We can assign a probability to any of these
\[ \text{log}\left(\frac{\text{Prob}(y=1|X)}{1-\text{Prob}(y=1|X)}\right)=\alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \varepsilon \]
There are other ways to model this though, such as probit
Both linear and logit models are under the class of General Linear Models (GLMs)
family=binomial
is what sets the model to be a logit
Do holidays increase the likelihood that a department more than doubles its store’s average weekly sales across departments?
# Create the binary variable from Walmart sales data
df$double <- ifelse(df$Weekly_Sales > df$store_avg*2,1,0)
fit <- glm(double ~ IsHoliday, data=df, family=binomial)
tidy(fit)
## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -3.45 0.00924 -373. 0.
## 2 IsHolidayTRUE 0.539 0.0278 19.4 1.09e-83
Holidays increase the odds… but by how much?
\[ logodds(Double~sales) = -3.45 + 0.54 IsHoliday \]
\[ logodds(Double~sales) = -3.45 + 0.54 IsHoliday \]
exp(0.54) = 1.72
## (Intercept) IsHolidayTRUE
## 0.03184725 1.71367497
exp(-2.89) = 0.056
exp(-3.45) = 0.032
We need to specify values to calculate log odds in total
\[ Probability = \frac{odds}{odds + 1} \]
0.056 / (0.056 + 1) = 0.052
0.032 / (0.032 + 1) = 0.031
These are easier to interpret, but require specifying values for each model input to calculate
type="response"
to get probabilities## [1] -3.44 -2.90
## [1] 0.03106848 0.05215356
model2 <- glm(double ~ IsHoliday + Temperature + Fuel_Price, data=df, family=binomial)
summary(model2)
##
## Call:
## glm(formula = double ~ IsHoliday + Temperature + Fuel_Price,
## family = binomial, data = df)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.4113 -0.2738 -0.2464 -0.2213 2.8562
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.7764917 0.0673246 -26.39 <2e-16 ***
## IsHolidayTRUE 0.3704298 0.0284395 13.03 <2e-16 ***
## Temperature -0.0108268 0.0004698 -23.04 <2e-16 ***
## Fuel_Price -0.3091950 0.0196234 -15.76 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 120370 on 421569 degrees of freedom
## Residual deviance: 119146 on 421566 degrees of freedom
## AIC: 119154
##
## Number of Fisher Scoring iterations: 6
## (Intercept) IsHolidayTRUE Temperature Fuel_Price
## 0.1692308 1.4483570 0.9892316 0.7340376
# Typical September days
hday_sep <- mean(predict(model2, filter(df, IsHoliday, month==9), type="response"))
no_hday_sep <- mean(predict(model2, filter(df, !IsHoliday, month==9), type="response"))
# Typical December days
hday_dec <- mean(predict(model2, filter(df, IsHoliday, month==12), type="response"))
no_hday_dec <- mean(predict(model2, filter(df, !IsHoliday, month==12), type="response"))
html_df(data.frame(Month=c(9,9,12,12),
IsHoliday=c(FALSE,TRUE,FALSE,TRUE),
Probability=c(no_hday_sep, hday_sep, no_hday_dec, hday_dec)))
Month | IsHoliday | Probability |
---|---|---|
9 | FALSE | 0.0266789 |
9 | TRUE | 0.0374761 |
12 | FALSE | 0.0398377 |
12 | TRUE | 0.0586483 |
Marginal effects tell us the average change in our output for a change of 1 to an input
## Temperature Fuel_Price IsHoliday
## -0.0003377 -0.009644 0.01334
factor | AME | SE | z | p | lower | upper |
---|---|---|---|---|---|---|
Fuel_Price | -0.0096438 | 0.0006163 | -15.64800 | 0 | -0.0108517 | -0.0084359 |
IsHoliday | 0.0133450 | 0.0011754 | 11.35372 | 0 | 0.0110413 | 0.0156487 |
Temperature | -0.0003377 | 0.0000149 | -22.71255 | 0 | -0.0003668 | -0.0003085 |
Note: The
which...
part is absolutely necessary at the moment due to a bug in the package
margins(model2, at = list(IsHoliday = c(TRUE, FALSE)),
variables = c("Temperature", "Fuel_Price")) %>%
summary() %>%
html_df()
factor | IsHoliday | AME | SE | z | p | lower | upper |
---|---|---|---|---|---|---|---|
Fuel_Price | FALSE | -0.0093401 | 0.0005989 | -15.59617 | 0 | -0.0105139 | -0.0081664 |
Fuel_Price | TRUE | -0.0131335 | 0.0008717 | -15.06650 | 0 | -0.0148420 | -0.0114250 |
Temperature | FALSE | -0.0003271 | 0.0000146 | -22.46024 | 0 | -0.0003556 | -0.0002985 |
Temperature | TRUE | -0.0004599 | 0.0000210 | -21.92927 | 0 | -0.0005010 | -0.0004188 |
margins(model2, at = list(Temperature = c(0, 20, 40, 60, 80, 100)),
variables = c("IsHoliday")) %>%
summary() %>%
html_df()
factor | Temperature | AME | SE | z | p | lower | upper |
---|---|---|---|---|---|---|---|
IsHoliday | 0 | 0.0234484 | 0.0020168 | 11.62643 | 0 | 0.0194955 | 0.0274012 |
IsHoliday | 20 | 0.0194072 | 0.0016710 | 11.61387 | 0 | 0.0161320 | 0.0226824 |
IsHoliday | 40 | 0.0159819 | 0.0013885 | 11.51001 | 0 | 0.0132604 | 0.0187033 |
IsHoliday | 60 | 0.0131066 | 0.0011592 | 11.30623 | 0 | 0.0108345 | 0.0153786 |
IsHoliday | 80 | 0.0107120 | 0.0009732 | 11.00749 | 0 | 0.0088046 | 0.0126193 |
IsHoliday | 100 | 0.0087305 | 0.0008213 | 10.62977 | 0 | 0.0071207 | 0.0103402 |
Can we leverage global weather data to predict shipping delays?
Yachts in the Mediterranean
Oil tankers in the Persian gulf
Shipping route via the Panama canal
River shipping on the Mississippi river, USA
Busiest ports by containers and tons (Shanghai & Ningbo-Zhoushan, China)
Busiest port for transshipment (Singapore)
library(plotly) # for plotting
library(RColorBrewer) # for colors
# plot with boats, ports, and typhoons
# Note: geo is defined in the appendix -- it controls layout
palette = brewer.pal(8, "Dark2")[c(1,8,3,2)]
p <- plot_geo(colors=palette) %>%
add_markers(data=df_ports, x = ~port_lon, y = ~port_lat, color = "Port") %>%
add_markers(data=df_Aug31, x = ~lon, y = ~lat, color = ~ship_type,
text=~paste('Ship name',shipname)) %>%
add_markers(data=typhoon_Aug31, x = ~lon, y = ~lat, color="TYPHOON",
text=~paste("Name", typhoon_name)) %>%
layout(showlegend = TRUE, geo = geo,
title = 'Singaporean owned container and tanker ships, August 31, 2018')
p
projection=list(type="orthographic")
library(sf) # Note: very difficult to install except on Windows
library(maps)
# Requires separately installing "maptools" and "rgeos" as well
# This graph requires ~7GB of RAM to render
world1 <- sf::st_as_sf(map('world', plot = FALSE, fill = TRUE))
df_all <- df_all %>% arrange(run, imo)
p <- ggplot(data = world1) +
geom_sf() +
geom_point(data = df_all, aes(x = lon, y = lat, frame=frame,
text=paste("name:",shipname)))
ggplotly(p) %>%
animation_opts(
1000, easing = "linear", redraw = FALSE)
world1
contains the map dataframe
aestheticWhat observable events or data might provide insight as to whether a naval shipment will be delayed or not?
# plot with boats and typhoons
palette = brewer.pal(8, "Dark2")[c(1,3,2)]
p <- plot_geo(colors=palette) %>%
add_markers(data=df_all[df_all$frame == 14,], x = ~lon, y = ~lat,
color = ~ship_type, text=~paste('Ship name',shipname)) %>%
add_markers(data=typhoon_Jebi, x = ~lon,
y = ~lat, color="Typhoon Jebi",
text=~paste("Name", typhoon_name, "</br>Time: ", date)) %>%
layout(showlegend = TRUE, geo = geo,
title = 'Singaporean container/tanker ships, September 4, 2018, evening')
p
library(leaflet)
library(leaflet.extras)
# typhoon icons
icons <- pulseIcons(color='red',
heartbeat = ifelse(typhoon_Jebi$intensity_vmax > 150/1.852, 0.8,
ifelse(typhoon$intensity_vmax < 118/1.852, 1.6, 1.2)),
iconSize=ifelse(typhoon_Jebi$intensity_vmax > 150/1.852, 5,
ifelse(typhoon_Jebi$intensity_vmax < 118/1.852, 2, 3)))
# ship icons
shipicons <- iconList(
ship = makeIcon("../Figures/ship.png", NULL, 18, 18)
)
leaflet() %>%
addTiles() %>%
setView(lng = 136, lat = 34, zoom=4) %>%
addPulseMarkers(data=typhoon_Jebi[seq(1,nrow(typhoon_Jebi),5),], lng=~lon,
lat=~lat, label=~date, icon=icons) %>%
addCircleMarkers(data=typhoon_Jebi[typhoon_Jebi$intensity_vmax > 150/1.852,],
lng=~lon, lat=~lat,stroke = TRUE, radius=3, color="red", label=~date) %>%
addCircleMarkers(data=typhoon_Jebi[typhoon_Jebi$intensity_vmax <= 150/1.852 &
typhoon_Jebi$intensity_vmax > 118/1.852,], lng=~lon, lat=~lat,
stroke = TRUE, radius=2, color="red", label=~date) %>%
addCircleMarkers(data=typhoon_Jebi[typhoon_Jebi$intensity_vmax <=118/1.852,],
lng=~lon, lat=~lat, stroke = TRUE, radius=1, color="red", label=~date) %>%
addMarkers(data=df_all[df_all$frame == 14,], lng=~lon, lat=~lat,
label=~shipname, icon=shipicons)
addCircleMarkers()
: adds circular markersWe need to calculate distance between ships and typhoons
fit1 <- glm(delayed ~ typhoon_500 + typhoon_1000 + typhoon_2000, data=df3,
family=binomial)
summary(fit1)
##
## Call:
## glm(formula = delayed ~ typhoon_500 + typhoon_1000 + typhoon_2000,
## family = binomial, data = df3)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.2502 -0.2261 -0.2261 -0.2261 2.7127
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.65377 0.02934 -124.547 <2e-16 ***
## typhoon_500 0.14073 0.16311 0.863 0.3883
## typhoon_1000 0.20539 0.12575 1.633 0.1024
## typhoon_2000 0.16059 0.07106 2.260 0.0238 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 14329 on 59184 degrees of freedom
## Residual deviance: 14322 on 59181 degrees of freedom
## (3866 observations deleted due to missingness)
## AIC: 14330
##
## Number of Fisher Scoring iterations: 6
It appears so!
## (Intercept) typhoon_500 typhoon_1000 typhoon_2000
## 0.02589334 1.15111673 1.22800815 1.17420736
## factor AME SE z p lower upper
## typhoon_1000 0.0052 0.0032 1.6322 0.1026 -0.0010 0.0115
## typhoon_2000 0.0041 0.0018 2.2570 0.0240 0.0005 0.0076
## typhoon_500 0.0036 0.0042 0.8626 0.3883 -0.0046 0.0117
# Cut makes a categorical variable out of a numerical variable using specified bins
df3$Super <- ifelse(df3$intensity_vmax * 1.852 > 185, 1, 0)
df3$Moderate <- ifelse(df3$intensity_vmax * 1.852 >= 88 &
df3$intensity_vmax * 1.852 < 185, 1, 0)
df3$Weak <- ifelse(df3$intensity_vmax * 1.852 >= 41 &
df3$intensity_vmax * 1.852 < 88, 1, 0)
df3$HK_intensity <- cut(df3$intensity_vmax * 1.852 ,c(-1,41, 62, 87, 117, 149, 999))
table(df3$HK_intensity)
##
## (-1,41] (41,62] (62,87] (87,117] (117,149] (149,999]
## 3398 12039 12615 11527 2255 21141
fit2 <- glm(delayed ~ (typhoon_500 + typhoon_1000 + typhoon_2000) :
(Weak + Moderate + Super), data=df3,
family=binomial)
tidy(fit2)
## # A tibble: 10 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -3.65 0.0290 -126. 0
## 2 typhoon_500:Weak -0.00879 0.213 -0.0413 0.967
## 3 typhoon_500:Moderate 0.715 0.251 2.86 0.00430
## 4 typhoon_500:Super -8.91 123. -0.0726 0.942
## 5 typhoon_1000:Weak 0.250 0.161 1.55 0.121
## 6 typhoon_1000:Moderate 0.123 0.273 0.451 0.652
## 7 typhoon_1000:Super -0.0269 0.414 -0.0648 0.948
## 8 typhoon_2000:Weak 0.182 0.101 1.80 0.0723
## 9 typhoon_2000:Moderate 0.0253 0.134 0.189 0.850
## 10 typhoon_2000:Super 0.311 0.136 2.29 0.0217
Moderate storms predict delays when within 500km
Super typhoons predict delays when 1,000 to 2,000km away
factor | AME | SE | z | p | lower | upper |
---|---|---|---|---|---|---|
Moderate | 0.0007378 | 0.0006713 | 1.0990530 | 0.2717449 | -0.0005779 | 0.0020535 |
Super | -0.0050241 | 0.0860163 | -0.0584087 | 0.9534231 | -0.1736129 | 0.1635647 |
typhoon_1000 | 0.0035473 | 0.0036186 | 0.9802921 | 0.3269420 | -0.0035450 | 0.0106396 |
typhoon_2000 | 0.0039224 | 0.0017841 | 2.1985908 | 0.0279070 | 0.0004257 | 0.0074191 |
typhoon_500 | -0.0440484 | 0.6803640 | -0.0647424 | 0.9483791 | -1.3775373 | 1.2894405 |
Weak | 0.0009975 | 0.0005154 | 1.9353011 | 0.0529534 | -0.0000127 | 0.0020077 |
factor | Weak | AME | SE | z | p | lower | upper |
---|---|---|---|---|---|---|---|
typhoon_1000 | 1 | 0.0073057 | 0.0053682 | 1.360938 | 0.1735332 | -0.0032157 | 0.0178271 |
typhoon_2000 | 1 | 0.0067051 | 0.0031225 | 2.147328 | 0.0317671 | 0.0005850 | 0.0128251 |
typhoon_500 | 1 | -0.0458116 | 0.7052501 | -0.064958 | 0.9482075 | -1.4280764 | 1.3364531 |
factor | Moderate | AME | SE | z | p | lower | upper |
---|---|---|---|---|---|---|---|
typhoon_1000 | 1 | 0.0059332 | 0.0078245 | 0.7582856 | 0.4482800 | -0.0094025 | 0.0212688 |
typhoon_2000 | 1 | 0.0044871 | 0.0039453 | 1.1373050 | 0.2554108 | -0.0032457 | 0.0122198 |
typhoon_500 | 1 | -0.0311946 | 0.6847130 | -0.0455586 | 0.9636620 | -1.3732074 | 1.3108182 |
factor | Super | AME | SE | z | p | lower | upper |
---|---|---|---|---|---|---|---|
typhoon_1000 | 1 | 0.0030638 | 0.0111295 | 0.2752891 | 0.7830941 | -0.0187495 | 0.0248772 |
typhoon_2000 | 1 | 0.0102513 | 0.0041568 | 2.4661549 | 0.0136572 | 0.0021041 | 0.0183985 |
typhoon_500 | 1 | -0.2241250 | 3.1608062 | -0.0709076 | 0.9434713 | -6.4191913 | 5.9709413 |
What other observable events or data might provide insight as to whether a naval shipment will be delayed or not?
# styling for plotly maps
geo <- list(
showland = TRUE,
showlakes = TRUE,
showcountries = TRUE,
showocean = TRUE,
countrywidth = 0.5,
landcolor = toRGB("grey90"),
lakecolor = toRGB("aliceblue"),
oceancolor = toRGB("aliceblue"),
projection = list(
type = 'orthographic', # detailed at https://plot.ly/r/reference/#layout-geo-projection
rotation = list(
lon = 100,
lat = 1,
roll = 0
)
),
lonaxis = list(
showgrid = TRUE,
gridcolor = toRGB("gray40"),
gridwidth = 0.5
),
lataxis = list(
showgrid = TRUE,
gridcolor = toRGB("gray40"),
gridwidth = 0.5
)
)