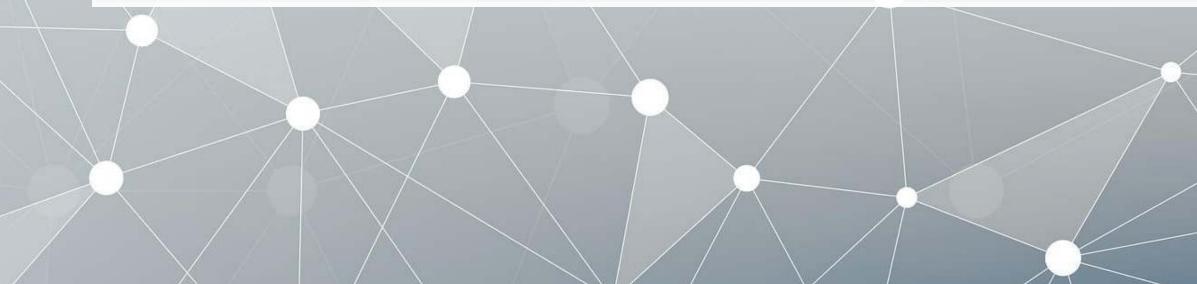
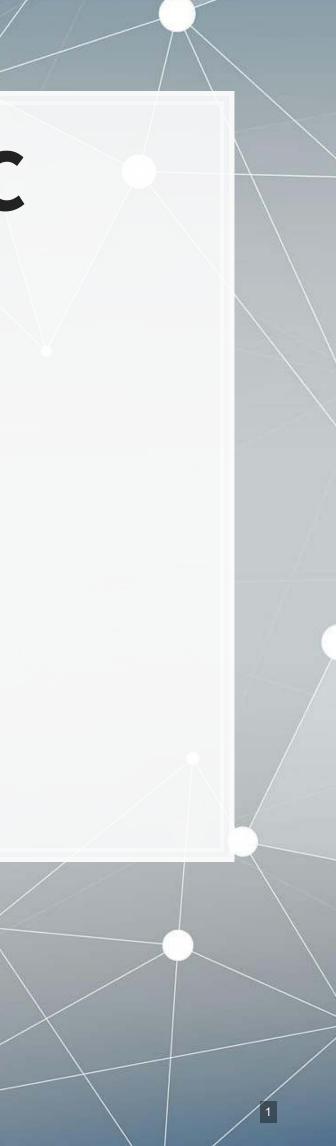
ACCT 420: Logistic Regression

Session 4

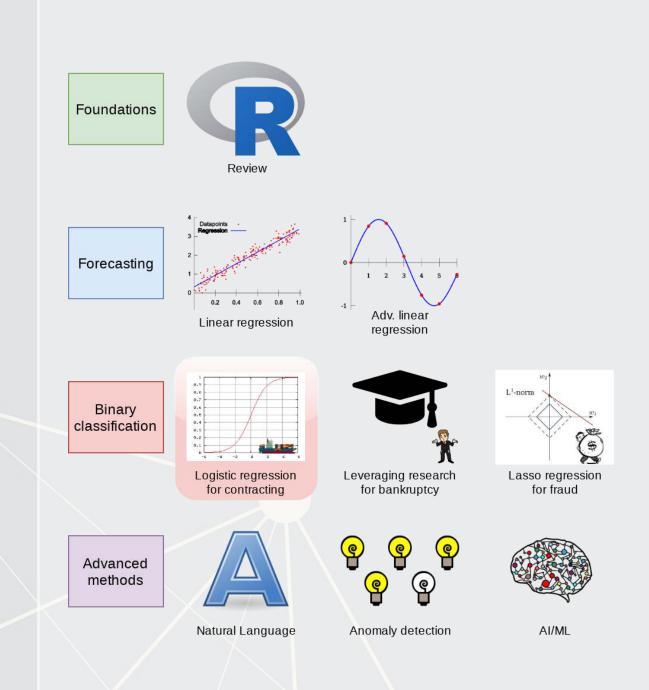
Dr. Richard M. Crowley





Front matter

Learning objectives



- Theory:
 - Understanding binary problems
- Application:
 - Detecting shipping delays caused by typhoons
- Methodology:
 - Logistic regression
 - Spatial visualization

Datacamp

- Explore on your own
- No specific required class this week

Assignment 2

- Looking at Singaporean retail firms
 - Mostly focused on time and cyclicality
 - Some visualization
 - A little of what we cover today
- Optional (but encouraged):
 - You can work in pairs on this assignment
 - If you choose to do this, please only make 1 submission and include both your names on the submission

Binary outcomes

What are binary outcomes?

- Thus far we have talked about events with continuous outcomes
 - Revenue: Some positive number
 - Earnings: Some number
 - ROA: Some percentage
- Binary outcomes only have two possible outcomes
 - Did something happen, yes or no?
 - Is a statement *true* or *false*?

Accounting examples of binary outcomes

- Financial accounting:
 - Will the company's earnings meet analysts' expectations?
 - Will the company have positive earnings?
- Managerial accounting:
 - Will we have ____ problem with our supply chain?
 - Will our customer go bankrupt?
- Audit:
 - Is the company committing fraud?
- Taxation:
 - Is the company too aggressive in their tax positions?

We can assign a probability to any of these

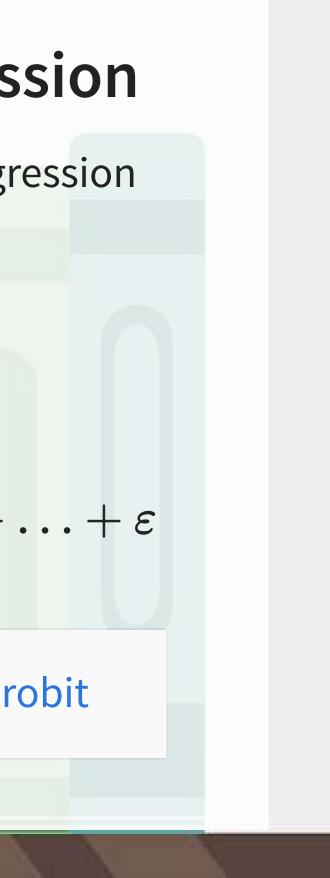
3.3

Regression approach: Logistic regression

- When modeling a binary outcome, we use logistic regression
 - A.k.a. logit model
- The *logit* function is $logit(x) = log\left(\frac{x}{1-x}\right)$
 - Also called log odds

$$\log\left(rac{\mathrm{Prob}(y=1|X)}{1-\mathrm{Prob}(y=1|X)}
ight) = lpha+eta_1x_1+eta_2x_2+$$

There are other ways to model this though, such as probit



Implementation: Logistic regression

The logistic model is related to our previous linear models as such:

Both linear and logit models are under the class of General Linear Models (GLMs)

To regress a GLM, we use the glm () command.

 In fact, the lm() command we have been using is actually glm() when you specify the option family=gaussian

To run a logit regression:

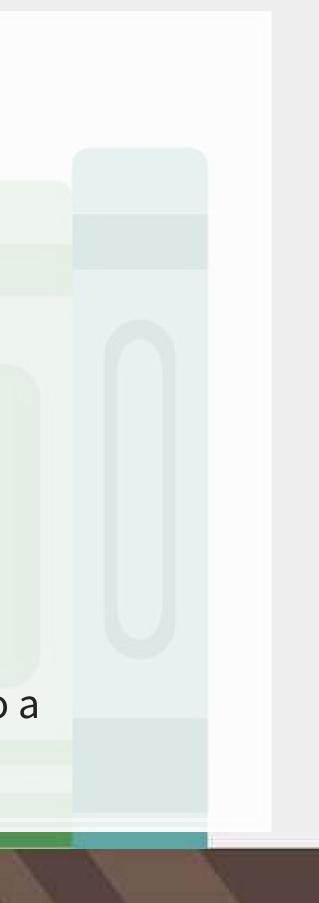
mod <- glm(y ~ x1 + x2 + x3 + ..., data=df, family=binomial)</pre>

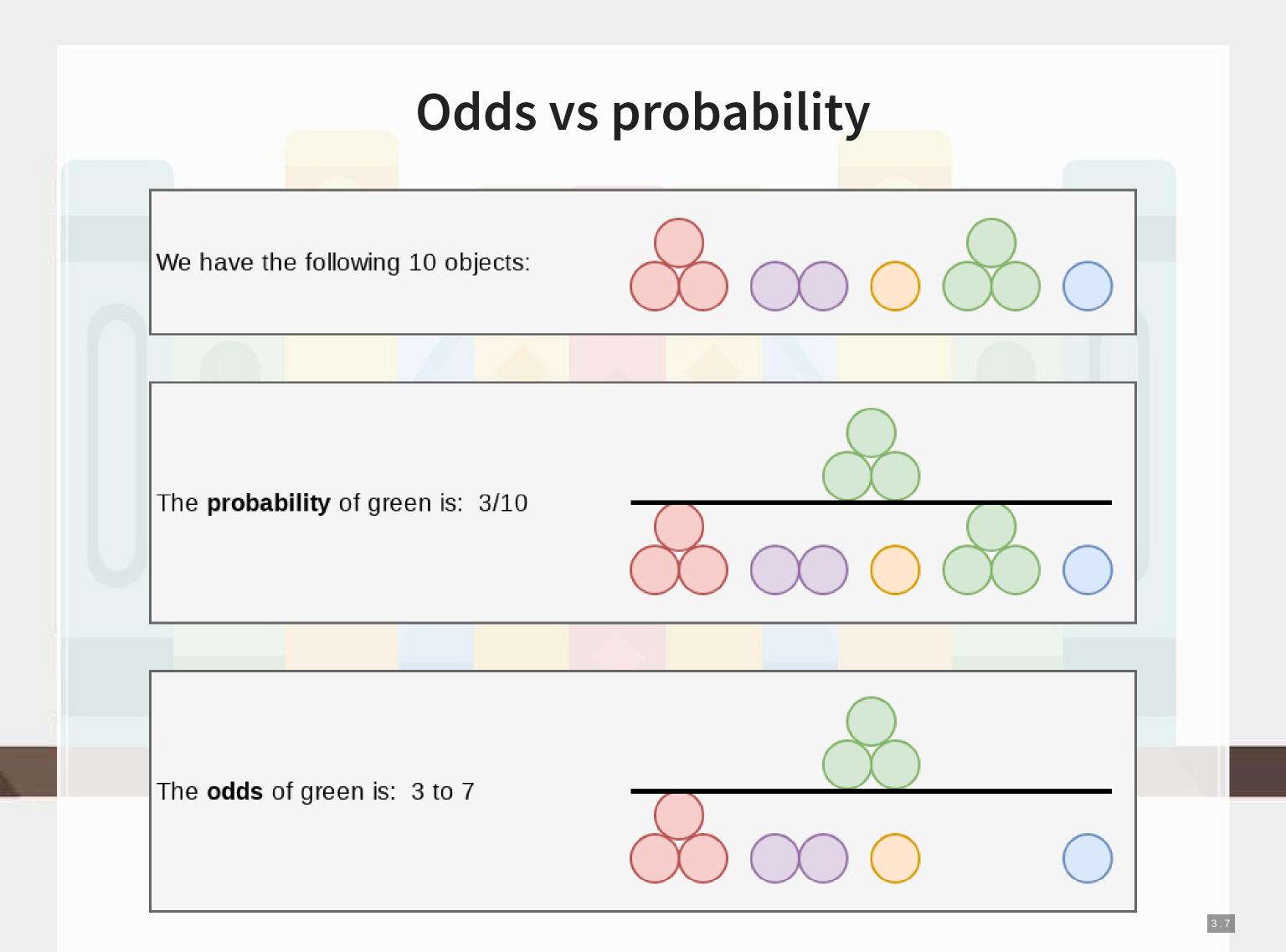
summary(mod)

family=binomial is what sets the model to be a logit

Interpreting logit values

- The sign of the coefficients means the same as before
 - +: increases the likelihood of y occurring
 - -: decreases the likelihood of y occurring
- The level of a coefficient is different
 - The relationship isn't linear between x_i and y now
 - Instead, coefficients are in log odds
 - Thus, e^{β_i} gives you the odds, o
- You can interpret the odds for a coefficient
 - Increased by [o 1]%
- You need to sum all relevant log odds before converting to a probability!





Example logit regression

Do holidays increase the likelihood that a department more than doubles its store's average weekly sales across departments?

Create the binary variable from Walmart sales data
df\$double <- ifelse(df\$Weekly_Sales > df\$store_avg*2,1,0)
fit <- glm(double ~ IsHoliday, data=df, family=binomial)
tidy(fit)</pre>

## #	A tibble: 2 x	5			
##	term	estimate	std.error	statistic	p.value
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	(Intercept)	-3.45	0.00924	-373.	0.
## 2	IsHolidayTRUE	0.539	0.0278	19.4	1.09e-83

Holidays increase the odds... but by how much?

Logistic regression interpretation

A simple interpretation

• The model we just saw the following model:

 $logodds(Double \ sales) = -3.45 + 0.54 IsHoliday$

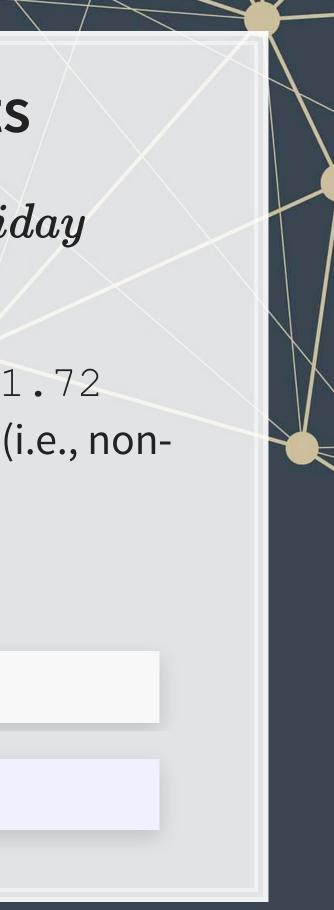
There are two ways to interpret this:
 1. Coefficient by coefficient
 2. In total

Interpretting specific coefficients

 $logodds(Double \ sales) = -3.45 + 0.54 IsHoliday$

- Interpreting specific coefficients is easiest done manually
- Odds for the *IsHoliday* coefficient are exp(0.54) = 1.72
 - This means that having a holiday modifies the baseline (i.e., non-Holiday) odds by 1.72 to 1
 - Where 1 to 1 is considered no change
 - Baseline is 0.032 to 1

Automating the above: exp(coef(fit)) ## (Intercept) IsHolidayTRUE ## 0.03184725 1.71367497



4.3

Interpretting in total

- It is important to note that log odds are additive
 - So, calculate a new log odd by plugging in values for variables and adding it all up
 - Holiday: -3.45 + 0.54 * 1 = -2.89
 - No holiday: -3.45 + 0.54 * 0 = -3.45
- Then calculate odds and log odds like before
 - With holiday: exp(-2.89) = 0.056
 - Without holiday: exp(-3.45) = 0.032
 - Ratio of holiday to without: 1.72!
 - This is the individual log odds for holiday

We need to specify values to calculate log odds in total

Converting to probabilities

We can calculate a probability at any given point using the log odds

 $Probability = rac{odds}{odds+1}$

- Probability of double sales...
 - With a holiday: 0.056 / (0.056 + 1) = 0.052
 - Without a holiday: 0.032 / (0.032 + 1) = 0.031

These are easier to interpret, but require specifying values for each model input to calculate

Using predict() to simplify it

- predict() can calculate log odds and probabilities for us with minimal effort
 - Specify type="response" to get probabilities

```
test data <- as.data.frame(IsHoliday = c(0,1))</pre>
predict(model, test data) # log odds
```

[1] -3.44 -2.90

predict(model, test data, type="response") #probabilities

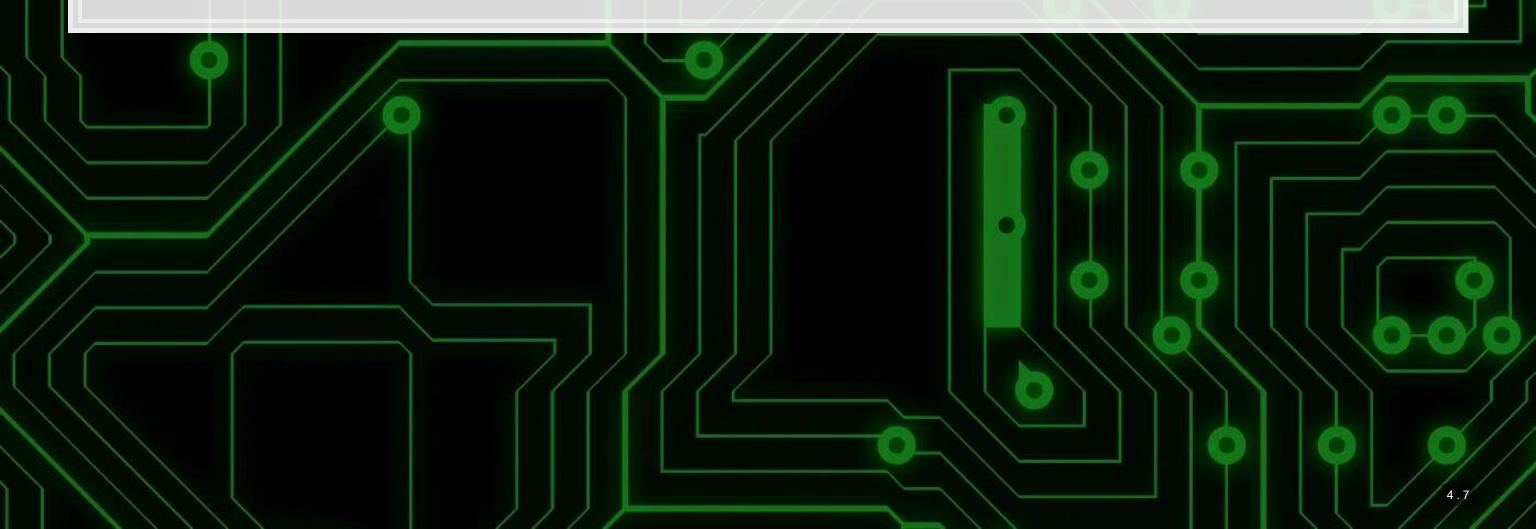
[1] 0.03106848 0.05215356

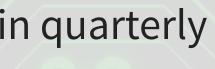
- Here, we see the baseline probability is 3.1%
- The probability of doubling sales on a holiday is higher, at 5.2%



R practice: Logit

- A continuation of last week's practices answering:
 - Is Walmart more likely to see a year over year decrease in quarterly revenue during a recession?
- Practice using mutate() and glm()
- Do exercises 1 and 2 in today's practice file
 - R Practice
 - Shortlink: rmc.link/420r4





Logistic regression interpretation redux

What about more complex models?

- Continuous inputs in the model
 - What values do we pick to determine probabilities?
- Multiple inputs?
 - We can scale up what we did, but things get messy
 - Mathematically, the inputs get interacted within the inner workings of logit...
 - So the impact of each input depends on the values of the others!

Consider this model

model2 <- glm(double ~ IsHoliday + Temperature + Fuel Price, data=df, family=binom</pre> summary(model2)

```
##
## Call:
## glm(formula = double ~ IsHoliday + Temperature + Fuel Price,
##
      family = binomial, data = df)
##
## Deviance Residuals:
##
      Min 10 Median
                                 30
                                        Max
## -0.4113 -0.2738 -0.2464 -0.2213 2.8562
##
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -1.7764917 0.0673246 -26.39 <2e-16 ***
## IsHolidayTRUE 0.3704298 0.0284395 13.03 <2e-16 ***
## Temperature -0.0108268 0.0004698 -23.04 <2e-16 ***
## Fuel Price -0.3091950 0.0196234 -15.76 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 120370 on 421569 degrees of freedom
##
```

Odds and probabilities

Odds

exp(coef(model2))

##	(Intercept)	IsHolidayTRUE	Temperature	Fuel_Price
##	0.1692308	1.4483570	0.9892316	0.7340376

Typical September days

```
hday sep <- mean(predict(model2, filter(df, IsHoliday, month==9), type="respons"
no hday sep <- mean(predict(model2, filter(df, !IsHoliday, month==9), type="response")</pre>
# Typical December days
hday dec <- mean(predict(model2, filter(df, IsHoliday, month==12), type="respon
no hday dec <- mean(predict(model2, filter(df, !IsHoliday, month==12), type="resp</pre>
```

html df(data.frame(Month=c(9,9,12,12),

IsHoliday=c(FALSE, TRUE, FALSE, TRUE),

Probability=c(no hday sep, hday sep, no hday dec, hday dec)))

Month IsHoliday		Probability		
9	FALSE	0.0266789		
9	TRUE	0.0374761		
12	FALSE	0.0398377		
12	TRUE	0.0586483		

A bit easier: Marginal effects

Marginal effects tell us the *average* change in our output for a change of 1 to an input

- The above definition is very similar to how we interpret linear regression coefficients
 - The only difference is the word *average* the effect changes a bit depending on the input data
- Using margins, we can calculate marginal effects
- There are a few types that we could calculate:
 - An Average Marginal Effect tells us what the average effect of an input is across all values in our data
 - This is the default method in the package
 - We can also specify a specific value to calculate marginal effects at (like with our probabilities last slides)

Marginal effects in action

```
# Calculate AME marginal effects
library(margins)
m <- margins(model2)</pre>
m
```

Temperature Fuel Price IsHoliday -0.0003377 -0.009644## 0.01334

- A holiday increase the probability of doubling by a flat 1.33%
 - Not too bad when you consider that the probability of doubling is 3.23%
- If the temperature goes up by 1°F (0.55°C), the probability of doubling changes by -0.03%
- If the fuel price increases by 1 USD for 1 gallon of gas, the probability of doubling changes by -0.96%

margins niceties

We can get some extra information about our marginal effects through summary():

<pre>summary(m)</pre>	%> %
<pre>html df()</pre>	

factor	AME	SE	Z	р	lower	
Fuel_Price	-0.0096438	0.0006163	-15.64800	0	-0.0108517	_
IsHoliday	0.0133450	0.0011754	11.35372	0	0.0110413	(
Temperature	-0.0003377	0.0000149	-22.71255	0	-0.0003668	-

- Those p-values work just like with our linear models
- We also get a confidence interval
 - Which we can plot!

upper

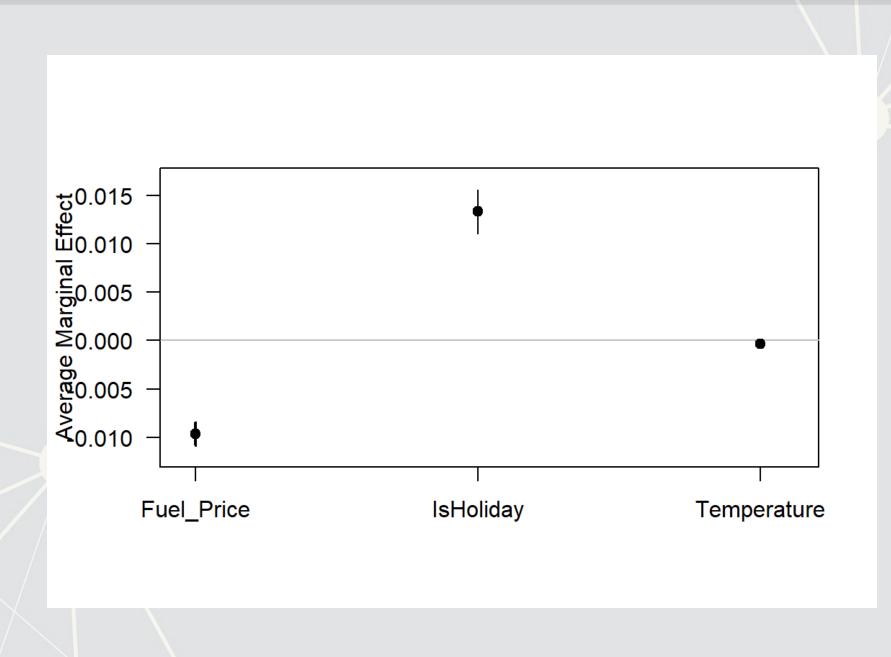
-0.0084359

0.0156487

-0.0003085

Plotting marginal effects

plot(m, which=summary(m)\$factor)



Note: The which... part is absolutely necessary at the moment due to a bug in the package

Marginal effects at a specified value

```
margins(model2, at = list(IsHoliday = c(TRUE, FALSE)),
        variables = c("Temperature", "Fuel Price")) %>%
  summary() %>%
  html df()
```

factor	IsHoliday	AME	SE	Z	р	lower
Fuel_Price	FALSE	-0.0093401	0.0005989	-15.59617	0	-0.0105139
Fuel_Price	TRUE	-0.0131335	0.0008717	-15.06650	0	-0.0148420
Temperature	FALSE	-0.0003271	0.0000146	-22.46024	0	-0.0003556
Temperature	TRUE	-0.0004599	0.0000210	-21.92927	0	-0.0005010

margins(model2, at = list(Temperature = c(0, 20, 40, 60, 80, 100)), variables = c("IsHoliday")) %>% summary() %>%

html_df()							
factor	Temperature	AME	SE	Z	р	lower	upper
IsHoliday	0	0.0234484	0.0020168	11.62643	0	0.0194955	0.0274012
IsHoliday	20	0.0194072	0.0016710	11.61387	0	0.0161320	0.0226824
IsHoliday	40	0.0159819	0.0013885	11.51001	0	0.0132604	0.0187033
IsHoliday	60	0.0131066	0.0011592	11.30623	0	0.0108345	0.0153786
IsHoliday	80	0.0107120	0.0009732	11.00749	0	0.0088046	0.0126193
IsHoliday	100	0.0087305	0.0008213	10.62977	0	0.0071207	0.0103402

ver	upper
05139	-0.0081664
48420	-0.0114250

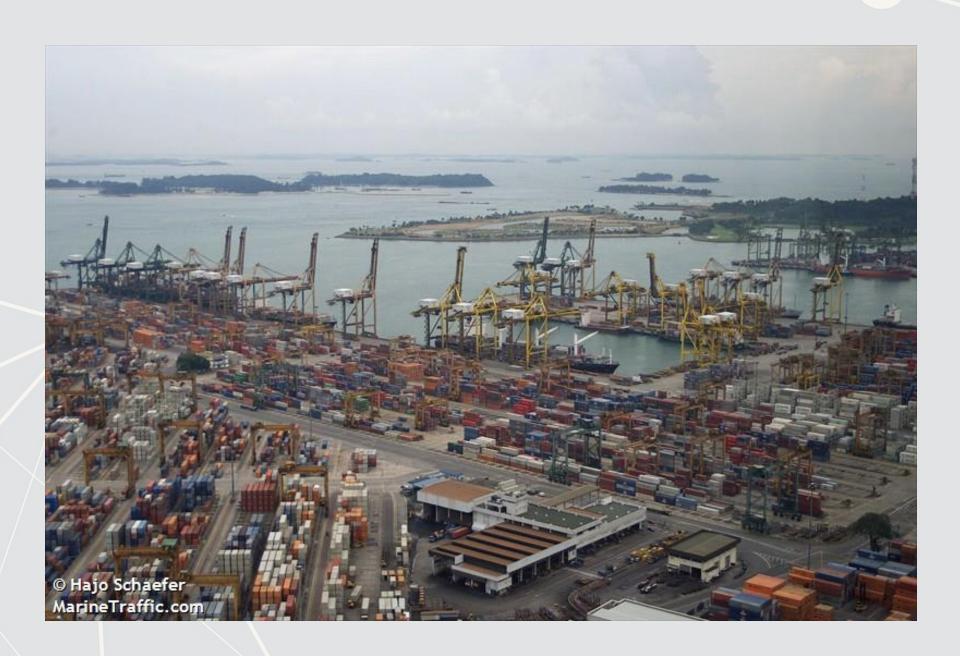
-0.0002985

-0.0004188

Today's Application: Shipping delays

The question

Can we leverage global weather data to predict shipping delays?



Formalization

1. Question

- How can predict naval shipping delays?
- 2. Hypothesis (just the alternative ones)
 - 1. Global weather data helps to predict shipping delays

3. Prediction

- Use Logistic regression and z-tests for coefficients
- No hold out sample this week too little data

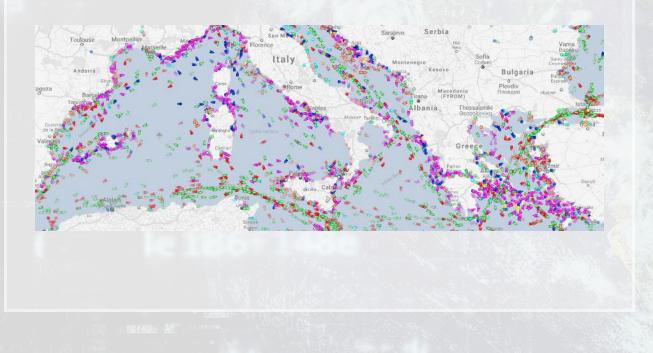
A bit about shipping data

- WRDS doesn't have shipping data
- There are, however, vendors for shipping data, such as:

- They pretty much have any data you could need:
 - Over 650,000 ships tracked using ground and satellite based AIS
 - AIS: Automatic Identification System
 - Live mapping
 - Weather data
 - Fleet tracking
 - Port congestion
 - Inmarsat support for ship operators

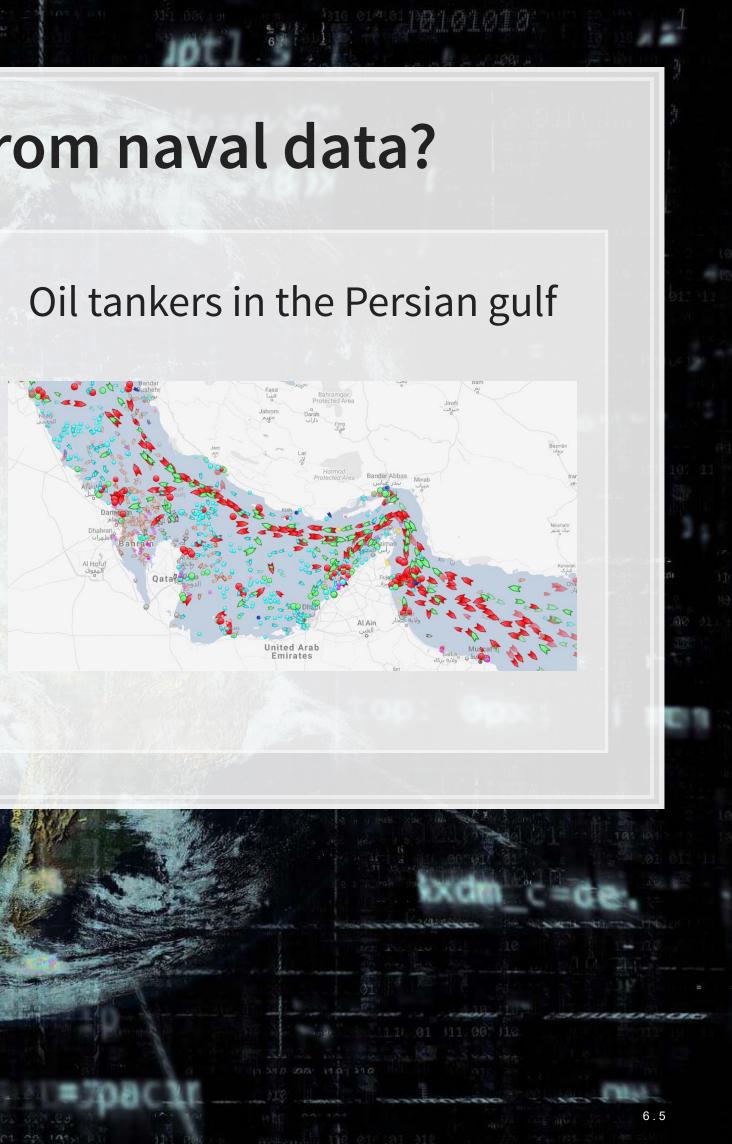
What can we see from naval data?

Yachts in the Mediterranean



1.居民第

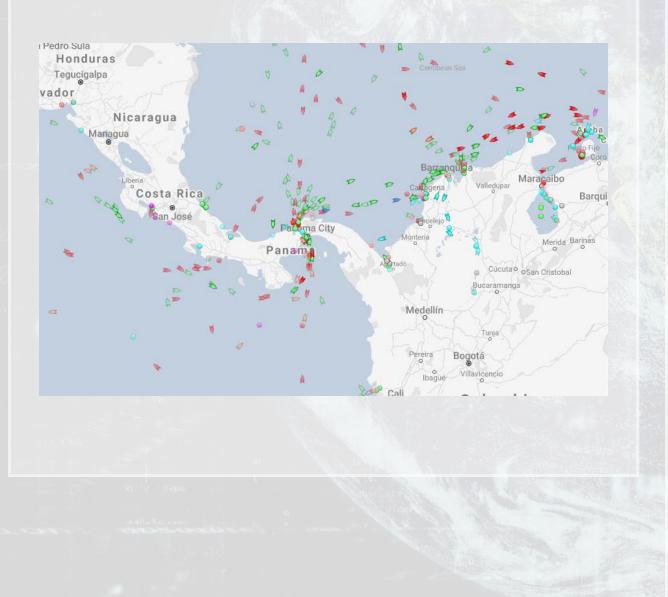
傳輸

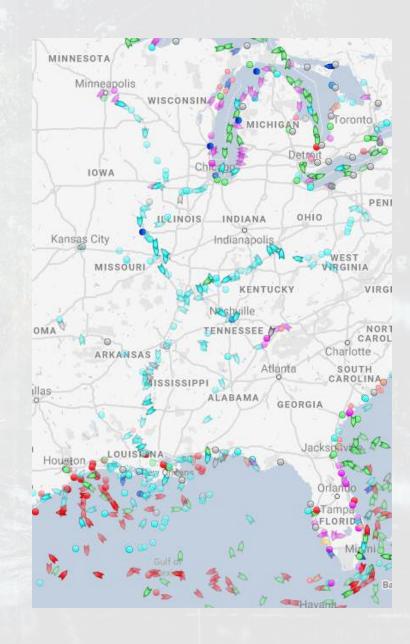


What can we see from naval data?

Shipping route via the Panama canal

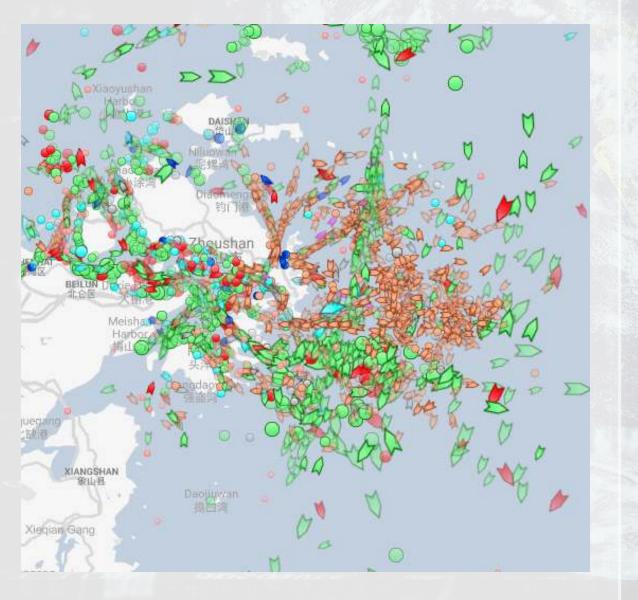
River shipping on the Mississippi river, USA

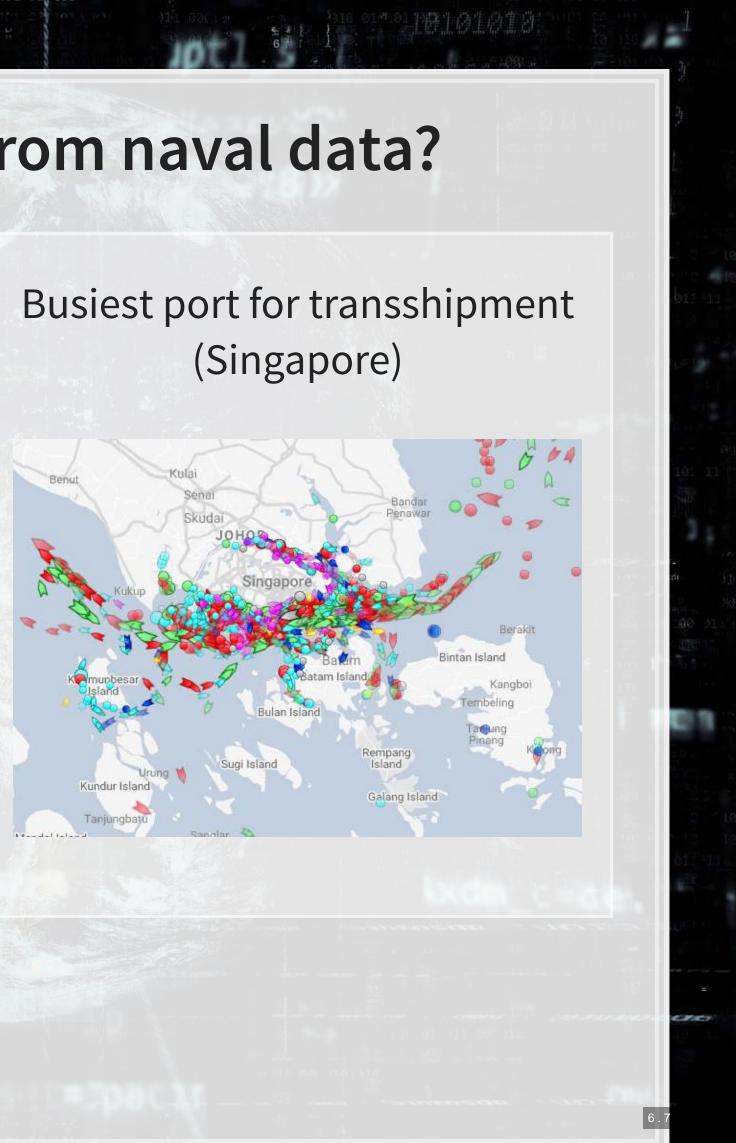




What can we see from naval data?

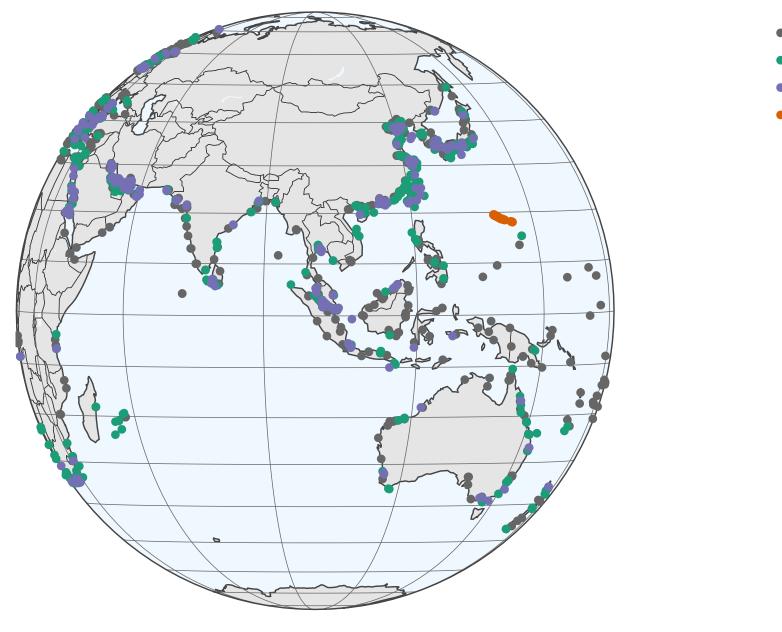
Busiest ports by containers and tons (Shanghai & Ningbo-Zhoushan, China)





Examining Singaporean owned ships

Singaporean owned container and tanker ships, August 31, 2018



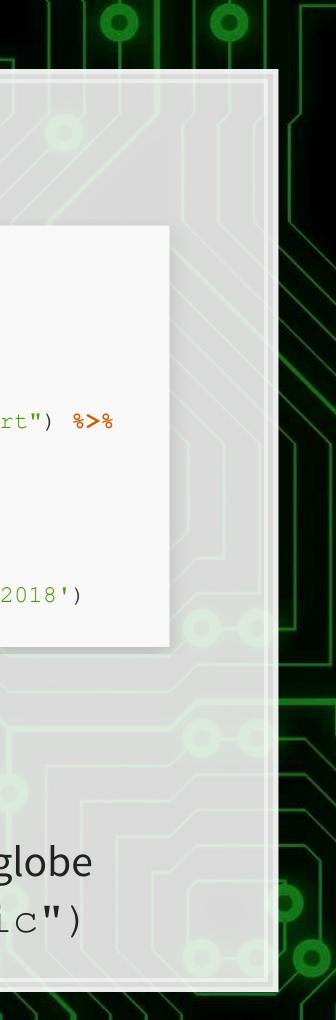
1.目標

田樹.

Port Cargo Tanker TYPHOON

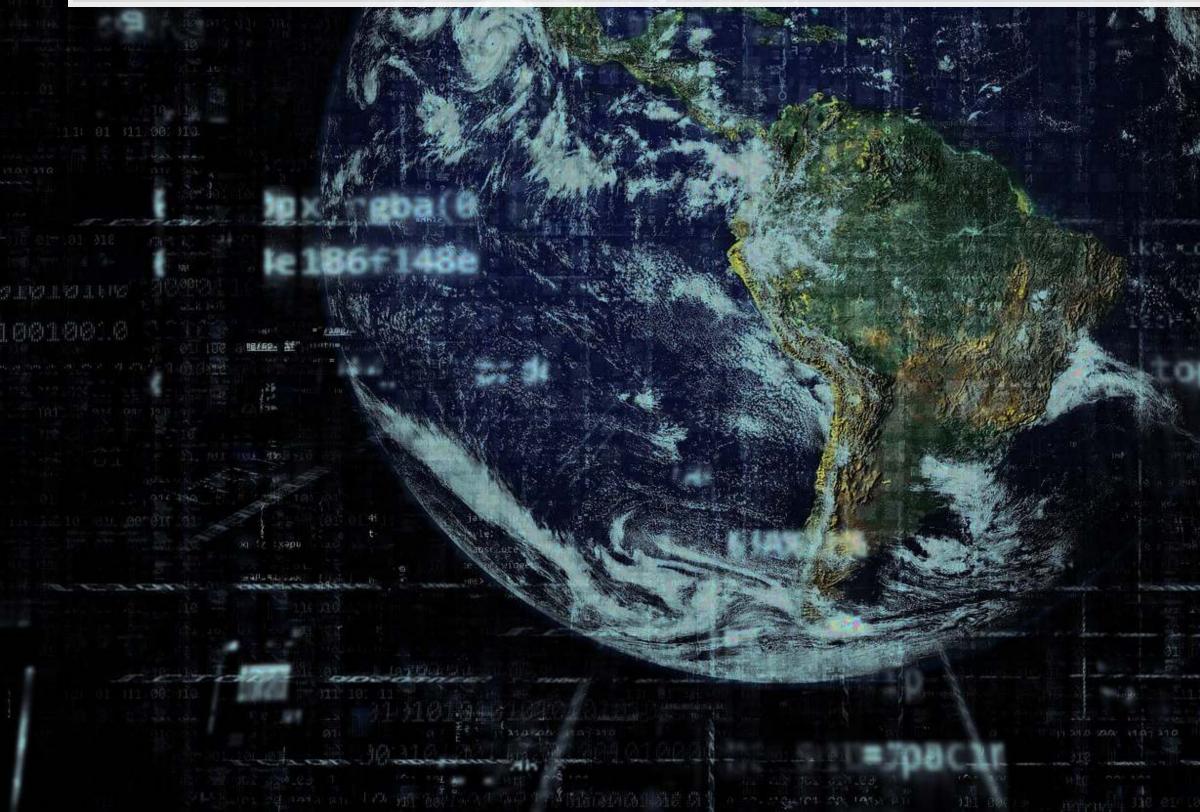
Code for last slide's map

- plot_geo() is from plotly
- add markers() adds points to the map
- layout() adjusts the layout
- Within geo, a list, the following makes the map a globe
 - projection=list(type="orthographic")



Singaporean ship movement

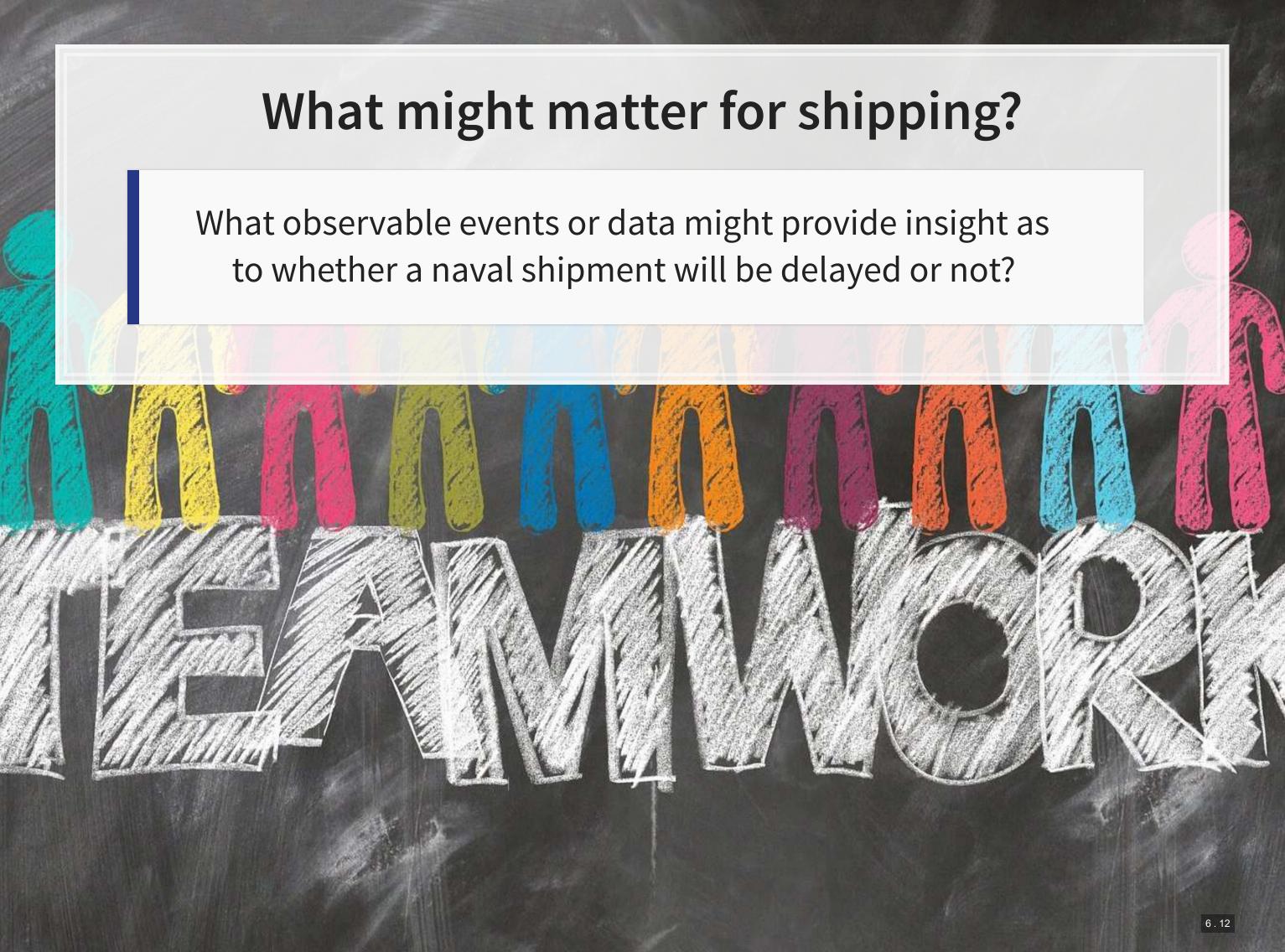
Link to ship movement animation

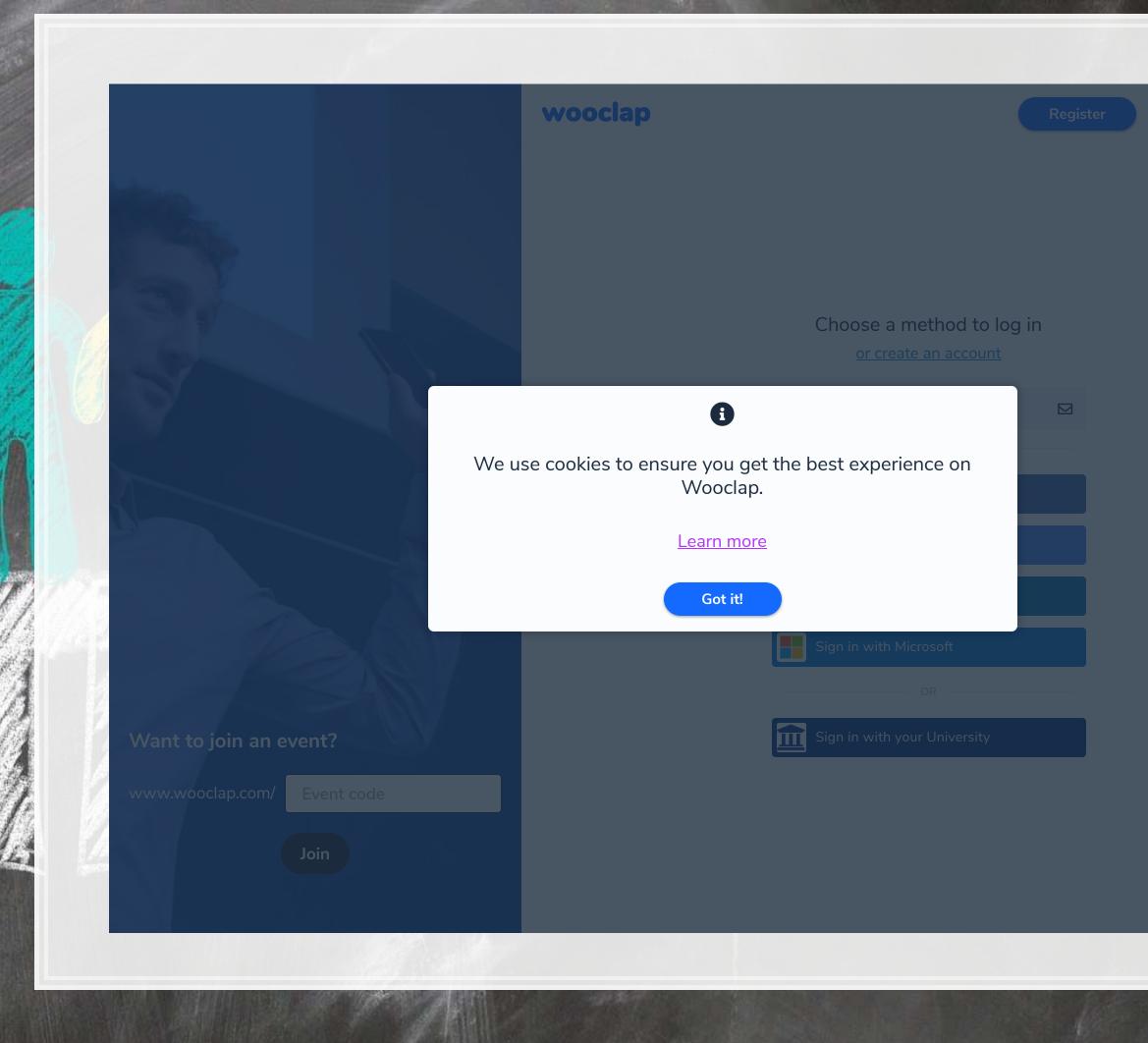


Code for last slide's map

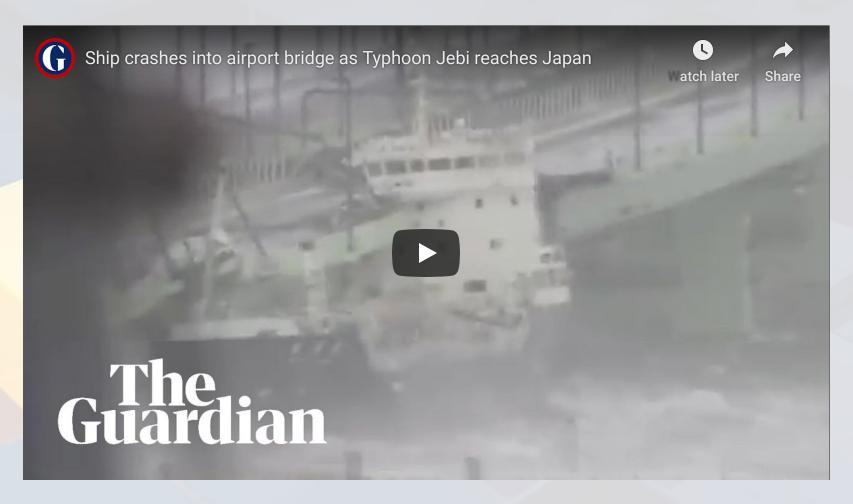
- world1 contains the map data
- geom_sf() plots map data passed to ggplot()
- geom_point() plots ship locations as longitude and latitude
- ggplotly() converts the graph to html and animates it
 - Animation follows the frame aesthetic

l latitude es it





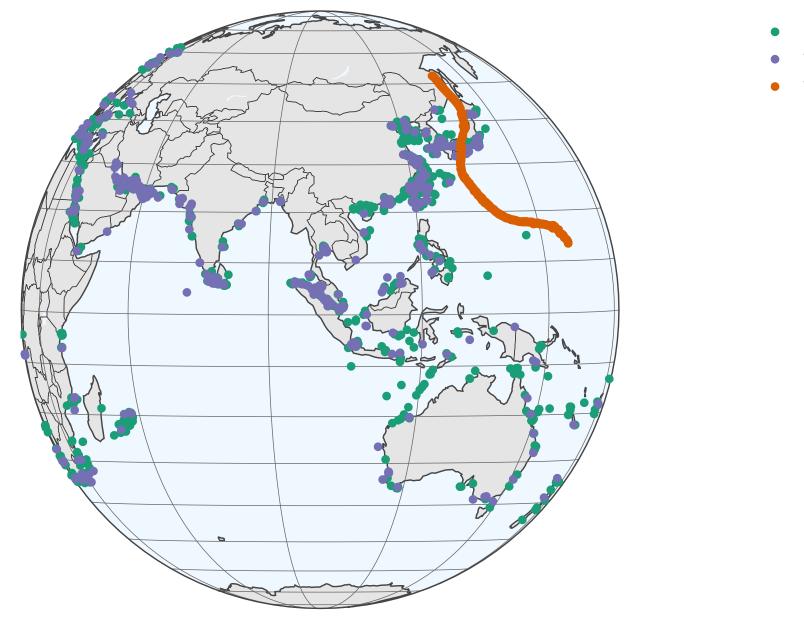
Typhoon Jebi



- link
- Nullschool plot

Typhoons in the data

Singaporean container/tanker ships, September 4, 2018, evening

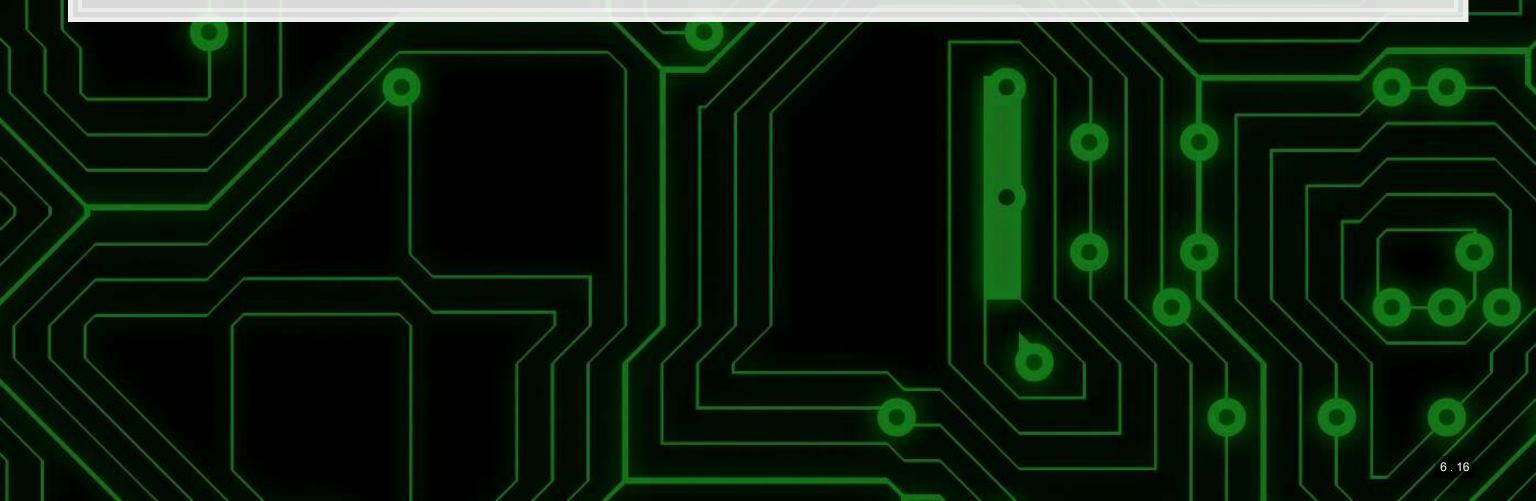


Cargo Tanker Typhoon Jebi

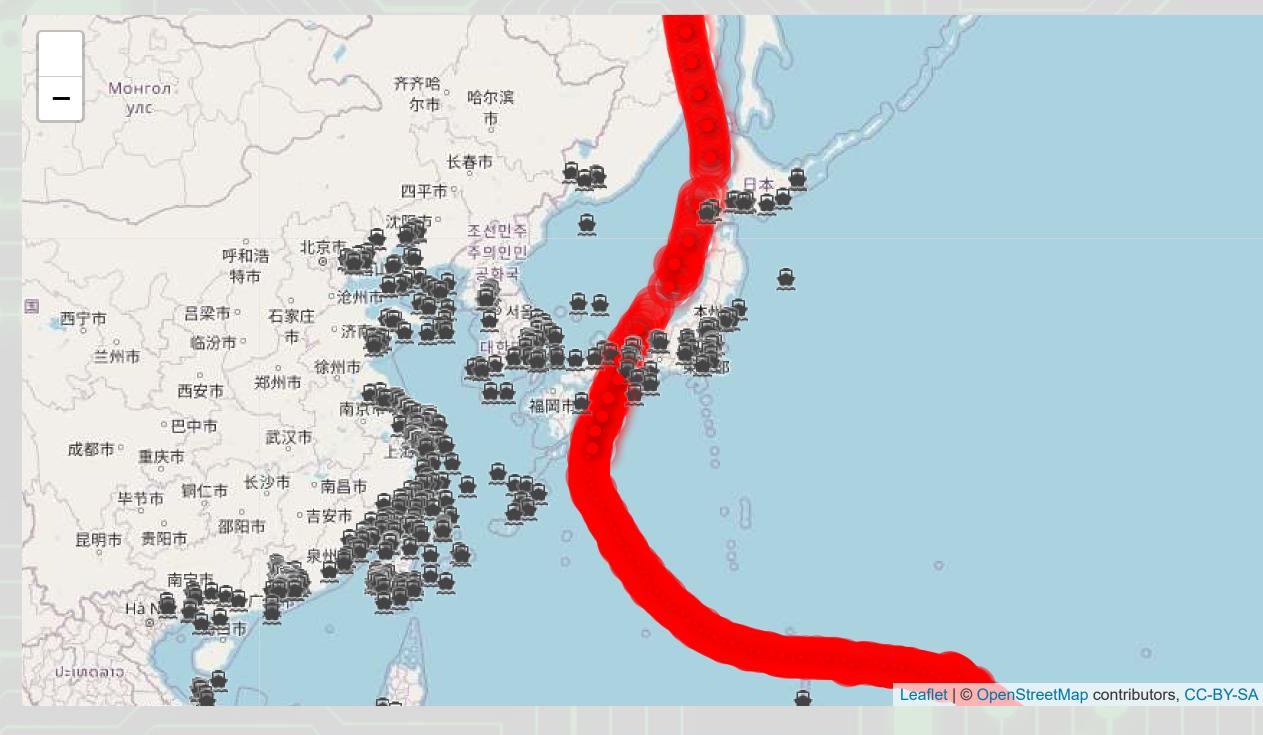
Code for last slide's map

```
# plot with boats and typhoons
palette = brewer.pal(8, "Dark2") [c(1,3,2)]
p <- plot geo(colors=palette) %>%
  add markers (data=df all[df all$frame == 14,], x = ~lon, y = ~lat,
              color = ~ship type, text=~paste('Ship name', shipname)) %>%
  add markers (data=typhoon Jebi, x = ~lon,
              y = ~lat, color="Typhoon Jebi",
              text=~paste("Name", typhoon name, "</br>Time: ", date)) %>%
   layout(showlegend = TRUE, geo = geo,
    title = 'Singaporean container/tanker ships, September 4, 2018, evening')
р
```

This map is made the same way as the first map



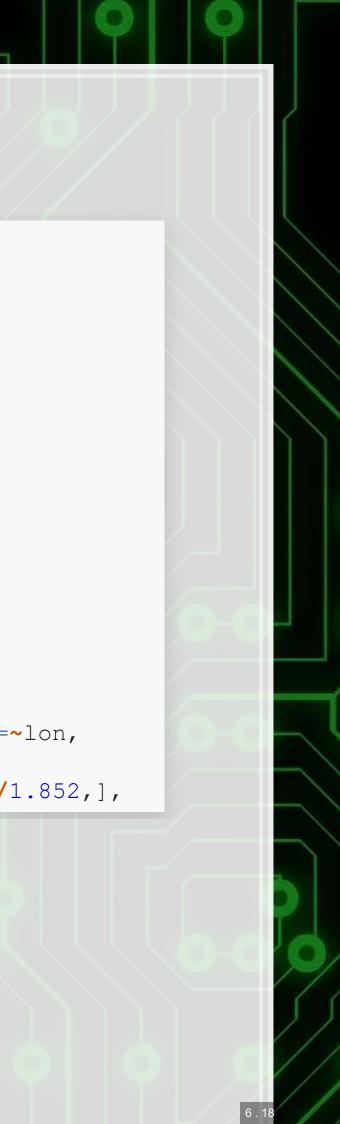
Typhoons in the data using leaflet



Code for last slide's map

library(leaflet)
library(leaflet.extras)

```
# typhoon icons
icons <- pulseIcons(color='red',
    heartbeat = ifelse(typhoon_Jebi$intensity_vmax > 150/1.852, 0.8,
    ifelse(typhoon$intensity_vmax < 118/1.852, 1.6, 1.2)),
    iconSize=ifelse(typhoon_Jebi$intensity_vmax > 150/1.852, 5,
    ifelse(typhoon_Jebi$intensity_vmax < 118/1.852, 2, 3)))</pre>
```



R Practice on mapping

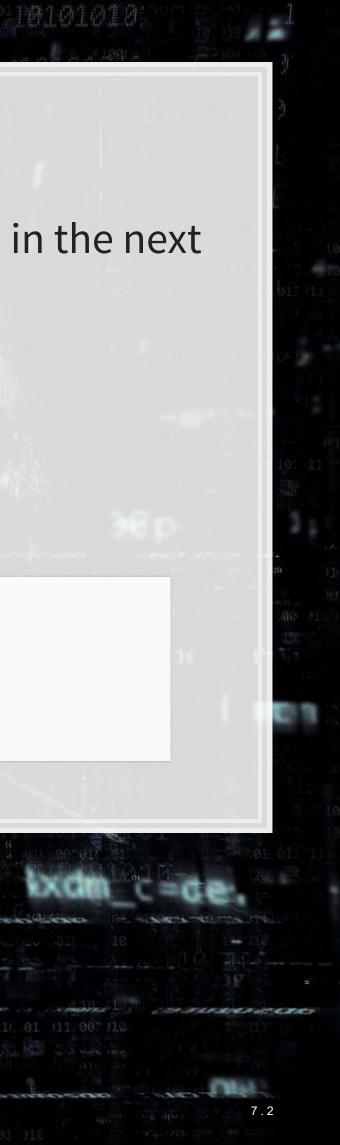
- Practice mapping typhoon data
 - 1 map using plotly
 - 1 map using leaflet
- Practice using plotly and leaflet
 - No practice using ggplot2 as sf is missing on DataCamp light
 - And sf can be tough to install for anyone on a Mac
- Do exercises 3 and 4 in today's practice file
 - **R** Practice
 - Shortlink: rmc.link/420r4

Predicting delays due to typhoons

Data

- If the ship will report a delay of at least 3 hours some time in the next 12-24 hours
- What we have:
 - Ship location
 - Typhoon location
 - Typhoon wind speed

We need to calculate distance between ships and typhoons



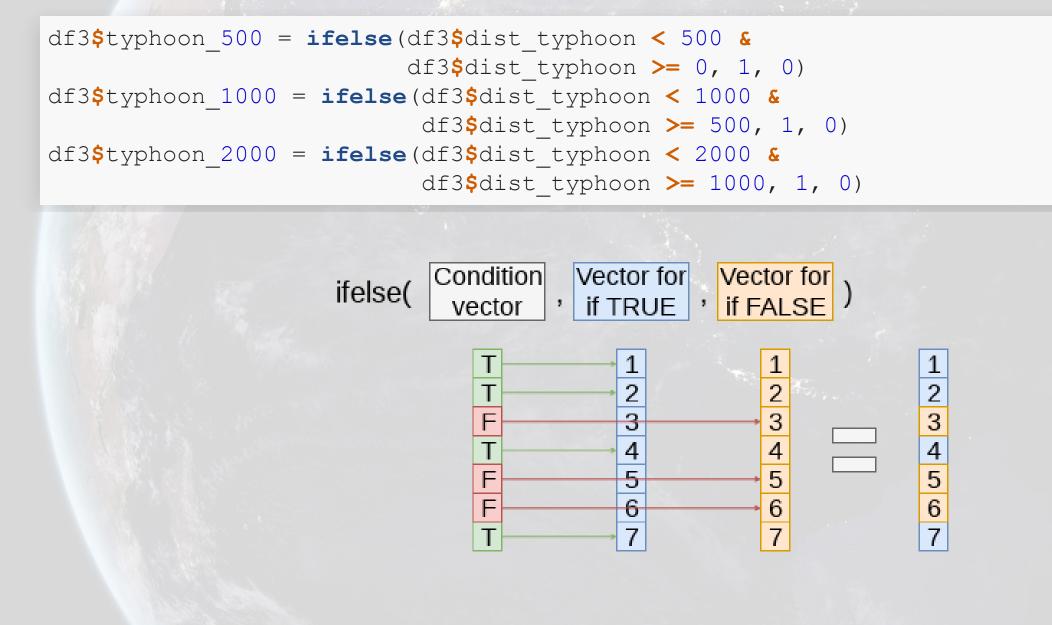
Distance for geo

- There are a number of formulas for this
 - Haversine for a simple calculation
 - *Vincenty's formulae* for a complex, incredibly accurate calculation
 - Accurate within 0.5mm
- Use distVincentyEllipsoid() from geosphere to get a reasonably quick and accurate calculation
 - Calculates distance between two sets of points, x and y, structured as matrices
 - Matrices must have longitude in the first column and latitude in the second column
 - Provides distance in meters by default

```
library(geosphere)
x <- as.matrix(df3[,c("lon","lat")]) # ship location</pre>
y <- as.matrix(df3[,c("ty lon", "ty lat")]) # typhoon location</pre>
df3$dist typhoon <- distVincentyEllipsoid(x, y) / 1000
```

Clean up

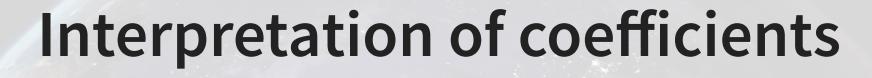
Some indicators to cleanly capture how far away the typhoon is



Do typhoons delay shipments?

```
##
## Call:
## glm(formula = delayed ~ typhoon 500 + typhoon 1000 + typhoon 2000,
      family = binomial, data = df3)
##
##
## Deviance Residuals:
      Min 10 Median
##
                                30
                                        Max
## -0.2502 -0.2261 -0.2261 -0.2261 2.7127
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.65377 0.02934 -124.547 <2e-16 ***
## typhoon 500 0.14073 0.16311 0.863 0.3883
## typhoon 1000 0.20539 0.12575 1.633 0.1024
## typhoon 2000 0.16059 0.07106 2.260
                                           0.0238 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 14329 on 59184 degrees of freedom
##
```

It appears so!



```
odds1 <- exp(coef(fit1))
odds1</pre>
```

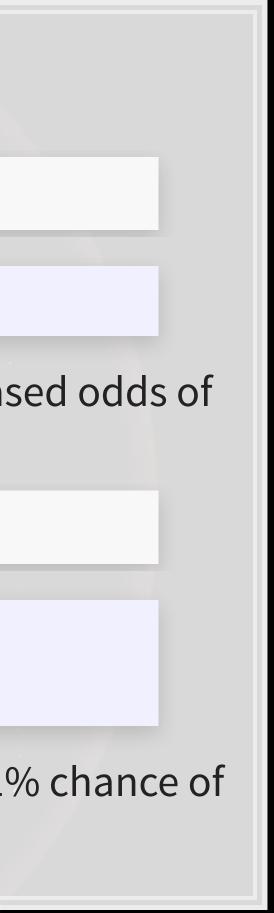
(Intercept) typhoon_500 typhoon_1000 typhoon_2000
0.02589334 1.15111673 1.22800815 1.17420736

 Ships 1,000 to 2,000 km from a typhoon have a 17% increased odds of having a delay

```
m1 <- margins(fit1)
summary(m1)</pre>
```

factor AME SE z p lower upper
typhoon_1000 0.0052 0.0032 1.6322 0.1026 -0.0010 0.0115
typhoon_2000 0.0041 0.0018 2.2570 0.0240 0.0005 0.0076
typhoon_500 0.0036 0.0042 0.8626 0.3883 -0.0046 0.0117

 Ships 1,000 to 2,000 km from a typhoon have an extra 0.41% chance of having a delay (baseline of 2.61%)



What about typhoon intensity?

- Hong Kong's typhoon classification: Official source
 - 1. 41-62 km/h: Tropical depression
 - 2. 63-87 km/h: Tropical storm
 - 3. 88-117 km/h: Severe tropical storm
 - 4. 118-149 km/h: **Typhoon**
 - 5. 150-184 km/h: Severe typhoon
 - 6. 185+km/h: Super typhoon

(-1,41] (41,62] (62,87] (87,117] (117,149] (149,999] ## 3398 12039 12615 11527 2255 21141

Typhoon intensity and delays

fit2 <- glm(delayed ~ (typhoon_500 + typhoon_1000 + typhoon_2000) :
 (Weak + Moderate + Super), data=df3,
 family=binomial)</pre>

tidy(fit2)

##	# A tibble: 10 x 5				
##	term	estimate	std.error	statistic	p.value
##	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1 (Intercept)	-3.65	0.0290	-126.	0
##	2 typhoon_500:Weak	-0.00879	0.213	-0.0413	0.967
##	3 typhoon_500:Moderate	0.715	0.251	2.86	0.00430
##	4 typhoon_500:Super	-8.91	123.	-0.0726	0.942
##	5 typhoon_1000:Weak	0.250	0.161	1.55	0.121
##	6 typhoon_1000:Moderate	0.123	0.273	0.451	0.652
##	7 typhoon_1000:Super	-0.0269	0.414	-0.0648	0.948
##	8 typhoon_2000:Weak	0.182	0.101	1.80	0.0723
##	9 typhoon_2000:Moderate	0.0253	0.134	0.189	0.850
##	10 typhoon_2000:Super	0.311	0.136	2.29	0.0217

Moderate storms predict delays when within 500km

Super typhoons predict delays when 1,000 to 2,000km away

Interpretation of coefficients

m2 <- margins(fit2)
summary(m2) %>%
html_df()

factor	AME	SE	Z	р	lower
Moderate	0.0007378	0.0006713	1.0990530	0.2717449	-0.00057
Super	-0.0050241	0.0860163	-0.0584087	0.9534231	-0.17361
typhoon_1000	0.0035473	0.0036186	0.9802921	0.3269420	-0.00354
typhoon_2000	0.0039224	0.0017841	2.1985908	0.0279070	0.00042
typhoon_500	-0.0440484	0.6803640	-0.0647424	0.9483791	-1.37753
Weak	0.0009975	0.0005154	1.9353011	0.0529534	-0.00001

Delays appear to be driven mostly by 2 factors:

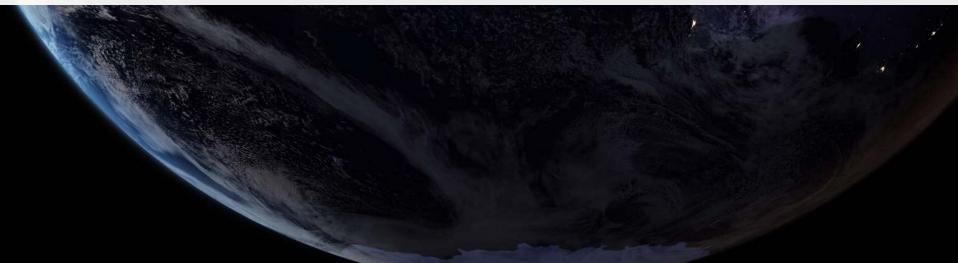
1. A typhoon 1,000 to 2,000 km away from the sh

2. Weak typhoons

r	upper
779	0.0020535
129	0.1635647
450	0.0106396
257	0.0074191
373	1.2894405
127	0.0020077
hip	

Interpretating interactions

factor	Weak	AME		SE		z		р	lo	ower	up	per
typhoon_1000	1	0.0073057	0073057 0.005		1.360938		0.1	0.1735332		-0.0032157		7827
typhoon_2000	1	0.0067051	0.0	031225	2.1	47328	0.0	317671	0.0	005850	0.01	2825:
typhoon_500	1	-0.0458116	0.7	052501	-0.0	064958	0.9	482075	-1.4	280764	1.33	6 <mark>45</mark> 3:
factor	Modera	te AME	·	SE	. A	z		р	5	lowe	r	up
typhoon_1000	1	0.005933	32	0.007824	15	0.75828	356	0.44828	00	-0.0094	025	0.02
typhoon_2000	1	0.0044871		0.0039453 1.137305)50	50 0.2554108		8 -0.0032457		0.01	
typhoon_500	1	-0.031194	46	0.684713	30	-0.0455	586	0.96366	20	-1.3732	074	1.31
factor	Super	AME		SE		Z		р		lower	ι	pper
typhoon_1000	1	0.0030638	0.0	0.0111295		0.2752891		0.7830941		-0.0187495		2487
typhoon_2000	1	0.0102513	0.0	0.0041568		2.4661549		0.0136572		0021041	0.0	1839
typhoon_500	1	-0.2241250	3.1	L608062	-0.	0709076	C	.9434713	-6	.4191913	5.9	7094
	Josh .								4			



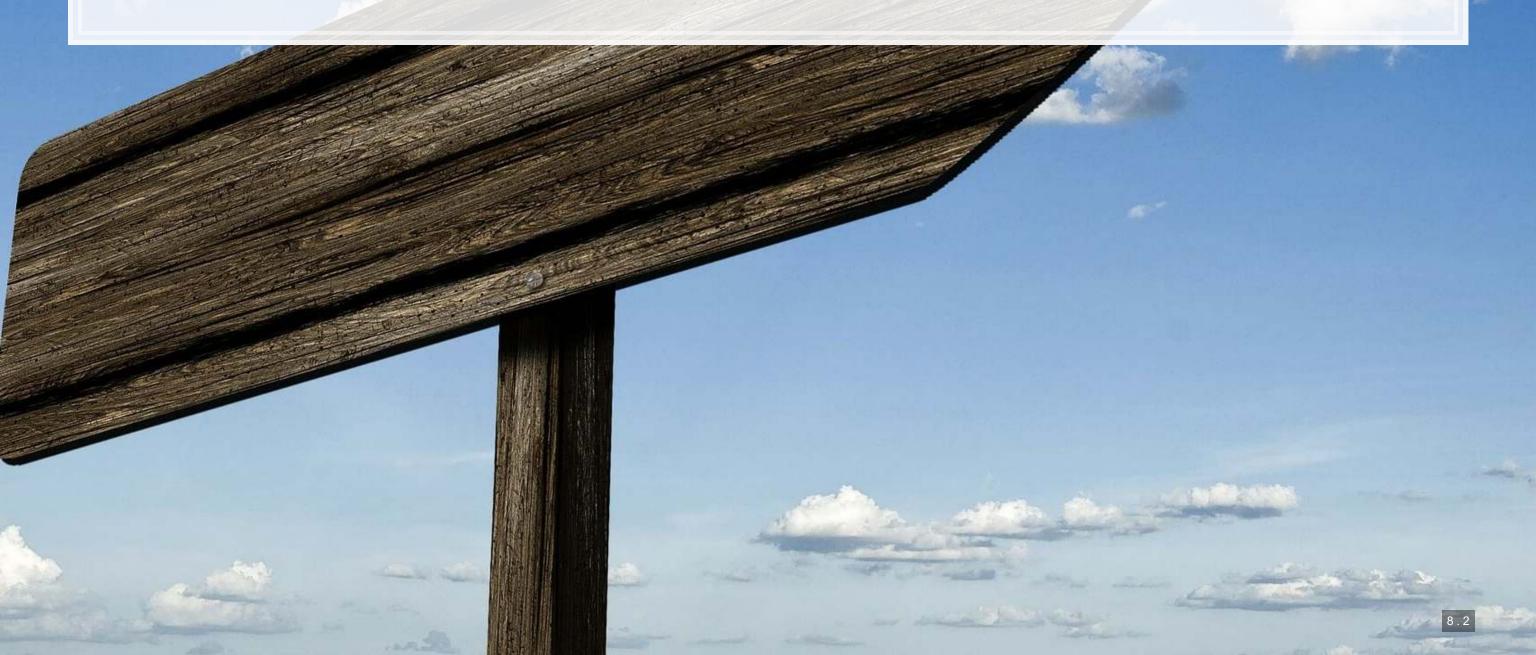
What might matter for shipping?

What other observable events or data might provide insight as to whether a naval shipment will be delayed or not?

- What is the reason that this event or data would be useful in predicting delays?
 - I.e., how does it fit into your mental model?

For next week

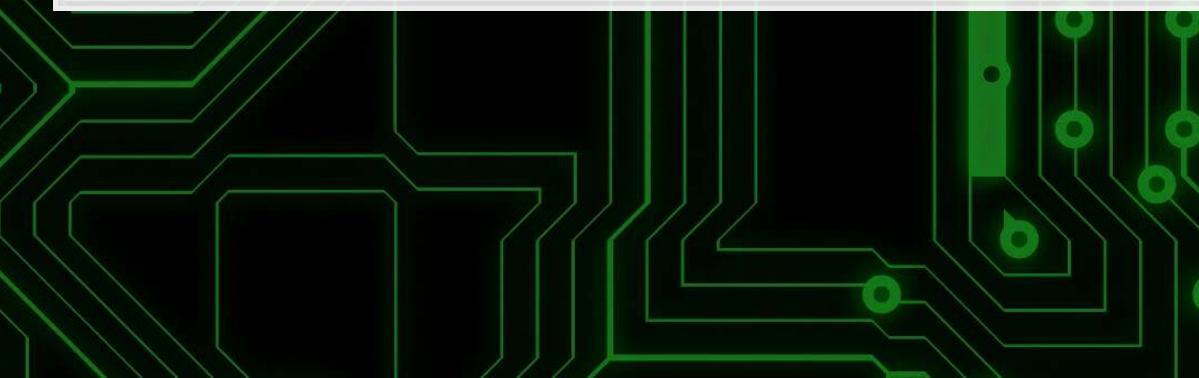
- For next week:
 - Second individual assignment
 - Finish by 2 classes from now
 - Submit on eLearn
 - Think about who you want to work with for the project



Packages used for these slides

- broom
- geosphere
- kableExtra
- knitr
- leaflet
- leaflet.extras
- lubridate
- magrittr

- margins
- maps
- maptools
- plotly
- revealjs
- rgeos
- sf
- tidyverse



Custom code

```
# styling for plotly maps
geo <- list(
 showland = TRUE,
 showlakes = TRUE,
 showcountries = TRUE,
 showocean = TRUE,
 countrywidth = 0.5,
 landcolor = toRGB("grey90"),
 lakecolor = toRGB("aliceblue"),
 oceancolor = toRGB("aliceblue"),
 projection = list(
   type = 'orthographic', # detailed at https://plot.ly/r/reference/#layout-geo-projection
   rotation = list(
    lon = 100,
     lat = 1,
     roll = 0
   )
 ),
 lonaxis = list(
   showgrid = TRUE,
   gridcolor = toRGB("gray40"),
   gridwidth = 0.5
 ),
 lataxis = list(
   showgrid = TRUE,
   gridcolor = toRGB("gray40"),
   gridwidth = 0.5
 )
```

)

