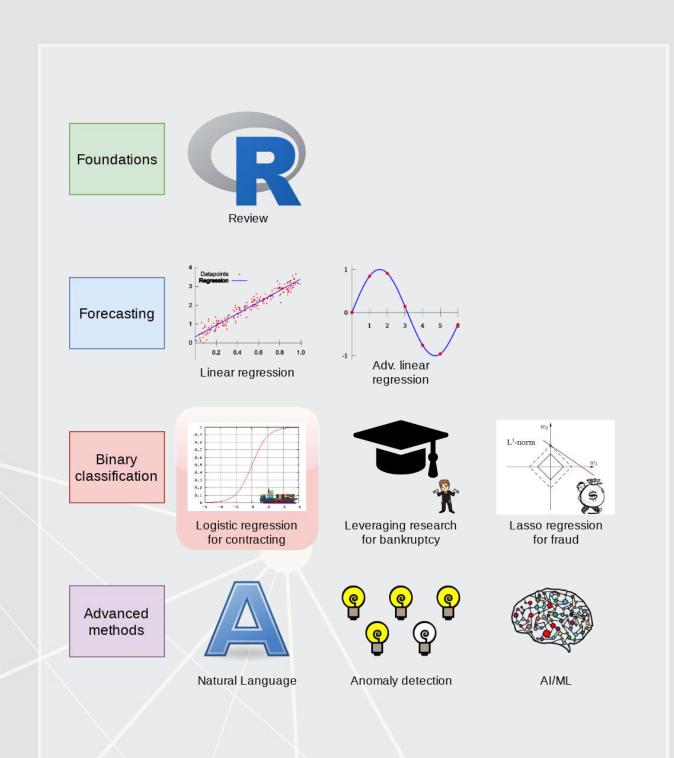
ACCT 420: Logistic Regression

Session 4

Dr. Richard M. Crowley

Front matter

Learning objectives



- Theory:
 - Understanding binary problems
- Application:
 - Detecting shipping delays caused by typhoons
- Methodology:
 - Logistic regression
 - Spatial visualization

Datacamp

- Explore on your own
- No specific required class this week

Assignment 2

- Looking at Singaporean retail firms
 - Mostly focused on time and cyclicality
 - Some visualization
 - A little of what we cover today
- Optional:
 - You can work in pairs on this assignment
 - If you choose to do this, please only make 1 submission and include both your names on the submission

Binary outcomes

What are binary outcomes?

- Thus far we have talked about events with continuous outcomes
 - Revenue: Some positive number
 - Earnings: Some number
 - ROA: Some percentage
- Binary outcomes only have two possible outcomes
 - Did something happen, yes or no?
 - Is a statement true or false?

Accounting examples of binary outcomes

- Financial accounting:
 - Will the company's earnings meet analysts' expectations?
 - Will the company have positive earnings?
- Managerial accounting:
 - Will we have ____ problem with our supply chain?
 - Will our customer go bankrupt?
- Audit:
 - Is the company committing fraud?
- Taxation:
 - Is the company too aggressive in their tax positions?

We can assign a probability to any of these

Regression approach: Logistic regression

- When modeling a binary outcome, we use logistic regression
 - A.k.a. logit model
- The logit function is $logit(x) = \log\left(\frac{x}{1-x}\right)$
 - Also called log odds

$$\log\left(rac{ ext{Prob}(y=1|X)}{1- ext{Prob}(y=1|X)}
ight) = lpha + eta_1 x_1 + eta_2 x_2 + \ldots + arepsilon$$

There are other ways to model this though, such as probit

Implementation: Logistic regression

The logistic model is related to our previous linear models as such:

Both linear and logit models are under the class of General Linear Models (GLMs)

- To regress a GLM, we use the glm() command.
 - In fact, the lm() command we have been using is actually glm()
 when you specify the option family=gaussian
- To run a logit regression:

```
mod <- glm(y ~ x1 + x2 + x3 + ..., data=df, family=binomial)
summary(mod)</pre>
```

family=binomial is what sets the model to be a logit

Interpreting logit values

- The sign of the coefficients means the same as before
 - +: *increases* the likelihood of *y* occurring
 - -: decreases the likelihood of y occurring
- The level of a coefficient is different
 - The relationship isn't linear between x_i and y now
 - Instead, coefficients are in log odds
 - Thus, e^{β_i} gives you the *odds*, o
- You can interpret the odds for a coefficient
 - Increased by [o-1]%
- You need to sum all relevant log odds before converting to a probability!

Odds vs probability

We have the following 10 objects: The **probability** of green is: 3/10 The **odds** of green is: 3 to 7

Example logit regression

Do holidays increase the likelihood that a department more than doubles its store's average weekly sales across departments?

Holidays increase the odds... but by how much?

Logistic regression interpretation

A simple interpretation

• The model we just saw the following model:

 $logodds(Double\ sales) = -3.44 + 0.54 Is Holiday$

- There are two ways to interpret this:
 - 1. Coefficient by coefficient
 - 2. In total

Interpretting specific coefficients

 $logodds(Double\ sales) = -3.44 + 0.54 Is Holiday$

- Interpreting specific coefficients is easiest done manually
- Odds for the IsHoliday coefficient are exp (0.54) = 1.72
 - This means that having a holiday modifies the baseline (i.e., non-Holiday) odds by 1.72 to 1
 - Where 1 to 1 is considered no change
 - Baseline is 0.032 to 1

```
# Automating the above:
exp(coef(fit))
```

```
## (Intercept) IsHolidayTRUE
## 0.03184725 1.71367497
```

Interpretting in total

- It is important to note that log odds are additive
 - So, calculate a new log odd by plugging in values for variables and adding it all up
 - Holiday: -3.44 + 0.54 * 1 = -2.9
 - No holiday: -3.44 + 0.54 * 0 = -3.44
- Then calculate odds and log odds like before
 - With holiday: exp(-2.9) = 0.055
 - Without holiday: exp(-3.44) = 0.032
 - Ratio of holiday to without: 1.72!
 - This is the individual log odds for holiday

We need to specify values to calculate log odds in total

Converting to probabilities

We can calculate a probability at any given point using the log odds

$$Probability = rac{log \, odds}{log \, odds + 1}$$

- Probability of double sales...
 - With a holiday: 0.055 / (0.55 + 1) = 0.052
 - Without a holiday: 0.032 / (0.032 + 1) = 0.031

These are easier to interpret, but require specifying values

Using predict() to simplify it

- predict() can calculate log odds and probabilities for us with minimal effort
 - Specify type="response" to get probabilities

```
test_data <- as.data.frame(IsHoliday = c(0,1))
predict(model, test_data) # log odds

## [1] -3.44 -2.90

predict(model, test_data, type="response") #probabilities

## [1] 0.03106848 0.05215356</pre>
```

- Here, we see the baseline probability is 3.1%
- The probability of doubling sales on a holiday is higher, at 5.2%

- A continuation of last week's practices answering:
 - Is Walmart more likely to see a year over year decrease in quarterly revenue during a recession?
- Practice using mutate() and glm()
- Do exercises 1 and 2 in today's practice file
 - R Practice
 - Shortlink: rmc.link/420r4

Logistic regression interpretation redux

What about more complex models?

- Continuous inputs in the model
 - What values do we pick to determine probabilities?
- Multiple inputs?
 - We can scale up what we did, but things get messy
 - Mathematically, the inputs get interacted within the inner workings of logit...
 - So the impact of each input depends on the values of the others!

Consider this model

model2 <- glm(double ~ IsHoliday + Temperature + Fuel_Price, data=df, family=binom summary(model2)

```
##
## Call:
## glm(formula = double ~ IsHoliday + Temperature + Fuel Price,
      family = binomial, data = df)
##
##
## Deviance Residuals:
      Min 10 Median
                                 30
                                        Max
## -0.4113 -0.2738 -0.2464 -0.2213 2.8562
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -1.7764917 0.0673246 -26.39 <2e-16 ***
## IsHolidayTRUE 0.3704298 0.0284395 13.03 <2e-16 ***
## Temperature -0.0108268 0.0004698 -23.04 <2e-16 ***
## Fuel Price -0.3091950 0.0196234 -15.76 <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 120370 on 421569 degrees of freedom
##
```

Odds and probabilities

```
# Odds
exp(coef(model2))
##
     (Intercept) IsHolidayTRUE
                                 Temperature
                                                Fuel Price
##
                                                 0.7340376
       0.1692308
                     1.4483570
                                   0.9892316
# Typical September days
hday sep <- mean(predict(model2, filter(df, IsHoliday, month==9), type="respons"
no hday sep <- mean(predict(model2, filter(df, !IsHoliday, month==9), type="respo
# Typical December days
hday dec
          <- mean (predict (model2, filter (df, IsHoliday, month==12), type="respon
no hday dec <- mean(predict(model2, filter(df, !IsHoliday, month==12), type="resp
html df(data.frame(Month=c(9,9,12,12),
                   IsHoliday=c(FALSE, TRUE, FALSE, TRUE),
                   Probability=c(no hday sep, hday sep, no hday dec, hday dec)))
```

Month	IsHoliday	Probability			
9	FALSE	0.0266789			
9	TRUE	0.0374761			
12	FALSE	0.0398377			
12	TRUE	0.0586483			

A bit easier: Marginal effects

Marginal effects tell us the average change in our output for a change of 1 to an input

- The above definition is very similar to how we interpret linear regression coefficients
 - The only difference is the word average the effect changes a bit depending on the input data
- Using margins, we can calculate marginal effects
- There are a few types that we could calculate:
 - An Average Marginal Effect tells us what the average effect of an input is across all values in our data
 - This is the default method in the package
 - We can also specify a specific value to calculate marginal effects at (like with our probabilities last slides)

Marginal effects in action

```
# Calculate AME marginal effects
library (margins)
m <- margins (model2)
m

## Temperature Fuel_Price IsHoliday
## -0.0003377 -0.009644 0.01334</pre>
```

- A holiday increase the probability of doubling by a flat 1.33%
 - Not too bad when you consider that the probability of doubling is 3.23%
- If the temperature goes up by 1°F (0.55°C), the probability of doubling changes by -0.03%
- If the fuel price increases by 1 USD for 1 gallon of gas, the probability of doubling changes by -0.96%

margins niceties

 We can get some extra information about our marginal effects through summary():

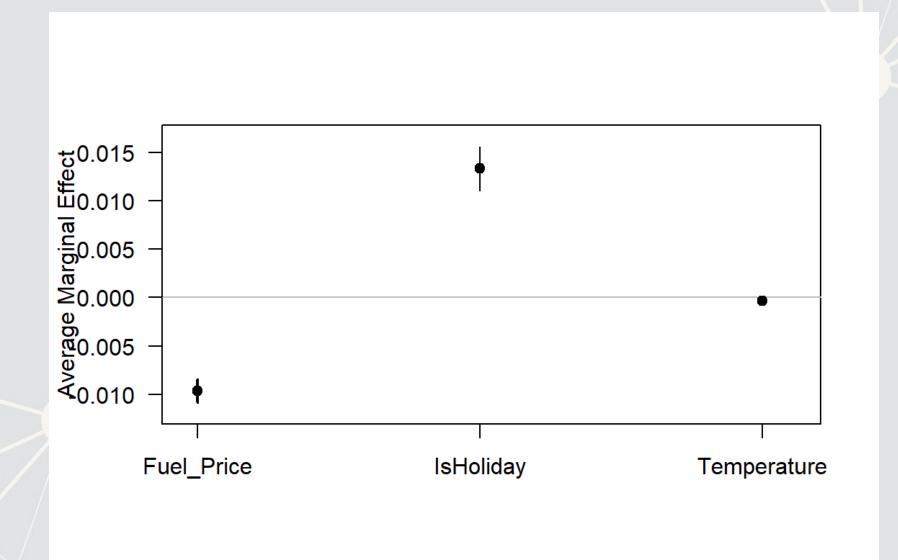
```
summary(m) %>%
html df()
```

factor	AME	SE	Z	р	lower	upper
Fuel_Price	-0.0096438	0.0006163	-15.64800	0	-0.0108517	-0.0084359
IsHoliday	0.0133450	0.0011754	11.35372	0	0.0110413	0.0156487
Temperature	-0.0003377	0.0000149	-22.71255	0	-0.0003668	-0.0003085

- Those p-values work just like with our linear models
- We also get a confidence interval
 - Which we can plot!

Plotting marginal effects

```
plot(m, which=summary(m) $factor)
```



Note: The which... part is absolutely necessary at the moment due to a bug in the package

Marginal effects at a specified value

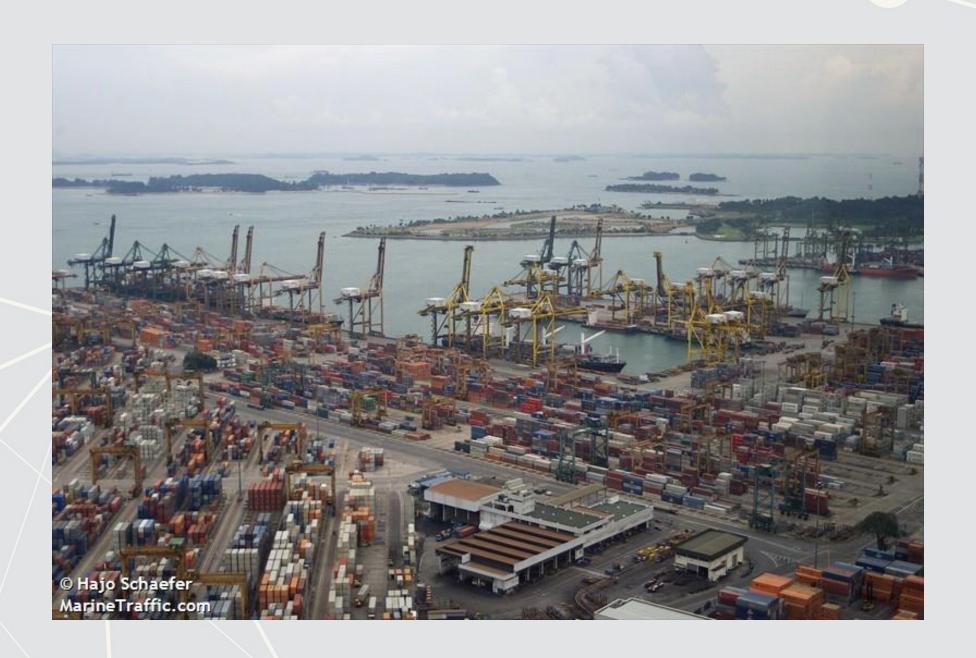
factor	IsHoliday	AME	SE	Z	p	lower	upper
Fuel_Price	FALSE	-0.0093401	0.0005989	-15.59617	0	-0.0105139	-0.0081664
Fuel_Price	TRUE	-0.0131335	0.0008717	-15.06650	0	-0.0148420	-0.0114250
Temperature	FALSE	-0.0003271	0.0000146	-22.46024	0	-0.0003556	-0.0002985
Temperature	TRUE	-0.0004599	0.0000210	-21.92927	0	-0.0005010	-0.0004188

factor	Temperature	AME	SE	Z	p	lower	upper
IsHoliday	0	0.0234484	0.0020168	11.62643	0	0.0194955	0.0274012
IsHoliday	20	0.0194072	0.0016710	11.61387	0	0.0161320	0.0226824
IsHoliday	40	0.0159819	0.0013885	11.51001	0	0.0132604	0.0187033
IsHoliday	60	0.0131066	0.0011592	11.30623	0	0.0108345	0.0153786
IsHoliday	80	0.0107120	0.0009732	11.00749	0	0.0088046	0.0126193
IsHoliday	100	0.0087305	0.0008213	10.62977	0	0.0071207	0.0103402

Today's Application: Shipping delays

The question

Can we leverage global weather data to predict shipping delays?

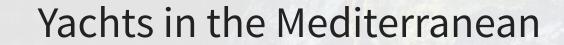


A bit about shipping data

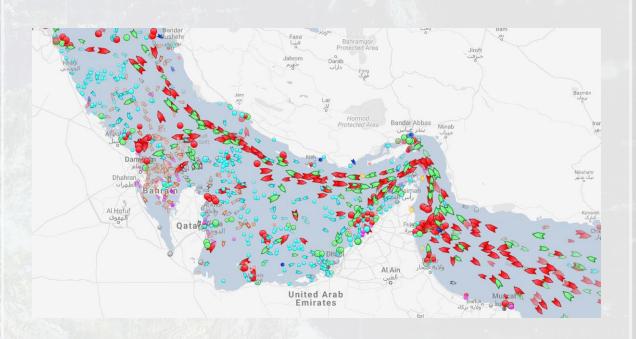
- WRDS doesn't have shipping data
- There are, however, vendors for shipping data, such as:

- They pretty much have any data you could need:
 - Over 650,000 ships tracked using ground and satellite based AIS
 - AIS: Automatic Identification System
 - Live mapping
 - Weather data
 - Fleet tracking
 - Port congestion
 - Inmarsat support for ship operators

What can we see from naval data?

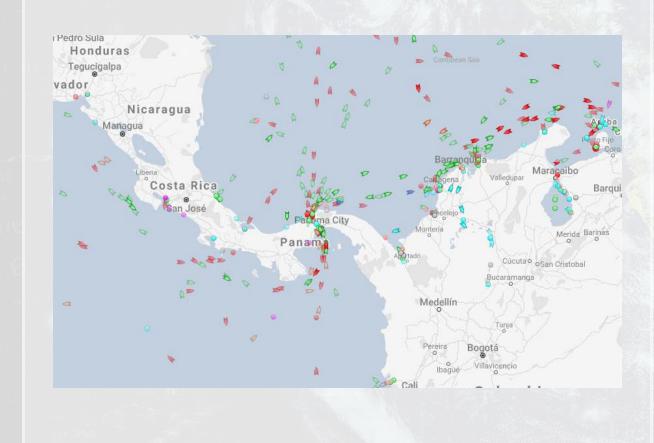


Oil tankers in the Persian gulf

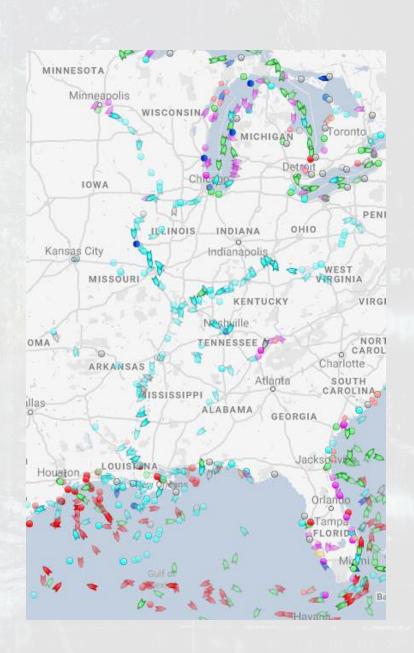


What can we see from naval data?

Shipping route via the Panama canal

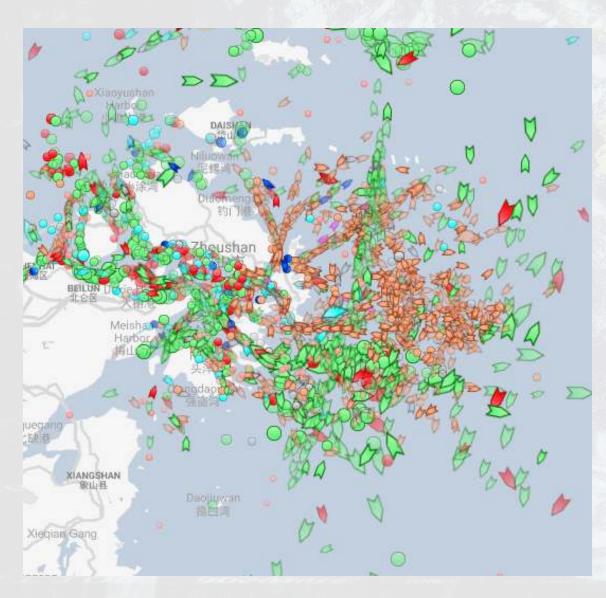


River shipping on the Mississippi river, USA



What can we see from naval data?

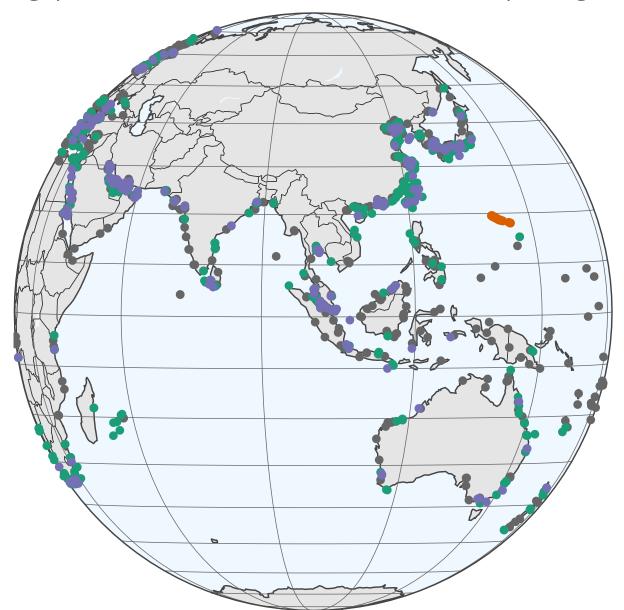
Busiest ports by containers and tons (Shanghai & Ningbo-Zhoushan, China)



Busiest port for transshipment (Singapore)

Examining Singaporean owned ships

Singaporean owned container and tanker ships, August 31, 2018



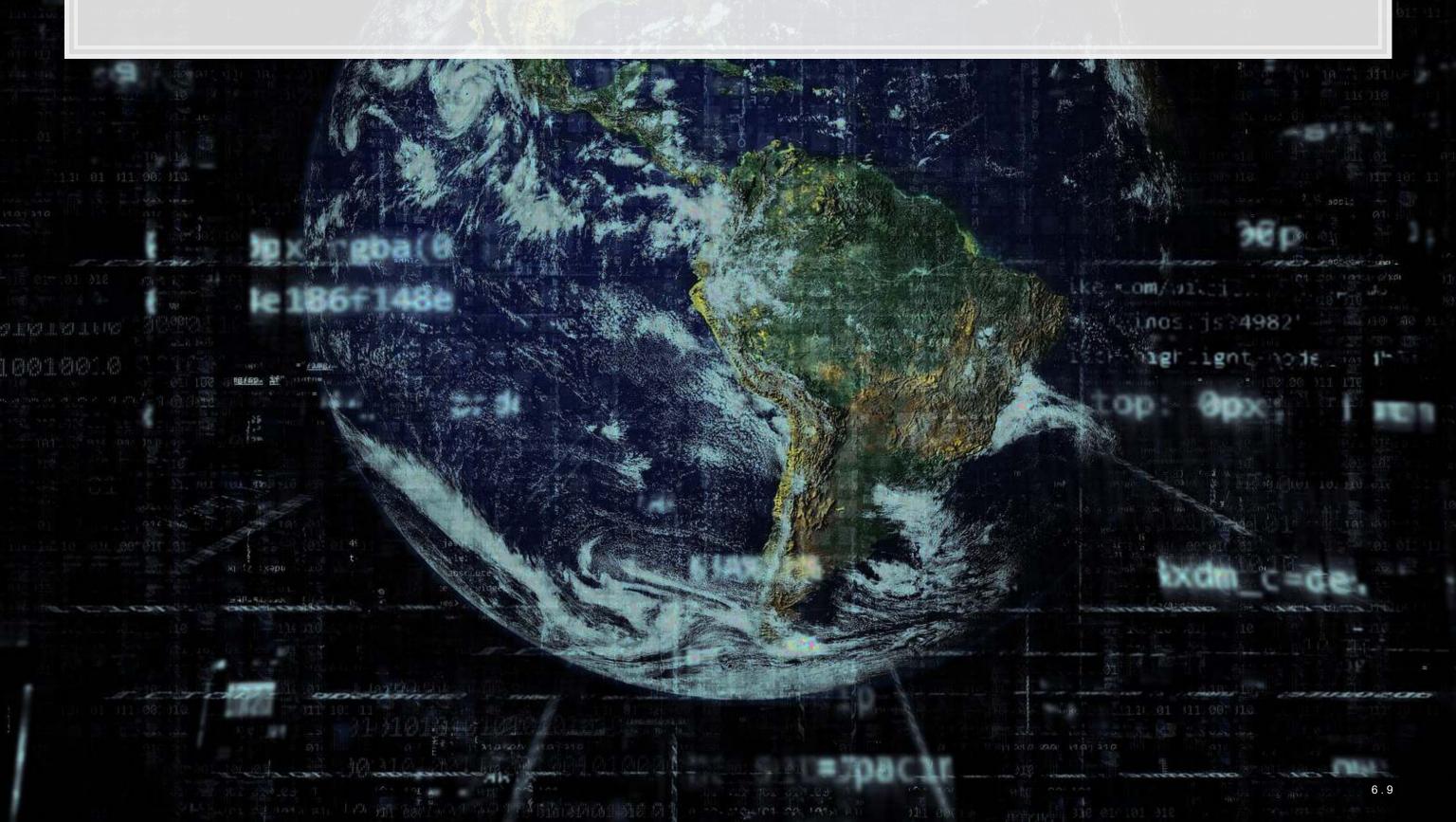
- Port
- Cargo
- Tanker
- TYPHOON

Code for last slide's map

- plot_geo() is from plotly
- add_markers() adds points to the map
- layout () adjusts the layout
- Within geo, a list, the following makes the map a globe
 - projection=list(type="orthographic")

Singaporean ship movement

Link to ship movement animation



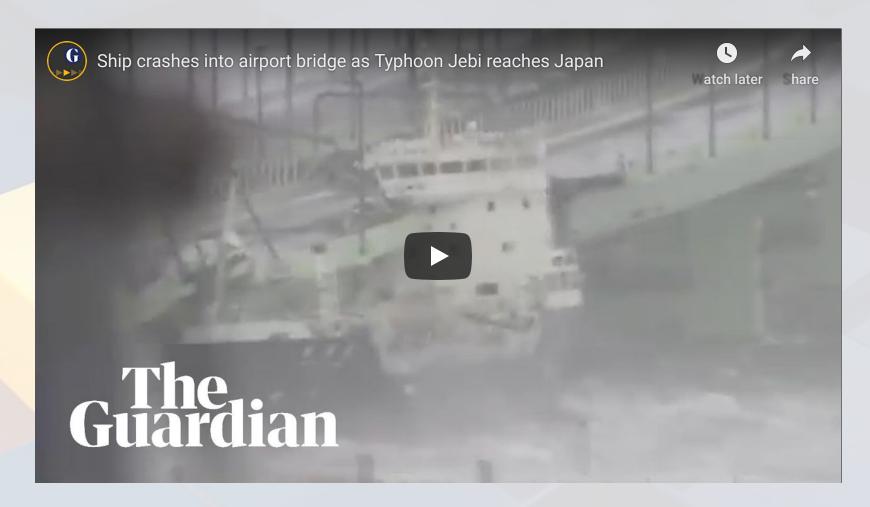
Code for last slide's map

- world1 contains the map data
- geom_sf() plots map data passed to ggplot()
- geom_point() plots ship locations as longitude and latitude
- ggplotly() converts the graph to html and animates it
 - Animation follows the frame aesthetic

What might matter for shipping?

What observable events or data might provide insight as to whether a naval shipment will be delayed or not?

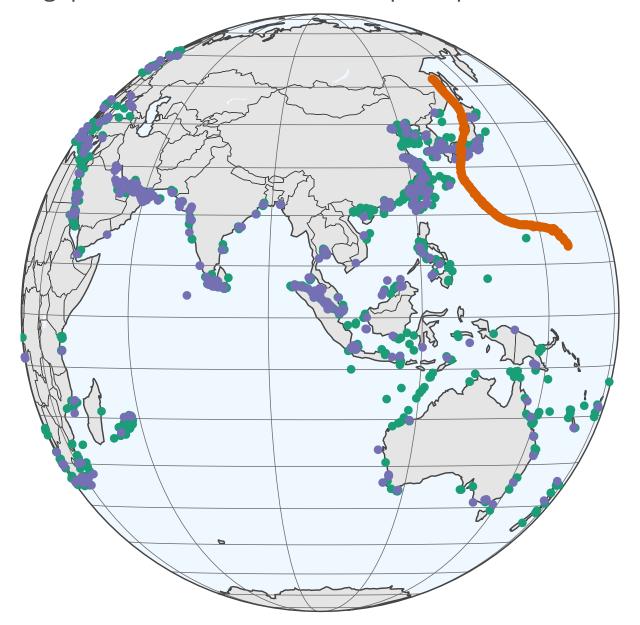
Typhoon Jebi



link

Typhoons in the data

Singaporean container/tanker ships, September 4, 2018, evening



- Cargo
- Tanker
- Typhoon Jebi

Code for last slide's map

This map is made the same way as the first map

Typhoons in the data using leaflet

Code for last slide's map

```
library(leaflet)
library(leaflet.extras)
# typhoon icons
icons <- pulseIcons(color='red',</pre>
  heartbeat = ifelse(typhoon Jebi$intensity vmax > 150/1.852, 0.8,
    ifelse(typhoon$intensity vmax < 118/1.852, 1.6, 1.2)),
  iconSize=ifelse(typhoon Jebi$intensity vmax > 150/1.852, 5,
    ifelse(typhoon Jebi$intensity vmax < 118/1.852, 2, 3)))</pre>
# ship icons
shipicons <- iconList(</pre>
  ship = makeIcon("../Figures/ship.png", NULL, 18, 18)
leaflet() %>%
  addTiles() %>%
  setView(lng = 136, lat = 34, zoom=4) %>%
  addPulseMarkers (data=typhoon Jebi[seq(1,nrow(typhoon Jebi),5),], lng=~lon,
                  lat=~lat, label=~date, icon=icons) %>%
  addCircleMarkers (data=typhoon Jebi[typhoon Jebi$intensity vmax > 150/1.852,],
    lng=~lon, lat=~lat,stroke = TRUE, radius=3, color="red", label=~date) %>%
```

R Practice on mapping

- Practice mapping typhoon data
 - 1 map using plotly
 - 1 map using leaflet
- Practice using plotly and leaflet
 - No practice using ggplot2 as sf is missing on DataCamp light
 - And sf can be tough to install for anyone on a Mac
- Do exercises 3 and 4 in today's practice file
 - R Practice
 - Shortlink: rmc.link/420r4

Predicting delays due to typhoons

Data

- If the ship will report a delay of at least 3 hours some time in the next
 12-24 hours
- What we have:
 - Ship location
 - Typhoon location
 - Typhoon wind speed

We need to calculate distance between ships and typhoons

Distance for geo

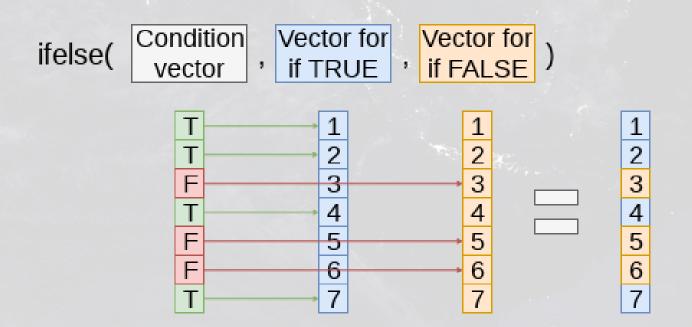
- There are a number of formulas for this
 - Haversine for a simple calculation
 - Vincenty's formulae for a complex, incredibly accurate calculation
 - Accurate within 0.5mm
- Use distVincentyEllipsoid() from geosphere to get a reasonably quick and accurate calculation
 - Calculates distance between two sets of points, x and y, structured as matrices
 - Matrices must have longitude in the first column and latitude in the second column
 - Provides distance in meters by default

```
library(geosphere)
x <- as.matrix(df3[,c("lon","lat")]) # ship location
y <- as.matrix(df3[,c("ty_lon","ty_lat")]) # typhoon location

df3$dist_typhoon <- distVincentyEllipsoid(x, y) / 1000</pre>
```

Clean up

Some indicators to cleanly capture how far away the typhoon is



Do typhoons delay shipments?

```
##
## Call:
## glm(formula = delayed ~ typhoon 500 + typhoon 1000 + typhoon 2000,
      family = binomial, data = df3)
##
##
## Deviance Residuals:
               10 Median
      Min
                                30
                                        Max
## -0.2502 -0.2261 -0.2261 -0.2261 2.7127
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.65377 0.02934 -124.547 <2e-16 ***
## typhoon 500 0.14073 0.16311 0.863 0.3883
## typhoon 1000 0.20539 0.12575 1.633 0.1024
## typhoon 2000 0.16059 0.07106 2.260 0.0238 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 14329 on 59184 degrees of freedom
```

It appears so!

Interpretation of coefficients

```
odds1 <- exp(coef(fit1))
odds1

## (Intercept) typhoon_500 typhoon_1000 typhoon_2000
## 0.02589334 1.15111673 1.22800815 1.17420736</pre>
```

 Ships 1,000 to 2,000 km from a typhoon have a 17% increased odds of having a delay

```
m1 <- margins(fit1)
summary(m1)

## factor AME SE z p lower upper
## typhoon_1000 0.0052 0.0032 1.6322 0.1026 -0.0010 0.0115
## typhoon_2000 0.0041 0.0018 2.2570 0.0240 0.0005 0.0076
## typhoon_500 0.0036 0.0042 0.8626 0.3883 -0.0046 0.0117
```

 Ships 1,000 to 2,000 km from a typhoon have an extra 0.41% chance of having a delay (baseline of 2.61%)

What about typhoon intensity?

- Hong Kong's typhoon classification: Official source
 - 1. 41-62 km/h: Tropical depression
 - 2. 63-87 km/h: Tropical storm
 - 3. 88-117 km/h: Severe tropical storm
 - 4. 118-149 km/h: **Typhoon**
 - 5. 150-184 km/h: Severe typhoon
 - 6. 185+km/h: Super typhoon

```
##
## (-1,41] (41,62] (62,87] (87,117] (117,149] (149,999]
## 3398 12039 12615 11527 2255 21141
```

Typhoon intensity and delays

```
## # A tibble: 10 x 5
##
                        estimate std.error statistic p.value
     term
   <chr>
##
                           <dbl>
                                   <dbl>
                                             <dbl>
                                                    <dbl>
## 1 (Intercept)
                        -3.65
                                   0.0290 - 126.
## 2 typhoon 500:Weak
                        -0.00879 0.213 -0.0413 0.967
## 3 typhoon 500:Moderate 0.715
                                   0.251 2.86 0.00430
                        -8.91 123.
## 4 typhoon 500:Super
                                           -0.0726 0.942
## 5 typhoon 1000:Weak
                      0.250
                                         1.55
                                   0.161
                                                0.121
## 6 typhoon 1000:Moderate 0.123
                                   0.273 0.451 0.652
## 7 typhoon 1000:Super
                       -0.0269
                                  0.414 -0.0648 0.948
                                   0.101 1.80 0.0723
## 8 typhoon 2000:Weak
                       0.182
## 9 typhoon 2000:Moderate 0.0253
                                   0.134
                                            0.189 0.850
## 10 typhoon 2000:Super
                         0.311
                                   0.136
                                            2.29
                                                  0.0217
```

Moderate storms predict delays when within 500km

Super typhoons predict delays when 1,000 to 2,000km away

Interpretation of coefficients

- Ships within 500km of a moderately strong storm have 105% higher odds of a delay
- Ships 1,000 to 2,000km from a weak typhoon have 20% higher odds of a delay
- Ships 1,000 to 2,000km from a super typhoon have 37% higher odds of a delay

Marginal effects

```
m2 <- margins(fit2)
summary(m2) %>%
html_df()
```

factor	AME	SE	Z	р	lower	upper
Moderate	0.0007378	0.0006713	1.0990530	0.2717449	-0.0005779	0.0020535
Super	-0.0050241	0.0860163	-0.0584087	0.9534231	-0.1736129	0.1635647
typhoon_1000	0.0035473	0.0036186	0.9802921	0.3269420	-0.0035450	0.0106396
typhoon_2000	0.0039224	0.0017841	2.1985908	0.0279070	0.0004257	0.0074191
typhoon_500	-0.0440484	0.6803640	-0.0647424	0.9483791	-1.3775373	1.2894405
Weak	0.0009975	0.0005154	1.9353011	0.0529534	-0.0000127	0.0020077

- Delays appear to be driven mostly by 2 factors:
 - 1. A typhoon 1,000 to 2,000 km away from the ship
 - 2. Weak typhoons

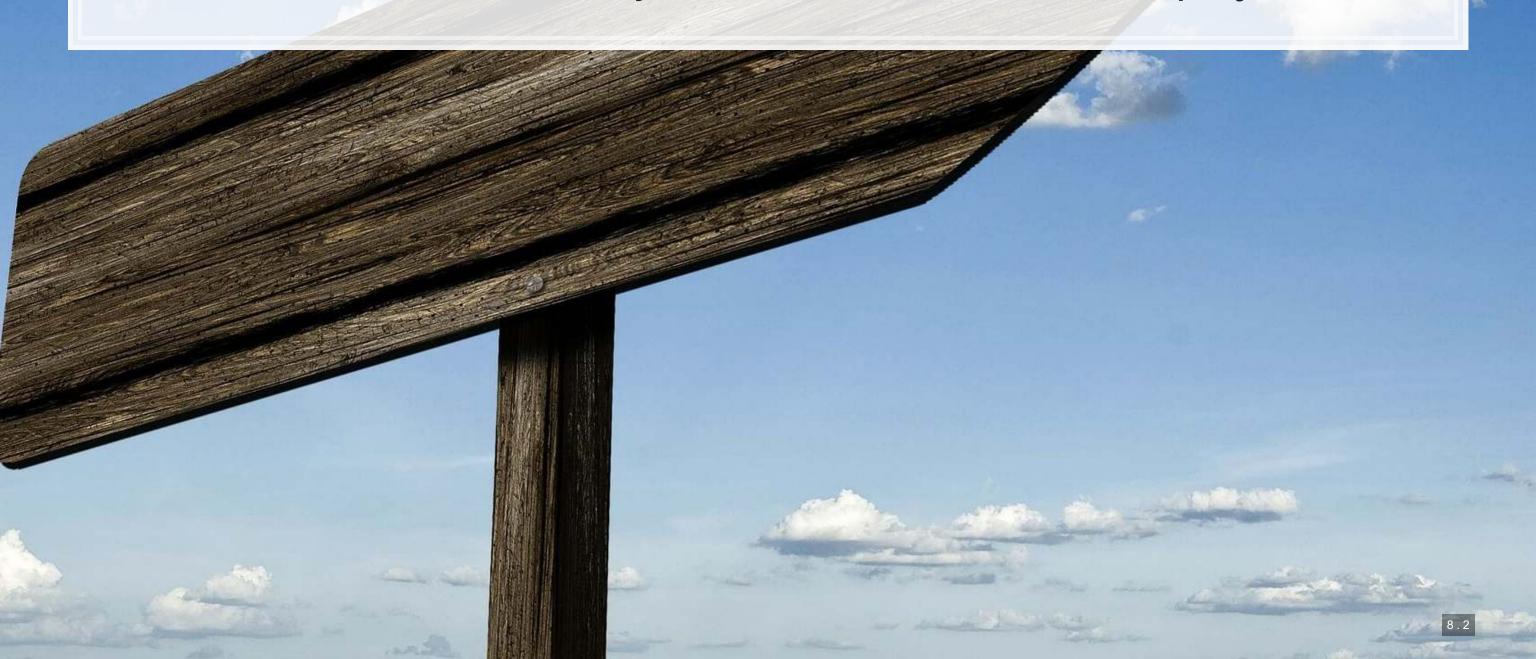
What might matter for shipping?

What other observable events or data might provide insight as to whether a naval shipment will be delayed or not?

- What is the reason that this event or data would be useful in predicting delays?
 - I.e., how does it fit into your mental model?

For next week

- For next week:
 - Second individual assignment
 - Finish by the end of next Thursday
 - Submit on eLearn
 - Think about who you want to work with for the project



Packages used for these slides

- broom
- geosphere
- kableExtra
- knitr
- leaflet
- leaflet.extras
- lubridate
- magrittr

- margins
- maps
- maptools
- plotly
- revealjs
- rgeos
- sf
- tidyverse

Custom code

```
# styling for plotly maps
geo <- list(
 showland = TRUE,
 showlakes = TRUE,
 showcountries = TRUE,
 showocean = TRUE,
 countrywidth = 0.5,
 landcolor = toRGB("grey90"),
 lakecolor = toRGB("aliceblue"),
 oceancolor = toRGB("aliceblue"),
 projection = list(
   type = 'orthographic', # detailed at https://plot.ly/r/reference/#layout-geo-projection
   rotation = list(
    lon = 100,
     lat = 1,
     roll = 0
 lonaxis = list(
   showgrid = TRUE,
   gridcolor = toRGB("gray40"),
   gridwidth = 0.5
 lataxis = list(
   showgrid = TRUE,
   gridcolor = toRGB("gray40"),
   gridwidth = 0.5
```