Dr. Richard M. Crowley
How can we predict weekly departmental revenue for Walmart, leveraging our knowledge of Walmart, its business, and some limited historical information?
\[ WMAE = \frac{1}{\sum w_i} \sum_{i=1}^{n} w_i \left|y_i-\hat{y}_i\right| \]
We’ll have to fix these
library(tidyverse) # we'll extensively use dplyr here
library(lubridate) # Great for simple date functions
library(broom)
weekly <- read.csv("../../Data/WMT_train.csv", stringsAsFactors=FALSE)
weekly.test <- read.csv("../../Data/WMT_test.csv", stringsAsFactors=FALSE)
weekly.features <- read.csv("../../Data/WMT_features.csv", stringsAsFactors=FALSE)
weekly.stores <- read.csv("../../Data/WMT_stores.csv", stringsAsFactors=FALSE)
weekly
is our training dataweekly.test
is our testing data – no Weekly_Sales
columnweekly.features
is general information about (week, store) pairs
weekly.stores
is general information about each storepreprocess_data <- function(df) {
# Merge the data together (Pulled from outside of function -- "scoping")
df <- inner_join(df, weekly.stores)
df <- inner_join(df, weekly.features[,1:11])
# Compress the weird markdown information to 1 variable
df$markdown <- 0
df[!is.na(df$MarkDown1),]$markdown <- df[!is.na(df$MarkDown1),]$MarkDown1
df[!is.na(df$MarkDown2),]$markdown <- df[!is.na(df$MarkDown2),]$MarkDown2
df[!is.na(df$MarkDown3),]$markdown <- df[!is.na(df$MarkDown3),]$MarkDown3
df[!is.na(df$MarkDown4),]$markdown <- df[!is.na(df$MarkDown4),]$MarkDown4
df[!is.na(df$MarkDown5),]$markdown <- df[!is.na(df$MarkDown5),]$MarkDown5
# Fix dates and add useful time variables
df$date <- as.Date(df$Date)
df$week <- week(df$date)
df$year <- year(df$date)
df
}
Merge data, fix
markdown
, build time data
Store | date | markdown | MarkDown3 | MarkDown4 | MarkDown5 | |
---|---|---|---|---|---|---|
91 | 1 | 2011-10-28 | 0.00 | NA | NA | NA |
92 | 1 | 2011-11-04 | 0.00 | NA | NA | NA |
93 | 1 | 2011-11-11 | 6551.42 | 215.07 | 2406.62 | 6551.42 |
94 | 1 | 2011-11-18 | 5988.57 | 51.98 | 427.39 | 5988.57 |
date | week | year |
---|---|---|
2010-02-05 | 6 | 2010 |
2010-02-12 | 7 | 2010 |
# Fill in missing CPI and Unemployment data
df_test <- df_test %>%
group_by(Store, year) %>%
mutate(CPI=ifelse(is.na(CPI), mean(CPI,na.rm=T), CPI),
Unemployment=ifelse(is.na(Unemployment),
mean(Unemployment,na.rm=T),
Unemployment)) %>%
ungroup()
Apply the (year, Store)’s CPI and Unemployment to missing data
sswwdd
ss_dd_YYYY-MM-DD
# Unique IDs in the data
df$id <- df$Store *10000 + df$week * 100 + df$Dept
df_test$id <- df_test$Store *10000 + df_test$week * 100 + df_test$Dept
# Unique ID and factor building
swd <- c(df$id, df_test$id) # Pool all IDs
swd <- unique(swd) # Only keep unique elements
swd <- data.frame(id=swd) # Make a data frame
swd$swd <- factor(swd$id) # Extract factors for using later
# Add unique factors to data -- ensures same factors for both data sets
df <- left_join(df,swd)
df_test <- left_join(df_test,swd)
Store | week | Dept | id | swd | Id |
---|---|---|---|---|---|
8 | 27 | 33 | 82733 | 82733 | 8_33_2013-07-05 |
15 | 46 | 91 | 154691 | 154691 | 15_91_2012-11-16 |
23 | 52 | 25 | 235225 | 235225 | 23_25_2012-12-28 |
# Calculate average by store-dept and distribute to df_test
df <- df %>%
group_by(Store, Dept) %>%
mutate(store_avg=mean(Weekly_Sales, rm.na=T)) %>%
ungroup()
df_sa <- df %>%
group_by(Store, Dept) %>%
slice(1) %>%
select(Store, Dept, store_avg) %>%
ungroup()
df_test <- left_join(df_test, df_sa)
## Joining, by = c("Store", "Dept")
# Calculate mean by week-store-dept and distribute to df_test
df <- df %>%
group_by(Store, Dept, week) %>%
mutate(naive_mean=mean(Weekly_Sales, rm.na=T)) %>%
ungroup()
df_wm <- df %>%
group_by(Store, Dept, week) %>%
slice(1) %>%
ungroup() %>%
select(Store, Dept, week, naive_mean)
df_test <- df_test %>% arrange(Store, Dept, week)
df_test <- left_join(df_test, df_wm)
## Joining, by = c("Store", "Dept", "week")
##
## FALSE TRUE
## 113827 1237
No data for testing…
We have this
mod1 <- lm(Weekly_mult ~ factor(IsHoliday) + factor(markdown>0) +
markdown + Temperature +
Fuel_Price + CPI + Unemployment,
data=df)
tidy(mod1)
## # A tibble: 8 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 1.24 0.0370 33.5 4.10e-245
## 2 factor(IsHoliday)TRUE 0.0868 0.0124 6.99 2.67e- 12
## 3 factor(markdown > 0)TRUE 0.0531 0.00885 6.00 2.00e- 9
## 4 markdown 0.000000741 0.000000875 0.847 3.97e- 1
## 5 Temperature -0.000763 0.000181 -4.23 2.38e- 5
## 6 Fuel_Price -0.0706 0.00823 -8.58 9.90e- 18
## 7 CPI -0.0000837 0.0000887 -0.944 3.45e- 1
## 8 Unemployment 0.00410 0.00182 2.25 2.45e- 2
## # A tibble: 1 x 12
## r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.000481 0.000464 2.03 29.0 2.96e-40 7 -8.96e5 1.79e6 1.79e6
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
# Out of sample result
df_test$Weekly_mult <- predict(mod1, df_test)
df_test$Weekly_Sales <- df_test$Weekly_mult * df_test$store_avg
# Required to submit a csv of Id and Weekly_Sales
write.csv(df_test[,c("Id","Weekly_Sales")],
"WMT_linear.csv",
row.names=FALSE)
# track
df_test$WS_linear <- df_test$Weekly_Sales
# Check in sample WMAE
df$WS_linear <- predict(mod1, df) * df$store_avg
w <- wmae(actual=df$Weekly_Sales, predicted=df$WS_linear, holidays=df$IsHoliday)
names(w) <- "Linear"
wmaes <- c(w)
wmaes
## Linear
## 3073.57
wmae_obs <- function(actual, predicted, holidays) {
abs(actual-predicted)*(holidays*5+1) / (length(actual) + 4*sum(holidays))
}
df$wmaes <- wmae_obs(actual=df$Weekly_Sales, predicted=df$WS_linear,
holidays=df$IsHoliday)
ggplot(data=df, aes(y=wmaes, x=week, color=factor(IsHoliday))) +
geom_jitter(width=0.25) + xlab("Week") + ylab("WMAE")
mod2 <- lm(Weekly_mult ~ factor(week) + factor(IsHoliday) + factor(markdown>0) +
markdown + Temperature +
Fuel_Price + CPI + Unemployment,
data=df)
tidy(mod2)
## # A tibble: 60 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 1.00 0.0452 22.1 3.11e-108
## 2 factor(week)2 -0.0648 0.0372 -1.74 8.19e- 2
## 3 factor(week)3 -0.169 0.0373 -4.54 5.75e- 6
## 4 factor(week)4 -0.0716 0.0373 -1.92 5.47e- 2
## 5 factor(week)5 0.0544 0.0372 1.46 1.44e- 1
## 6 factor(week)6 0.161 0.0361 4.45 8.79e- 6
## 7 factor(week)7 0.265 0.0345 7.67 1.72e- 14
## 8 factor(week)8 0.109 0.0340 3.21 1.32e- 3
## 9 factor(week)9 0.0823 0.0340 2.42 1.55e- 2
## 10 factor(week)10 0.101 0.0341 2.96 3.04e- 3
## # ... with 50 more rows
## # A tibble: 1 x 12
## r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.00501 0.00487 2.02 35.9 0 59 -8.95e5 1.79e6 1.79e6
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
# Out of sample result
df_test$Weekly_mult <- predict(mod2, df_test)
df_test$Weekly_Sales <- df_test$Weekly_mult * df_test$store_avg
# Required to submit a csv of Id and Weekly_Sales
write.csv(df_test[,c("Id","Weekly_Sales")],
"WMT_linear2.csv",
row.names=FALSE)
# track
df_test$WS_linear2 <- df_test$Weekly_Sales
# Check in sample WMAE
df$WS_linear2 <- predict(mod2, df) * df$store_avg
w <- wmae(actual=df$Weekly_Sales, predicted=df$WS_linear2, holidays=df$IsHoliday)
names(w) <- "Linear 2"
wmaes <- c(wmaes, w)
wmaes
## Linear Linear 2
## 3073.570 3230.643
ggplot(data=df, aes(y=wmae_obs(actual=df$Weekly_Sales, predicted=df$WS_linear2,
holidays=df$IsHoliday),
x=week,
color=factor(Store))) +
geom_jitter(width=0.25) + xlab("Week") + ylab("WMAE") +
theme(legend.position="none")
## Warning: Use of `df$Weekly_Sales` is discouraged. Use `Weekly_Sales` instead.
## Warning: Use of `df$WS_linear2` is discouraged. Use `WS_linear2` instead.
## Warning: Use of `df$IsHoliday` is discouraged. Use `IsHoliday` instead.
ggplot(data=df, aes(y=wmae_obs(actual=df$Weekly_Sales, predicted=df$WS_linear2,
holidays=df$IsHoliday),
x=week,
color=factor(Dept))) +
geom_jitter(width=0.25) + xlab("Week") + ylab("WMAE") +
theme(legend.position="none")
## Warning: Use of `df$Weekly_Sales` is discouraged. Use `Weekly_Sales` instead.
## Warning: Use of `df$WS_linear2` is discouraged. Use `WS_linear2` instead.
## Warning: Use of `df$IsHoliday` is discouraged. Use `IsHoliday` instead.
mod3 <- lm(Weekly_mult ~ factor(week):factor(Store):factor(Dept) + factor(IsHoliday) + factor(markdown>0) +
markdown + Temperature +
Fuel_Price + CPI + Unemployment,
data=df)
## Error: cannot allocate vector of size 606.8Gb
…
library(lfe)
mod3 <- felm(Weekly_mult ~ markdown +
Temperature +
Fuel_Price +
CPI +
Unemployment | swd, data=df)
tidy(mod3)
## # A tibble: 5 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 markdown -0.00000139 0.000000581 -2.40 1.65e- 2
## 2 Temperature 0.00135 0.000442 3.05 2.28e- 3
## 3 Fuel_Price -0.0637 0.00695 -9.17 4.89e-20
## 4 CPI 0.00150 0.00102 1.46 1.43e- 1
## 5 Unemployment -0.0303 0.00393 -7.70 1.32e-14
## # A tibble: 1 x 8
## r.squared adj.r.squared sigma statistic p.value df df.residual nobs
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
## 1 0.823 0.712 1.09 7.43 0 259457 259457 421564
felm() models don’t support predict
predict.felm <- function(object, newdata, use.fe=T, ...) {
# compatible with tibbles
newdata <- as.data.frame(newdata)
co <- coef(object)
y.pred <- t(as.matrix(unname(co))) %*% t(as.matrix(newdata[,names(co)]))
fe.vars <- names(object$fe)
all.fe <- getfe(object)
for (fe.var in fe.vars) {
level <- all.fe[all.fe$fe == fe.var,]
frows <- match(newdata[[fe.var]],level$idx)
myfe <- level$effect[frows]
myfe[is.na(myfe)] = 0
y.pred <- y.pred + myfe
}
as.vector(y.pred)
}
# Out of sample result
df_test$Weekly_mult <- predict(mod3, df_test)
df_test$Weekly_Sales <- df_test$Weekly_mult * df_test$store_avg
# Required to submit a csv of Id and Weekly_Sales
write.csv(df_test[,c("Id","Weekly_Sales")],
"WMT_FE.csv",
row.names=FALSE)
# track
df_test$WS_FE <- df_test$Weekly_Sales
# Check in sample WMAE
df$WS_FE <- predict(mod3, df) * df$store_avg
w <- wmae(actual=df$Weekly_Sales, predicted=df$WS_FE, holidays=df$IsHoliday)
names(w) <- "FE"
wmaes <- c(wmaes, w)
wmaes
## Linear Linear 2 FE
## 3073.570 3230.643 1552.173