
##
## Model 1: revt growth ~ at growth
## Model 2: revt growth ~ lct growth + che growth + ebit growth
            RSS Df Sum of Sq Pr(>Chi)
    Res.Df
##
## 1
        26 1.5534
        24 1.1918 2 0.36168 0.0262 *
## 2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

A bit better at p < 0.05

This means our model with change in current liabilities, cash, and EBIT appears to be better than the model with change in assets.

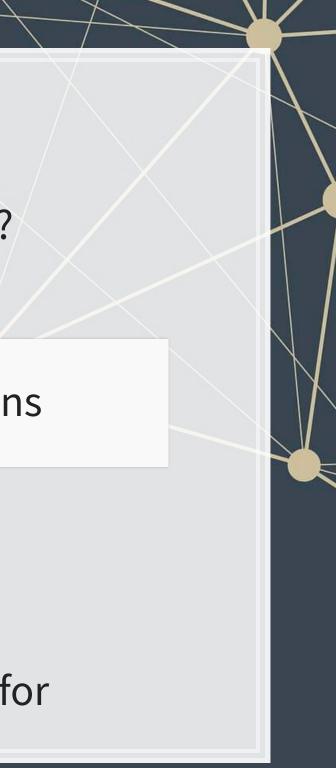
Panel data

Expanding our methodology

- Why should we limit ourselves to 1 firm's data?
- The nature of data analysis is such:

Adding more data usually helps improve predictions

- Assuming:
 - The data isn't of low quality (too noisy)
 - The data is relevant
 - Any differences can be reasonably controlled for



Expanding our question

- Previously: Can we predict revenue using a firm's accounting information?
 - This is simultaneous, and thus is not forecasting
- Now: Can we predict *future* revenue using a firm's accounting information?
 - By trying to predict ahead, we are now in the realm of forecasting
 - What do we need to change?
 - \hat{y} will need to be 1 year in the future

First things first

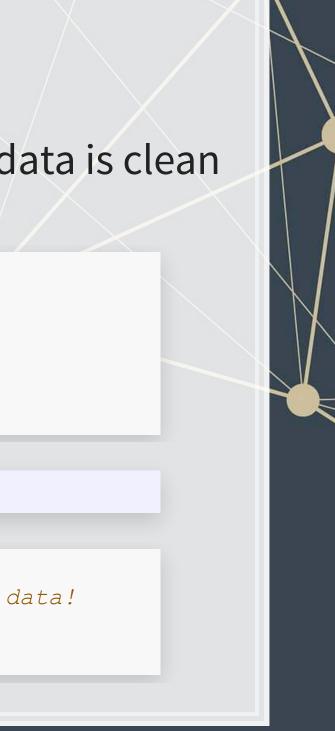
- When using a lot of data, it is important to make sure the data is clean
- In our case, we may want to remove any very small firms

Ensure firms have at least \$1M (local currency), and have revenue # df contains all real estate companies excluding North America df clean <- filter(df, df\$at>1, df\$revt>0)

We cleaned out 578 observations!
print(c(nrow(df), nrow(df clean)))

[1] 5161 4583

Another useful cleaning funtion: # Replaces NaN, Inf, and -Inf with NA for all numeric variables in the data! df_clean <- df_clean %>% mutate if(is.numeric, list(~replace(., !is.finite(.), NA)))



Looking back at the prior models

uol <- uol %>% mutate(revt_lead = lead(revt)) # From dplyr
forecast1 <- lm(revt_lead ~ lct + che + ebit, data=uol)
library(broom) # Lets us view bigger regression outputs in a tidy fashion
tidy(forecast1) # Present regression output</pre>

## #	A tibble: 4	x 5			
##	term	estimate	std.error	statistic	p.value
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	(Intercept)	87.4	124.	0.707	0.486
## 2	lct	0.213	0.291	0.731	0.472
## 3	che	0.112	0.349	0.319	0.752
## 4	ebit	2.49	1.03	2.42	0.0236

glance(forecast1) # Present regression statistics

This model is ok, but we can do better.

Expanding the prior model

forecast2 <-</pre> lm(revt lead ~ revt + act + che + lct + dp + ebit , data=uol) tidy(forecast2)

##	#	A tibble: 7	x 5			
##		term	estimate	std.error	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	15.6	97.0	0.161	0.874
##	2	revt	1.49	0.414	3.59	0.00174
##	3	act	0.324	0.165	1.96	0.0629
##	4	che	0.0401	0.310	0.129	0.898
##	5	lct	-0.198	0.179	-1.10	0.283
##	6	dp	3.63	5.42	0.669	0.511
##	7	ebit	-3.57	1.36	-2.62	0.0161

- Revenue to capture stickiness of revenue
- Current assest & Cash (and equivalents) to capture asset base
- Current liabilities to capture payments due
- Depreciation to capture decrease in real estate asset values
- EBIT to capture operational performance

Expanding the prior model

glance(forecast2)

##	#	A tibble:	1 x 11						
##		r.squared	adj.r.squar	ed sigm	a statistic	p.value	df	logLik	AIC
##		<dbl></dbl>	<db< td=""><td>l> <dbl< td=""><td>> <dbl></dbl></td><td><dbl></dbl></td><td><int></int></td><td><dbl></dbl></td><td><dbl></dbl></td></dbl<></td></db<>	l> <dbl< td=""><td>> <dbl></dbl></td><td><dbl></dbl></td><td><int></int></td><td><dbl></dbl></td><td><dbl></dbl></td></dbl<>	> <dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>
##	1	0.903	0.8	75 203	. 32.5	1.41e-9	7	-184.	385.
##	#	with 2	2 more varia	bles: d	eviance <db< td=""><td>l>, df.re</td><td>esidual</td><td>L <int></int></td><td></td></db<>	l>, df.re	esidual	L <int></int>	

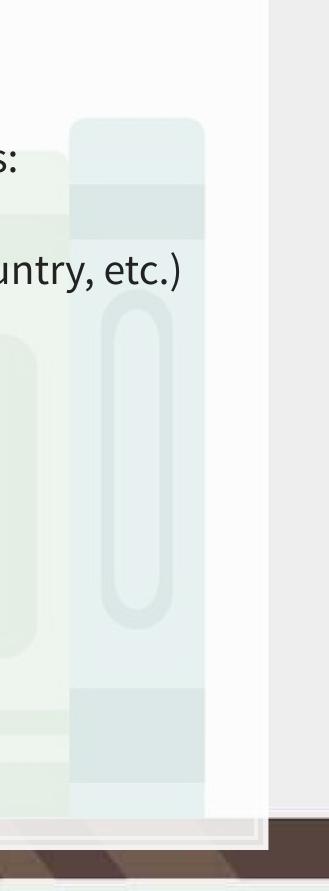
anova(forecast1, forecast2, test="Chisq")

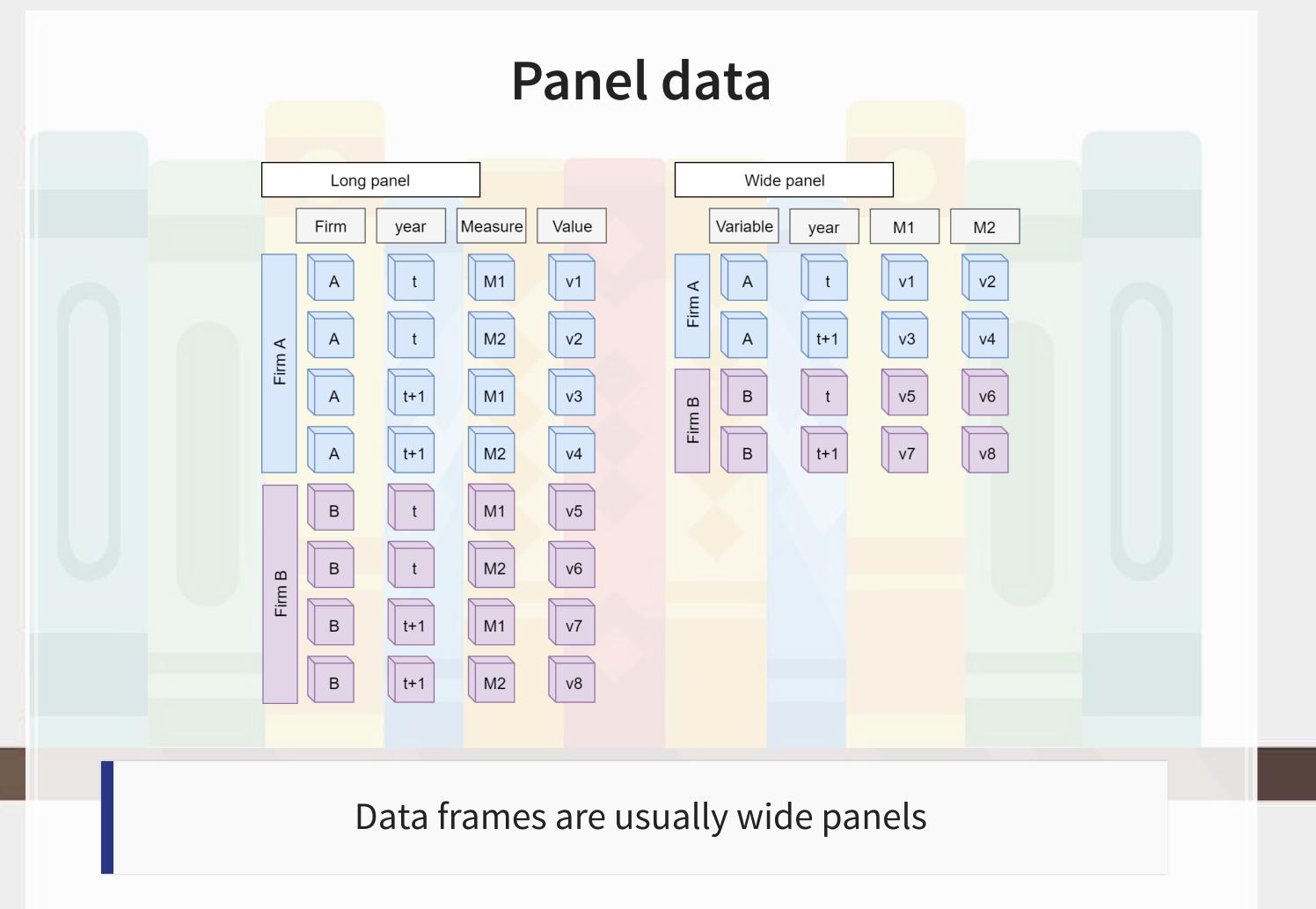
```
## Analysis of Variance Table
##
## Model 1: revt_lead ~ lct + che + ebit
## Model 2: revt_lead ~ revt + act + che + lct + dp + ebit
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 24 3059182
## 2 21 863005 3 2196177 1.477e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

This is better (Adj. R^2 , χ^2 , AIC).

Panel data

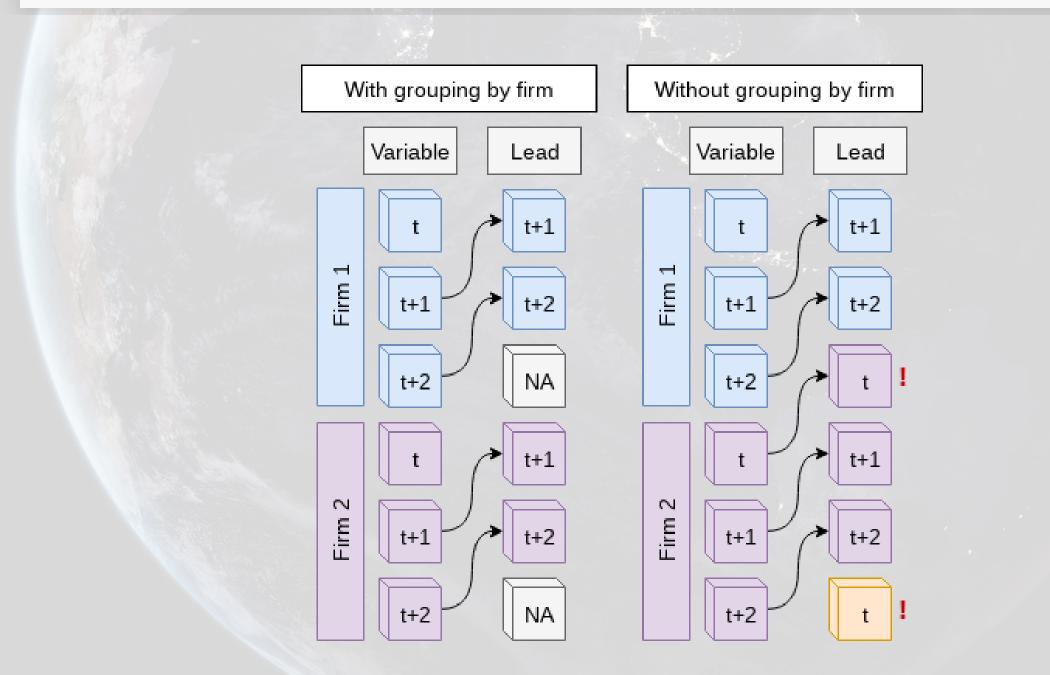
- Panel data refers to data with the following characteristics:
 - There is a time dimension
 - There is at least 1 other dimension to the data (firm, country, etc.)
- Special cases:
 - A panel where all dimensions have the same number of observations is called *balanced*
 - Otherwise we call it unbalanced
 - A panel missing the time dimension is cross-sectional
 - A panel missing the other dimension(s) is a time series
- Format:
 - Long: Indexed by all dimensions
 - Wide: Indexed only by other dimensions





All Singapore real estate companies

```
# Note the group by -- without it, lead() will pull from the subsequent firm!
# ungroup() tells R that we finished grouping
df clean <- df clean %>%
 group by(isin) %>%
 mutate(revt lead = lead(revt)) %>%
 ungroup()
```

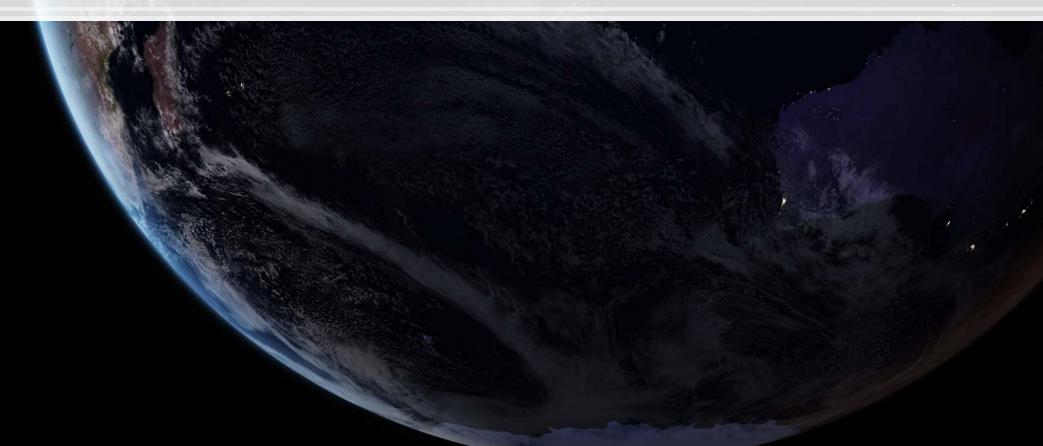


All Singapore real estate companies

forecast3 <-</pre>

lm(revt_lead ~ revt + act + che + lct + dp + ebit , data=df_clean[df_clean\$fic==
tidy(forecast3)

##	#	A tibble: 7	x 5			
##		term	estimate	std.error	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	25.0	13.2	1.89	5.95e- 2
##	2	revt	0.505	0.0762	6.63	1.43e-10
##	3	act	-0.0999	0.0545	-1.83	6.78e- 2
##	4	che	0.494	0.155	3.18	1.62e- 3
##	5	lct	0.396	0.0860	4.60	5.95e- 6
##	6	dp	4.46	1.55	2.88	4.21e- 3
##	7	ebit	-0.951	0.271	-3.51	5.18e- 4



All Singapore real estate companies

glance(forecast3)

-	##	#	A t	ibble:	1 2	x 11	L							
-	##		r.so	quared	ad <u>a</u> d	j.r.	squared	sigma	statisti	LC	p.value	e df	logLik	A
:	##			<dbl></dbl>	>		<dbl></dbl>	<dbl></dbl>	<db]< th=""><th>L></th><th><dbl></dbl></th><th>· <int></int></th><th><dbl></dbl></th><th><db]< th=""></db]<></th></db]<>	L>	<dbl></dbl>	· <int></int>	<dbl></dbl>	<db]< th=""></db]<>
:	##	1		0.844	ł		0.841	210.	291	L. 2	.63e-127	7 7	-2237.	4489
:	##	#	• • •	with	3 m.	ore	variable	es: BI	C <dbl>,</dbl>	dev	iance <d< th=""><th>lbl>, d</th><th>f.resid</th><th>al <</th></d<>	lbl>, d	f.resid	al <

Lower adjusted R^2 – This is worse? Why?

• Note: χ^2 can only be used for models on the same data Same for AIC

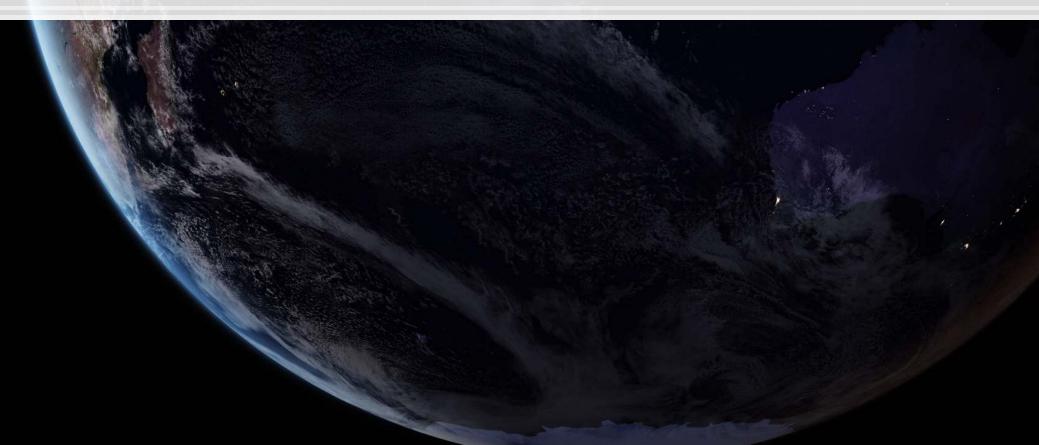
IC 1> 9. <int>

Worldwide real estate companies

forecast4 <-

lm(revt_lead ~ revt + act + che + lct + dp + ebit , data=df_clean)
tidy(forecast4)

## #	A tibble: 7	x 5			
##	term	estimate	std.error	statistic	p.value
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	(Intercept)	222.	585.	0.379	7.04e- 1
## 2	revt	0.997	0.00655	152.	0.
## 3	act	-0.00221	0.00547	-0.403	6.87e- 1
## 4	che	-0.150	0.0299	-5.02	5.36e- 7
## 5	lct	0.0412	0.0113	3.64	2.75e- 4
## 6	dp	1.52	0.184	8.26	1.89e-16
## 7	ebit	0.308	0.0650	4.74	2.25e- 6





Worldwide real estate companies

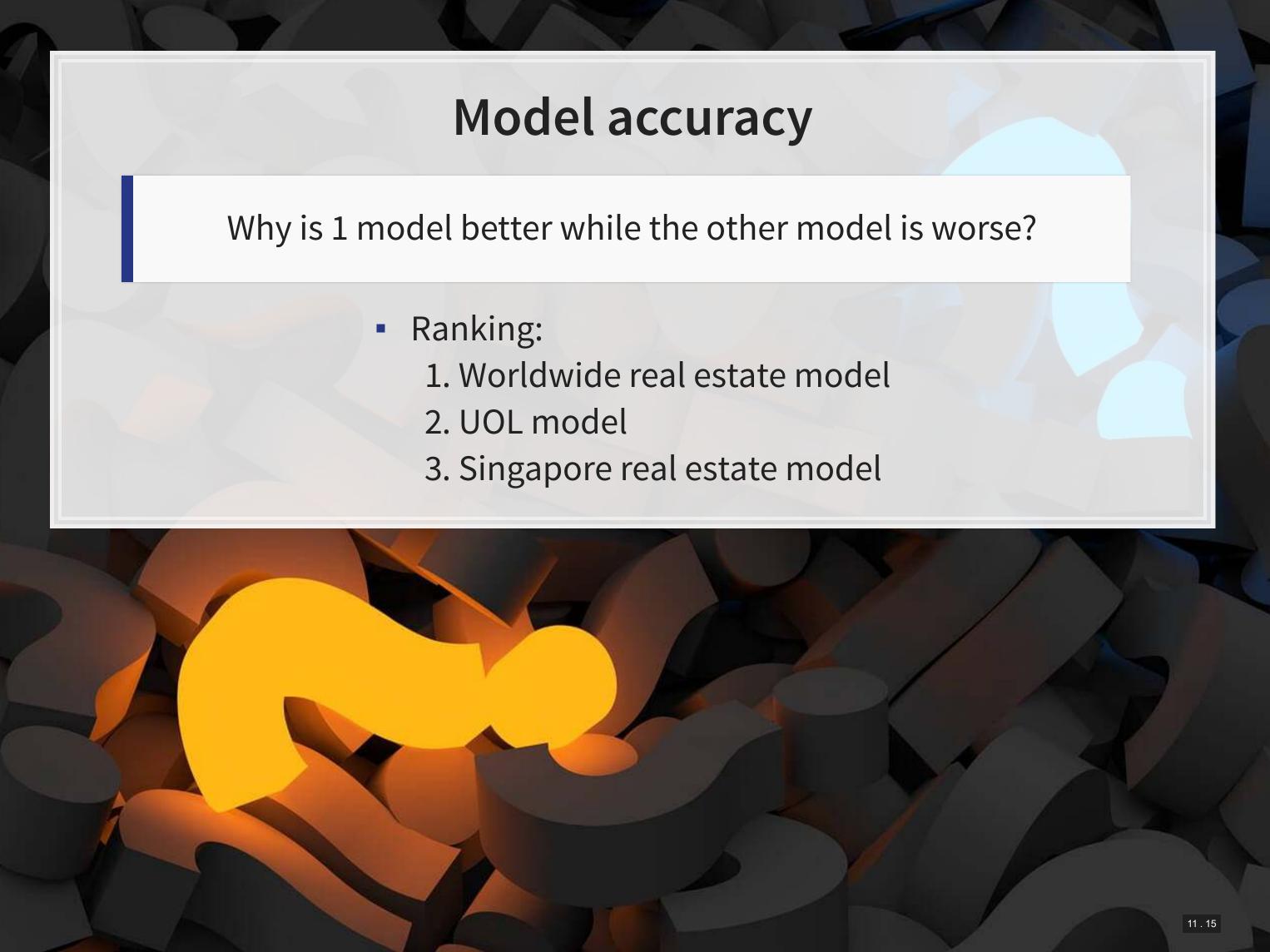
glance(forecast4)

##	#	A t	ibble:	1 x 1	1						
##		r.s	quared	adj.r	.squared	sigma	statistic	p.value	df	logLik	1
##			<dbl></dbl>		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<d]< th=""></d]<>
##	1		0.944		0.944	36459.	11299.	0	7	-47819.	956
##	#	• • •	with (3 more	variable	es: BIC	<dbl>, de</dbl>	viance <	dbl>,	df.residu	al ·

Higher adjusted R^2 – better!

• Note: χ^2 can only be used for models on the same data Same for AIC

AIC dbl> 654. <int>



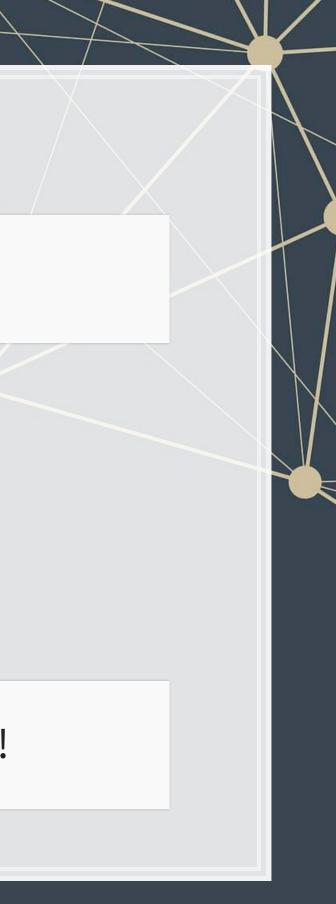
Dealing with noise

Noise

Statistical noise is random error in the data

- Many sources of noise:
 - Other factors not included in
 - Error in measurement
 - Accounting measurement!
 - Unexpected events / shocks

Noise is OK, but the more we remove, the better!



Removing noise: Singapore model Different companies may behave slightly differently

- - Control for this using a *Fixed Effect*
 - Note: ISIN uniquely identifies companies

```
forecast3.1 <-</pre>
  lm(revt lead ~ revt + act + che + lct + dp + ebit + factor(isin),
     data=df clean[df clean$fic=="SGP",])
# n=7 to prevent outputting every fixed effect
print(tidy(forecast3.1), n=15)
```

##	# Z	A tibble: 27 x 5				
##		term	estimate	std.error	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	1.58	39.4	0.0401	0.968
##	2	revt	0.392	0.0977	4.01	0.0000754
##	3	act	-0.0538	0.0602	-0.894	0.372
##	4	che	0.304	0.177	1.72	0.0869
##	5	lct	0.392	0.0921	4.26	0.0000276
##	6	dp	4.71	1.73	2.72	0.00687
##	7	ebit	-0.851	0.327	-2.60	0.00974
##	8	factor(isin)SG1AA6000000	218.	76.5	2.85	0.00463
##	9	factor(isin)SG1AD800002	-11.7	67.4	-0.174	0.862
##	10	factor(isin)SG1AE2000006	4.02	79.9	0.0503	0.960
##	11	factor(isin)SG1AG000003	-13.6	61.1	-0.223	0.824
##	12	factor(isin)SG1BG1000000	-0.901	69.5	-0.0130	0.990
##	13	factor(isin)SG1BI9000008	7.76	64.3	0.121	0.904
##	14	factor(isin)SG1DE5000007	-10.8	61.1	-0.177	0.860
##	15	factor(isin)SG1EE1000009	-6.90	66.7	-0.103	0.918
##	# .	with 12 more rows				

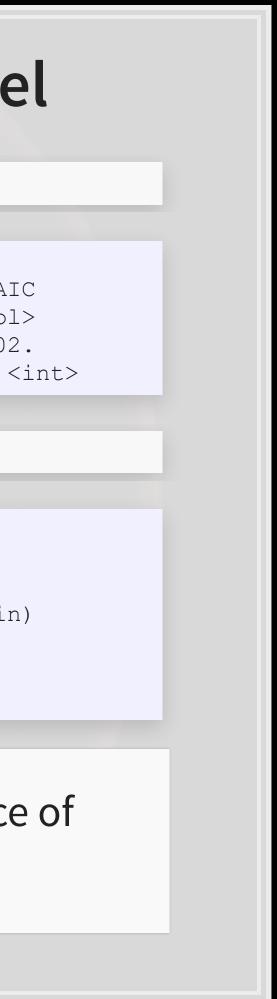
Removing noise: Singapore model

glance(forecast3.1)

## # A tibble: 1 x 11						
## r.squared adj.r.squared sigma statistic p.value df logLik AI						
## <dbl> <dbl <dbl="" <dbl<="" td=""></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl>						
## 1 0.856 0.844 208. 69.4 1.15e-111 27 -2223. 4502						
<pre>## # with 3 more variables: BIC <dbl>, deviance <dbl>, df.residual <</dbl></dbl></pre>						
<pre>anova(forecast3, forecast3.1, test="Chisq")</pre>						
## Analysis of Variance Table ##						
## Model 1: revt lead ~ revt + act + che + lct + dp + ebit						

```
## Model 2: revt_lead ~ revt + act + che + lct + dp + ebit + factor(isin)
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 324 14331633
## 2 304 13215145 20 1116488 0.1765
```

This isn't much different. Why? There is another source of noise within Singapore real estate companies



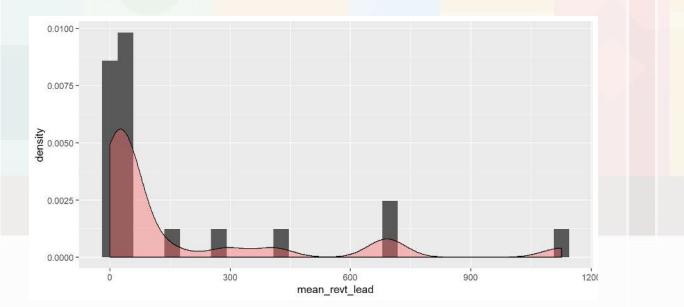
Another way to do fixed effects

- The library lfe has felm(): fixed effects linear model
 - Better for complex models
 - Doesn't support prediction natively though

```
##
## Call:
     felm(formula = revt lead ~ revt + act + che + lct + dp + ebit | factor(
##
##
## Residuals:
##
      Min 1Q Median 3Q
                                      Max
## -1181.88 -23.25 -1.87 18.03 1968.86
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## revt 0.39200 0.09767 4.013 7.54e-05 ***
## act -0.05382 0.06017 -0.894 0.37181
## che 0.30370 0.17682 1.718 0.08690.
## lct 0.39209 0.09210 4.257 2.76e-05 ***
## dp 4.71275 1.73168 2.721 0.00687 **
## ebit -0.85080 0.32704 -2.602 0.00974 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```


Why exactly would we use fixed effects?

- Fixed effects are used when the average of \hat{y} varies by some group in our data
 - In our problem, the average revenue of each firm is different
- Fixed effects absorb this difference



- Further reading:
 - Introductory Econometrics by Jeffrey M. Wooldridge



JEFFREY M. WOOLDRIDGE

What else can we do?

What else could we do to improve our prediction model?

• Assuming:

- 1. We do not have access to international data
- 2. We do have access to Singaporean firms' data
- 3. We have access to any data that is publicly available

End matter

For next week

- For next week:
 - 2 chapters on Datacamp
 - First individual assignment
 - Do this one individually!
 - Turn in on eLearn before class in 2 weeks

Packages used for these slides

- broom
- DT
- knitr
- lfe
- magrittr
- plotly
- revealjs
- tidyverse

Custom code

```
# Graph showing squared error (slide 4.6)
uolg <- uol[,c("at","revt")]
uolg$resid <- modl$residuals
uolg$xleft <- ifelse(uolg$resid < 0,uolg$at,uolg$at - uolg$resid)
uolg$xright <- ifelse(uolg$resid < 0,uolg$at - uolg$resid, uol$at)
uolg$ytop <- ifelse(uolg$resid < 0,uolg$revt - uolg$resid,uol$revt)
uolg$ybottom <- ifelse(uolg$resid < 0,uolg$revt, uolg$revt - uolg$resid)
uolg$resid</pre>
```

```
uolg2$point <- FALSE
uolg2$at <- ifelse(uolg$resid < 0,uolg2$xright,uolg2$xleft)
uolg2$revt <- ifelse(uolg$resid < 0,uolg2$ytop,uolg2$ybottom)</pre>
```

uolg <- rbind(uolg, uolg2)</pre>

```
uolg %>% ggplot(aes(y=revt, x=at, group=point)) +
    geom_point(aes(shape=point)) +
    scale_shape_manual(values=c(NA,18)) +
    geom_smooth(method="lm", se=FALSE) +
    geom_errorbarh(aes(xmax=xright, xmin = xleft)) +
    geom_errorbar(aes(ymax=ytop, ymin = ybottom)) +
    theme(legend.position="none")
```

<pre># Chart of mean revt_lead for Singaporean firms (slide</pre>	12.6)
df_clean %>%	# Our data frame
<pre>filter(fic=="SGP") %>%</pre>	# Select only Singaporean firms
group_by(isin) %>%	# Group by firm
<pre>mutate(mean_revt_lead=mean(revt_lead, na.rm=T)) %>%</pre>	<pre># Determine each firm's mean revenue (lead)</pre>
slice (1) %>%	# Take only the first observation for each group
ungroup() %>%	# Ungroup (we don't need groups any more)
<pre>ggplot(aes(x=mean_revt_lead)) +</pre>	<i># Initialize plot and select data</i>
<pre>geom_histogram(aes(y =density)) +</pre>	<pre># Plots the histogram as a density so that geom_density is visi</pre>
<pre>geom_density(alpha=.4, fill="#FF66666")</pre>	# Plots smoothed density

