ACCT 420: Linear Regression

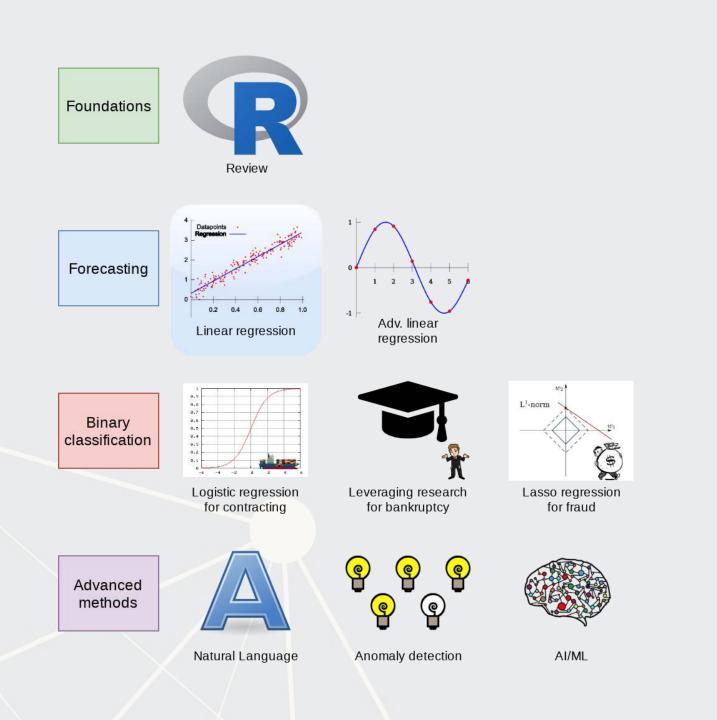
Session 2

Dr. Richard M. Crowley rcrowley@smu.edu.sg http://rmc.link/

Front matter

/

Learning objectives



- Theory:
 - Develop a logical approach to problem solving with data
 - Statistics
 - Causation
- Application:
 - Predicting revenue for real estate firms
- Methodology:
 - Univariate stats
 - Linear regression
 - Visualization

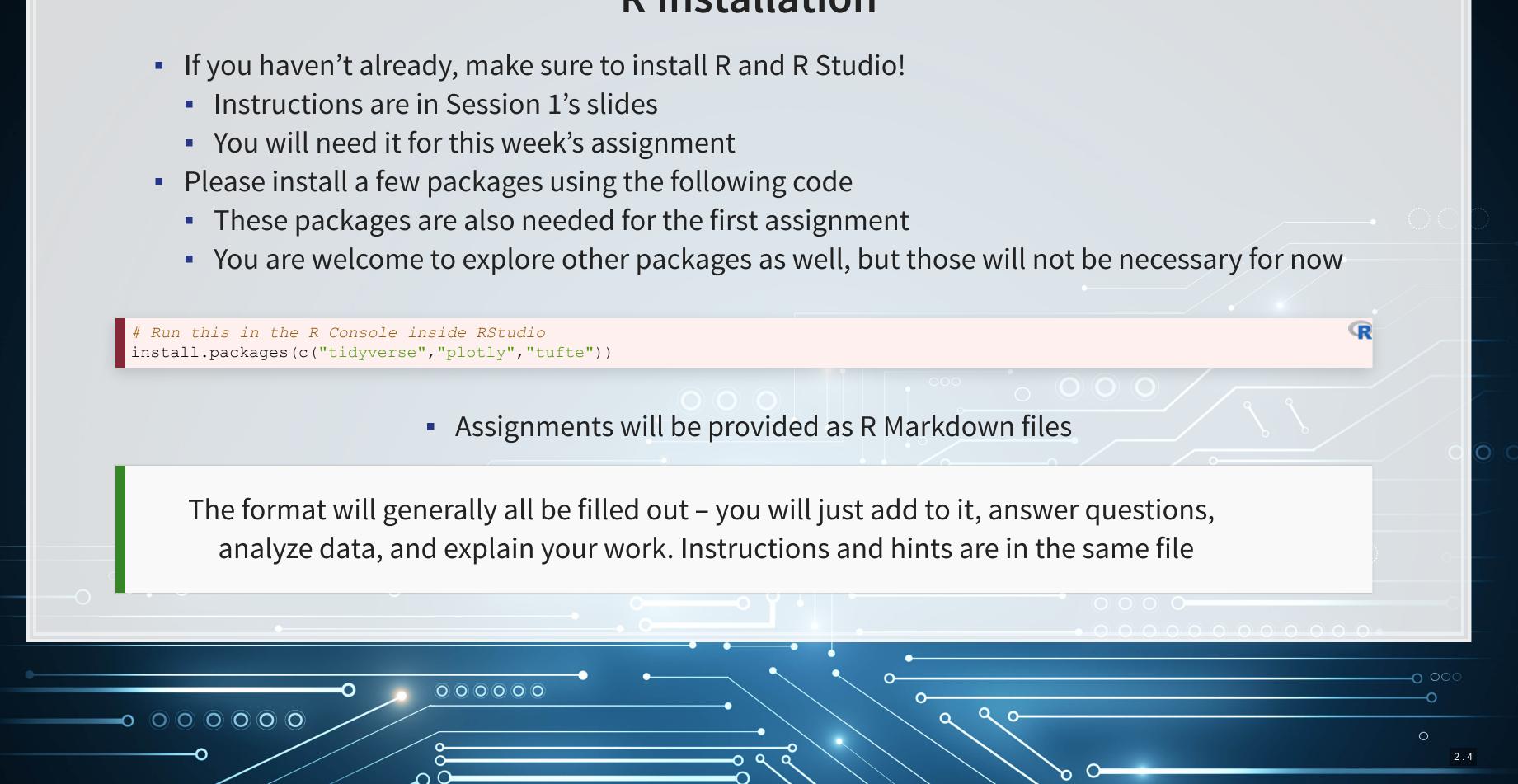
- Hypothesis testing

Datacamp

- For next week:
 - Just 2 chapters:
 - 1 on linear regression
 - 1 on tidyverse methods
- The full list of Datacamp materials for the course is up on eLearn

R Installation

tall.packages(c("tidyverse", "plotly", "tufte"))



R Markdown: A quick guide

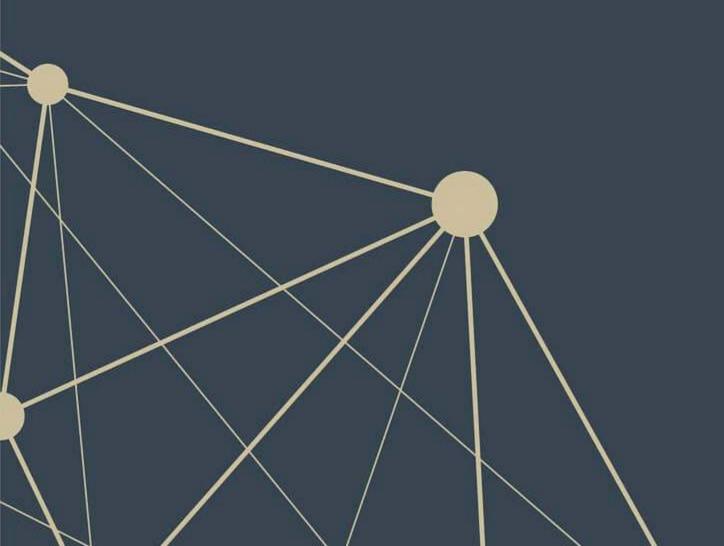
- Headers and subheaders start with # and ##, respectively
- Code blocks starts with ``` {r} and end with ```
 - By default, all code and figures will show up in the document
- Inline code goes in a block starting with `r and ending with `
- Italic font can be used by putting * or around text
- Bold font can be used by putting ** around text
 - E.g.: **bold text** becomes bold text
- To render the document, click SK nit
- Math can be placed between \$ to use LaTeX notation
 - E.g. \$\frac{revt}{at}\$ becomes $\frac{revt}{at}$
- Full equations (on their own line) can be placed between \$\$
- A block quote is prefixed with >
- For a complete guide, see R Studio's R Markdown::Cheat Sheet

Application: Revenue prediction

The question

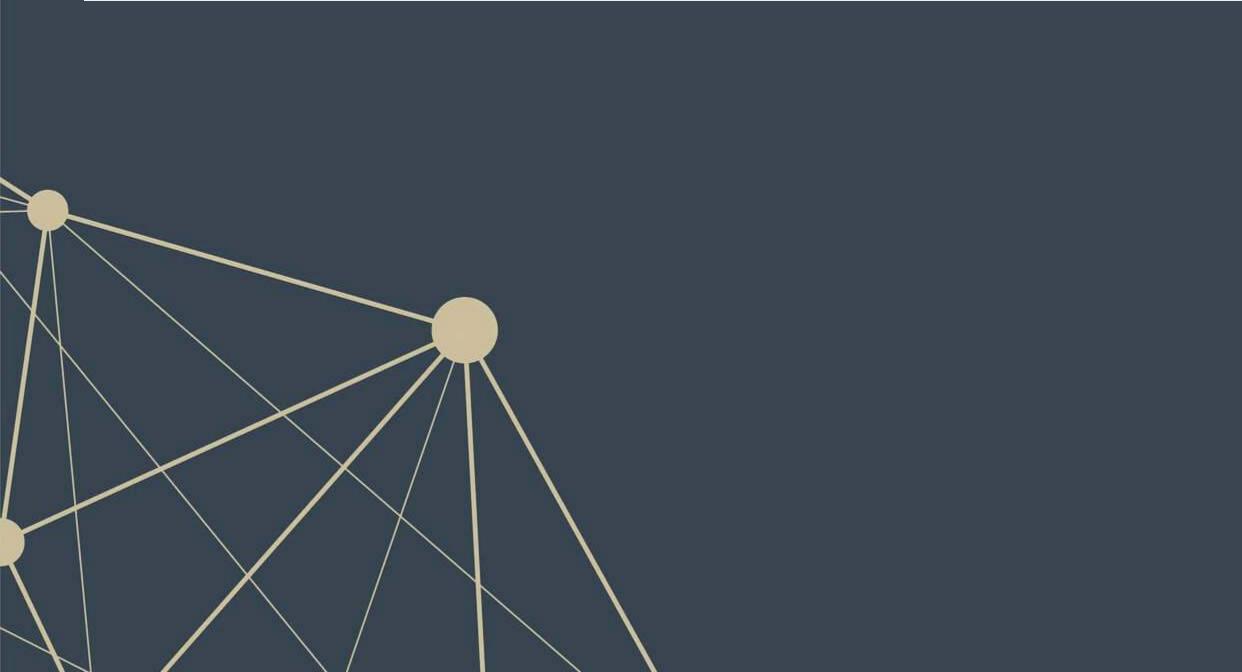
How can we predict revenue for a company, leveraging data about that company, related companies, and macro factors

• Specific application: Real estate companies

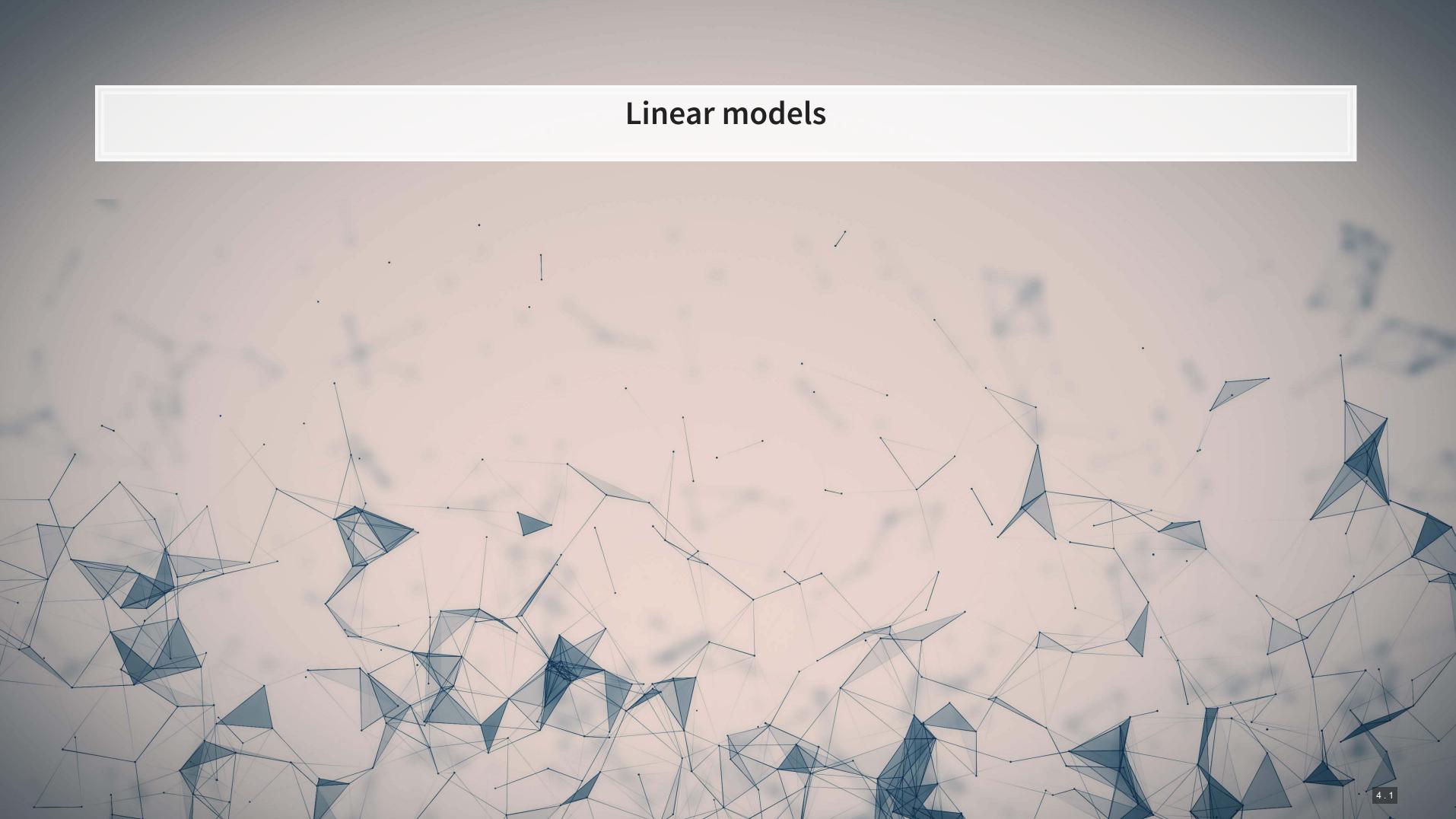


More specifically...

- Can we use a company's own accounting data to predict it's future revenue?
- Can we use other companies' accounting data to better predict all of their future revenue?
- Can we augment this data with macro economic data to further improve prediction?
 - Singapore business sentiment data



future revenue? dict all of their future revenue? ther improve prediction?



What is a linear model?

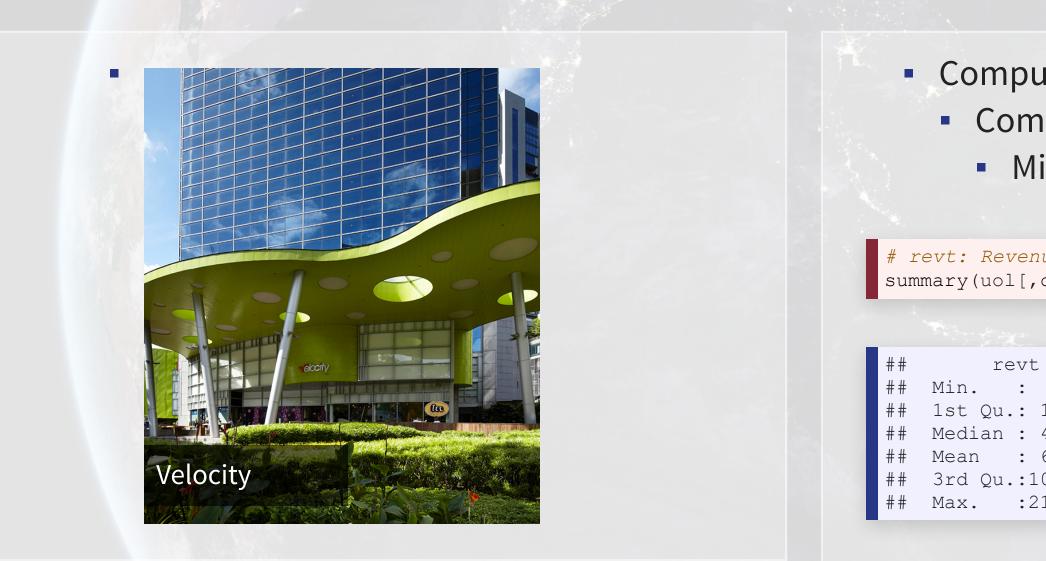
 $\hat{y} = lpha + eta \hat{x} + arepsilon$

- The simplest model is trying to predict some outcome \hat{y} as a function of an input \hat{x}
 - \hat{y} in our case is a firm's revenue in a given year
 - \hat{x} could be a firm's assets in a given year
 - α and β are solved for
 - ε is the error in the measurement

I will refer to this as an OLS model – Ordinary Least Square regression

Example

Let's predict UOL's revenue for 2016



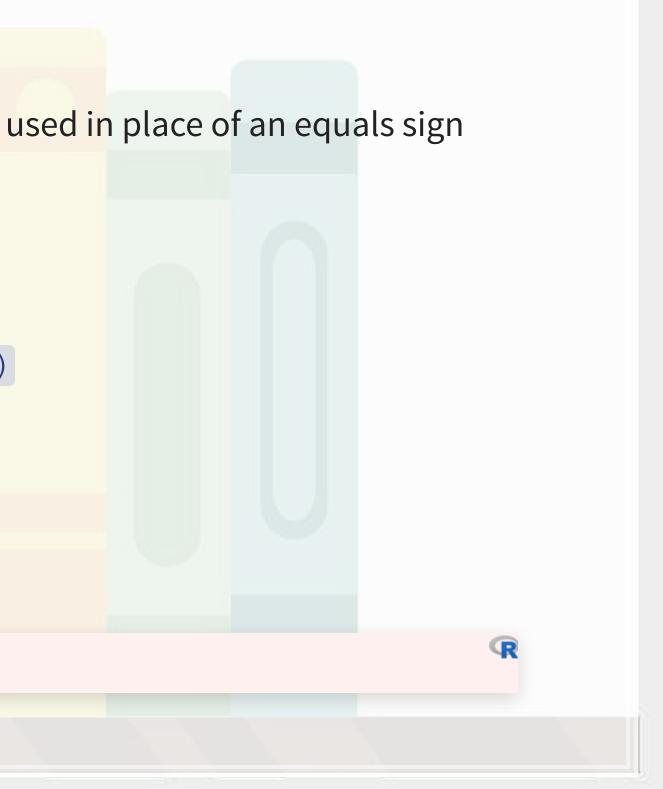
Compustat has data for them since 1989 Complete since 1994 Missing CapEx before that

nue, at: c("revt"	<i>Assets</i> ', "at")])	R
193.41 427.44 666.38 058.61	at Min. : 1218 1st Qu.: 3044 Median : 3478 Mean : 5534 3rd Qu.: 7939 Max. :19623	

Linear models in R

- To run a linear model, use lm ()
 - The first argument is a formula for your model, where ~ is used in place of an equals sign
 - The left side is what you want to predict
 - The right side is inputs for prediction, separated by +
 - The second argument is the data to use
- Additional variations for the formula:
 - Functions transforming inputs (as vectors), such as log()
 - Fully interacting variables using *
 - I.e., A*B includes: A, B, and A times B in the model
 - Interactions using :
 - I.e., A: B only includes A times B in the model

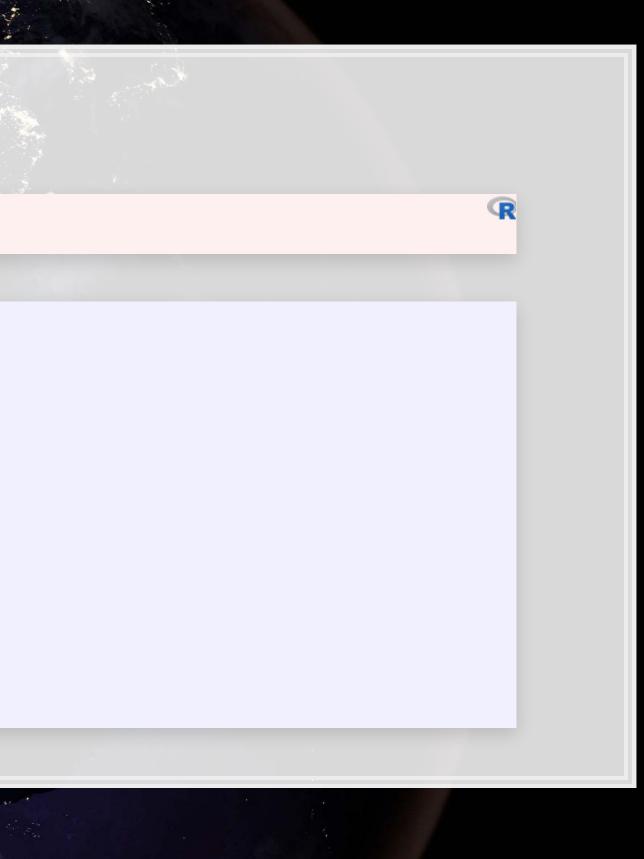
```
# Example:
lm(revt ~ at, data = uol)
```

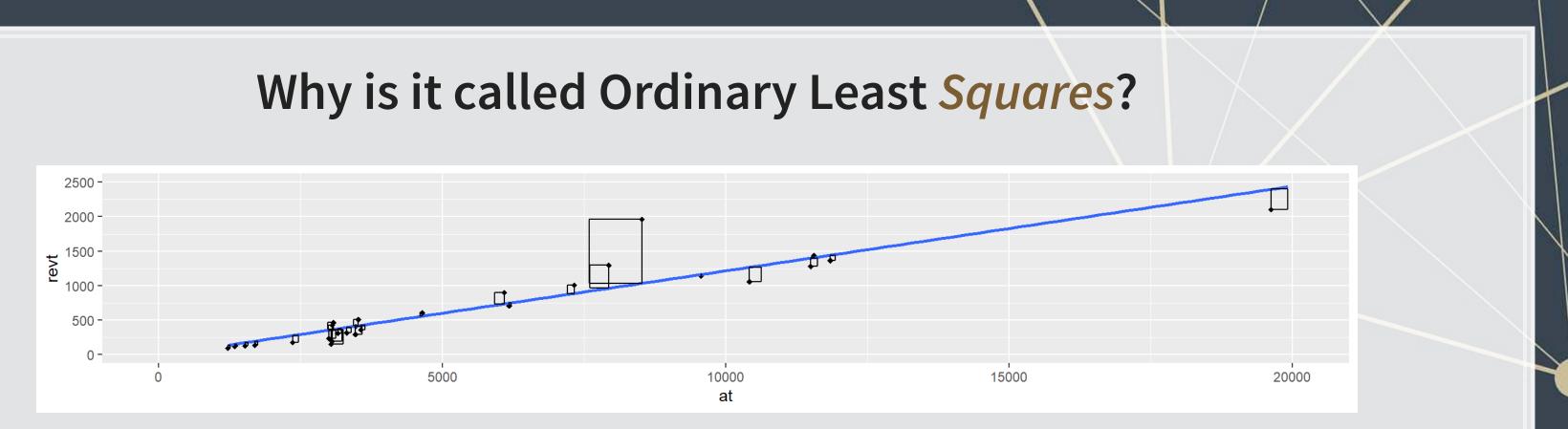


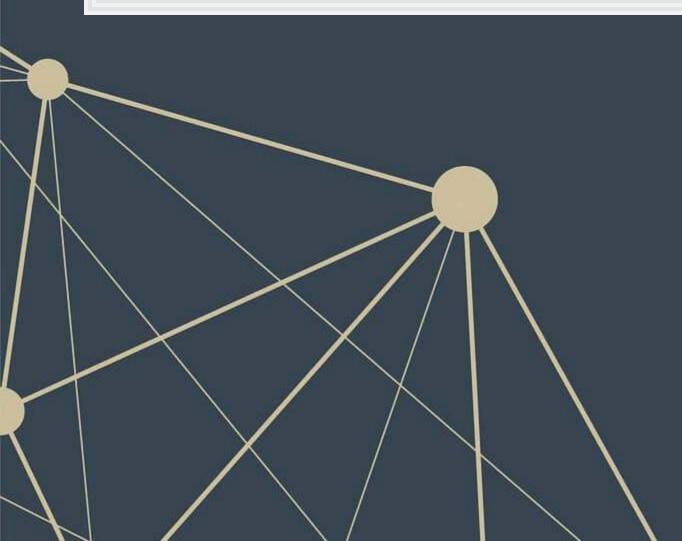
Example: UOL

```
mod1 <- lm(revt ~ at, data = uol)
summary(mod1)</pre>
```

```
##
## Call:
## lm(formula = revt ~ at, data = uol)
##
## Residuals:
##
    Min
              1Q Median
                            3Q
                                  Max
## -295.01 -101.29 -41.09 47.17 926.29
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -13.831399 67.491305 -0.205
                                            0.839
## at
                0.122914 0.009678 12.701 6.7e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 221.2 on 27 degrees of freedom
## Multiple R-squared: 0.8566, Adjusted R-squared: 0.8513
## F-statistic: 161.3 on 1 and 27 DF, p-value: 6.699e-13
```

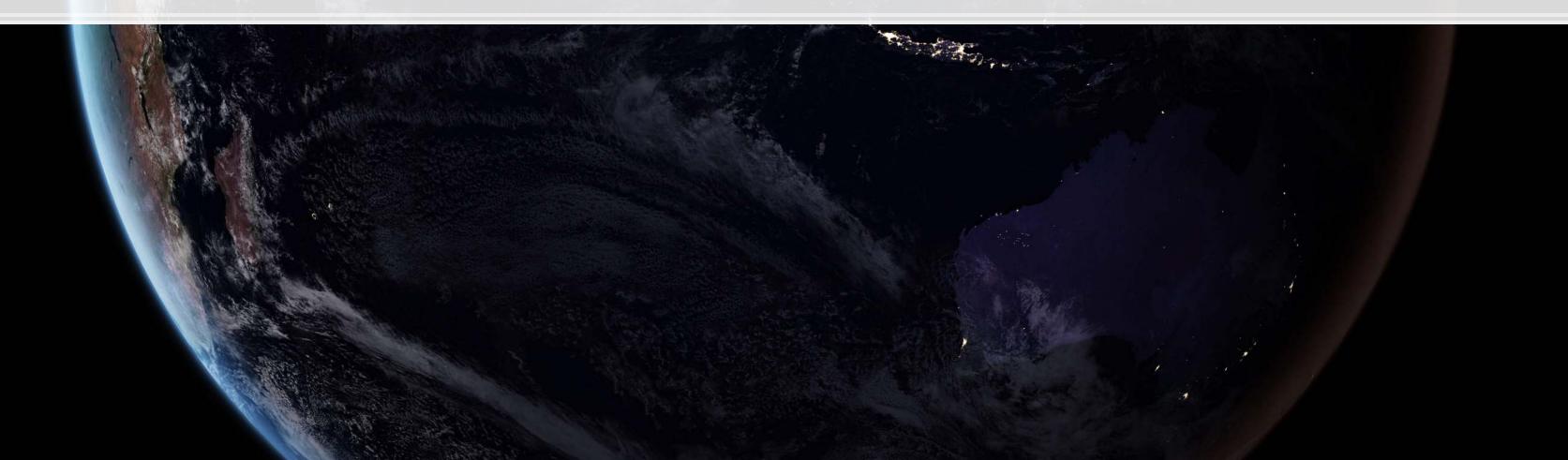




Example: UOL

- This model wasn't so interesting...
 - Bigger firms have more revenue this is a given
- How about... revenue growth?
- And *change* in assets
 - i.e., Asset growth

$$\Delta x_t = rac{x_t}{x_{t-1}} - 1$$



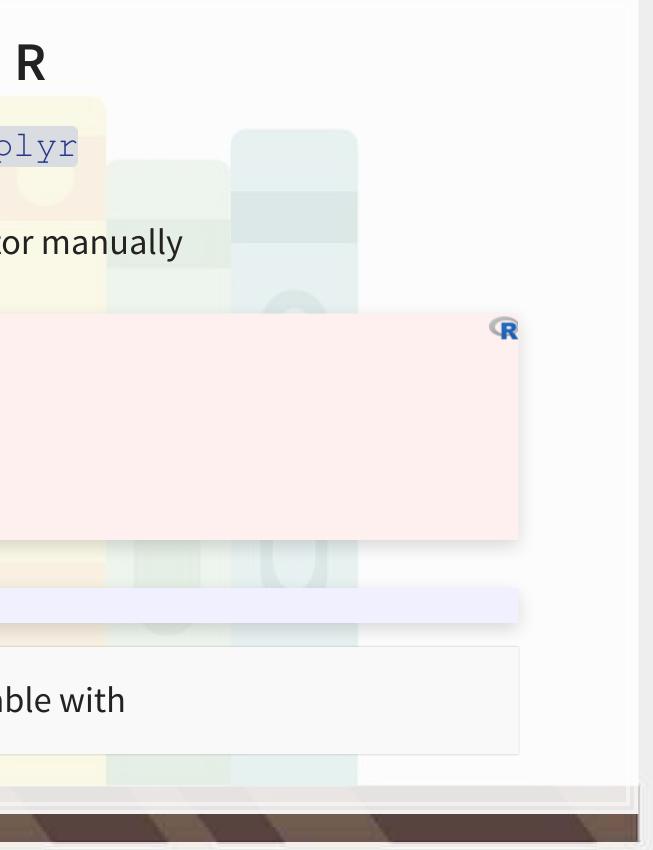
Calculating changes in R

- The easiest way is using tidyverse's dplyr
 - This has a lag() function
- The default way to do it is to create a vector manually

```
# tidyverse
uol <- uol %>%
mutate(revt_growth1 = revt / lag(revt) - 1)
# R way
uol$revt_growth2 = uol$revt / c(NA, uol$revt[-length(uol$revt)]) - 1
# Check that both ways are equivalent
identical(uol$revt_growth1, uol$revt_growth2)
```

[1] TRUE

You can use whichever you are comfortable with



A note on mutate()

- mutate() adds variables to an existing data frame
 - If you need to manipulate a bunch of columns at once:
 - across() applies a transformation to specified columns in a data frame
 - You can mix in starts_with() or ends_with() to pick columns by pattern
- Mutate can be very powerful when making more complex variables
 - Examples:
 - Calculating growth within company in a multi-company data frame
 - Normalizing data to be within a certain range for multiple variables at once

umns in a data frame to pick columns by pattern variables

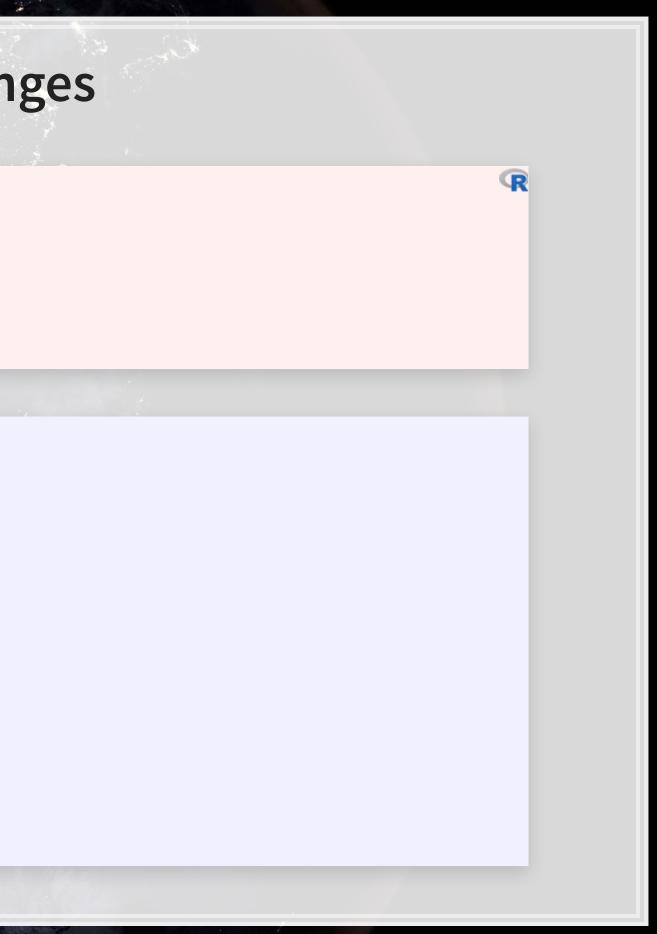
<mark>any dat</mark>a frame <mark>Itiple v</mark>ariables at once

Example: UOL with changes

```
# Make the other needed change
uol <- uol %>%
  mutate(at_growth = at / lag(at) - 1) %>% # Calculate asset growth
  rename(revt_growth = revt_growth1) # Rename for readability
# Run the OLS model
```

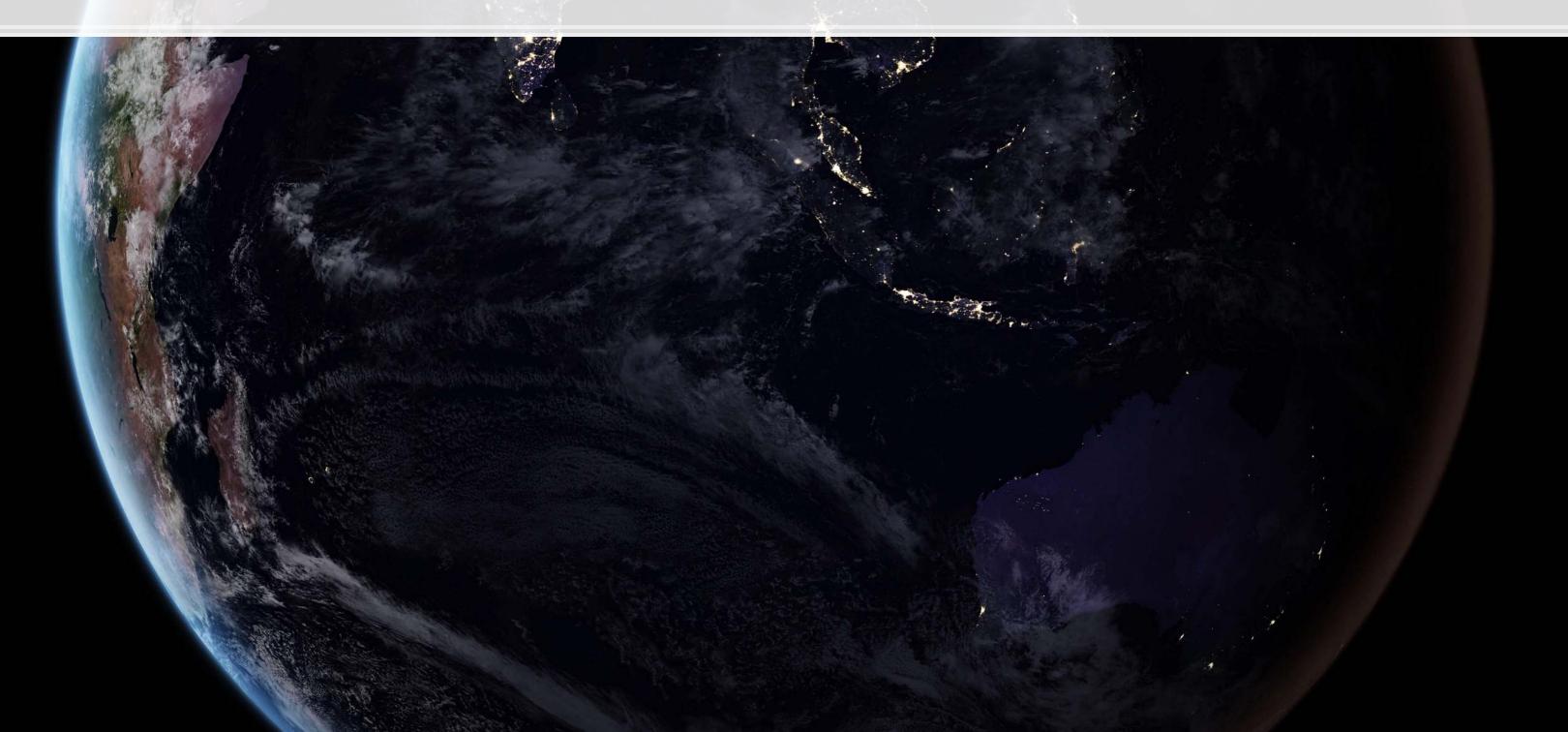
```
mod2 <- lm(revt_growth ~ at_growth, data = uol)
summary(mod2)</pre>
```

```
##
## Call:
## lm(formula = revt growth ~ at growth, data = uol)
##
## Residuals:
##
       Min
                1Q Median
                                   3Q
                                           Max
## -0.57736 -0.10534 -0.00953 0.15132 0.42284
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.09024
                        0.05620 1.606 0.1204
## at growth 0.53821
                        0.27717 1.942 0.0631 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2444 on 26 degrees of freedom
    (1 observation deleted due to missingness)
##
## Multiple R-squared: 0.1267, Adjusted R-squared: 0.09307
## F-statistic: 3.771 on 1 and 26 DF, p-value: 0.06307
```



Example: UOL with changes

- Δ Assets doesn't capture Δ Revenue so well
- Perhaps change in total assets is a bad choice?
- Or perhaps we need to expand our model?



o well d choice? odel?

Scaling up!

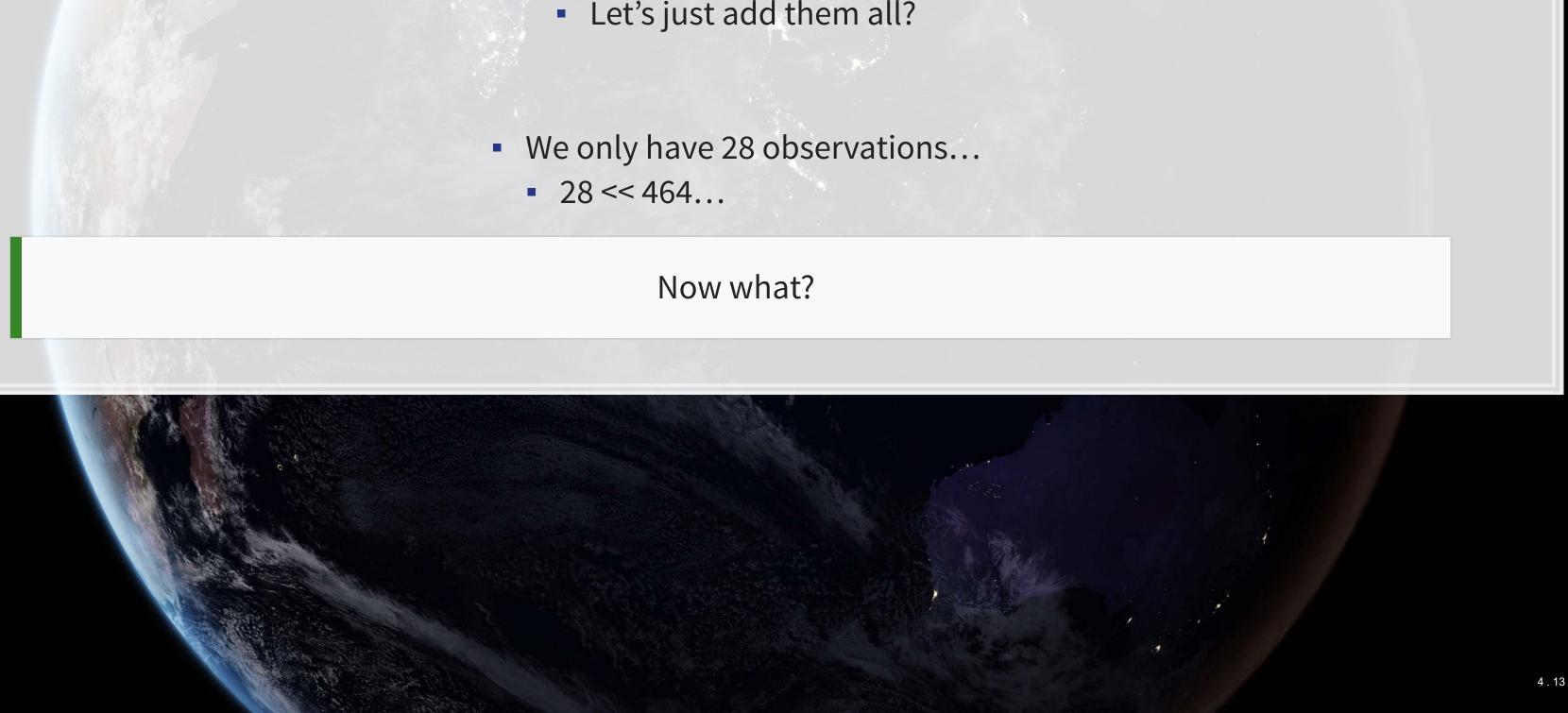
 $\hat{y} = lpha + eta_1 \hat{x}_1 + eta_2 \hat{x}_2 + \ldots + arepsilon$

- OLS doesn't need to be restricted to just 1 input!
 - Not unlimited though (yet we'll get there)
 - Number of inputs must be less than the number of observations minus 1
- Each \hat{x}_i is an input in our model
- Each β_i is something we will solve for
- \hat{y}, α , and ε are the same as before

Scaling up our model

We have... 464 variables from Compustat Global alone!

- Let's just add them all?



Scaling up our model

Building a model requires careful thought!

This is where having accounting and business knowledge comes in!

What makes sense to add to our model?

Practice: mutate()

- This practice is to make sure you understand how to use mutate with lags
 - These are very important when dealing with business data!
- Do exercises 1 on today's R practice file:
 - R Practice
 - Shortlink: rmc.link/420r2

o use mutate with lags ness data!

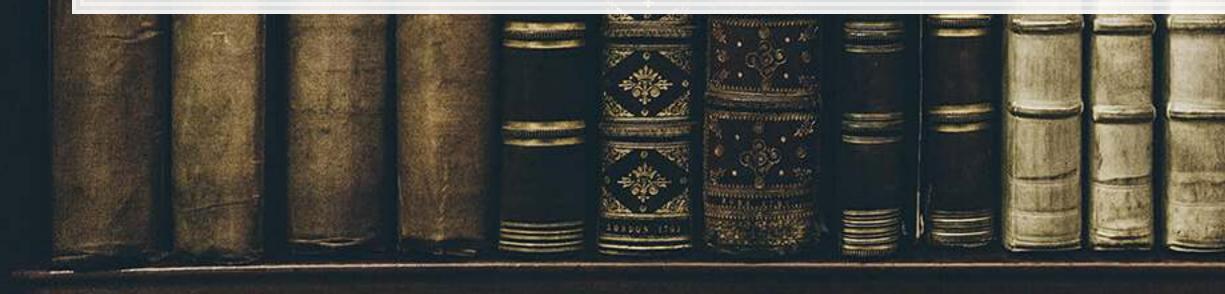
Statistics Foundations

/

Frequentist statistics

A specific test is one of an infinite number of replications

- The "correct" answer should occur most frequently, i.e., with a high probability
- Focus on true vs false
- Treat unknowns as fixed constants to figure out
 - Not random quantities
- Where it's used
 - Classical statistics methods
 - Like OLS



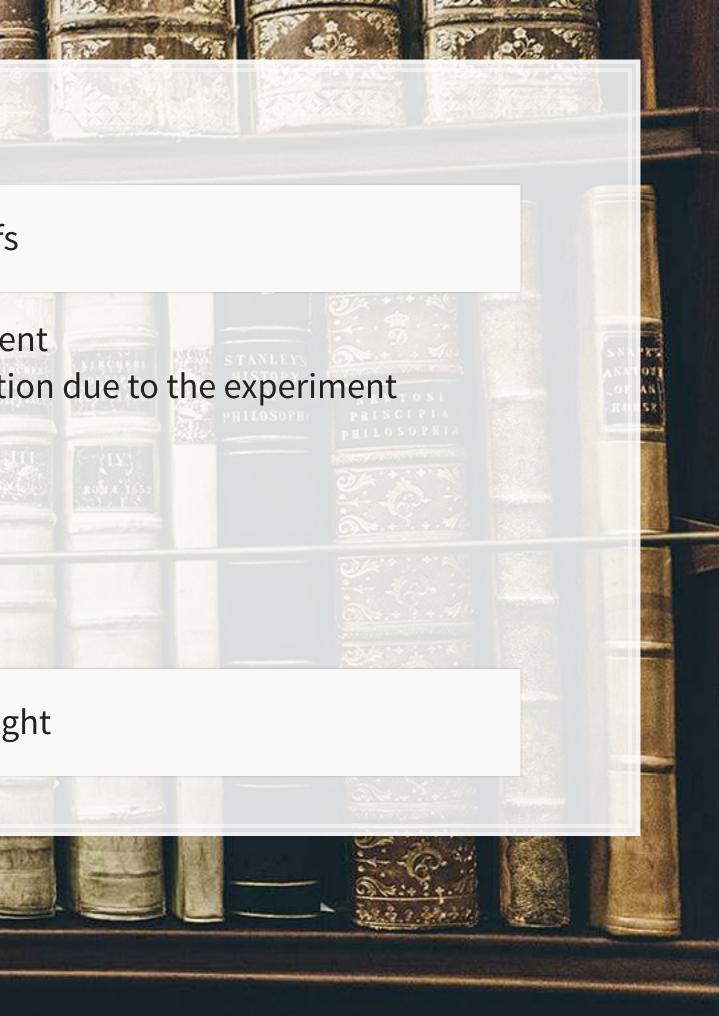
5.2

Bayesian statistics

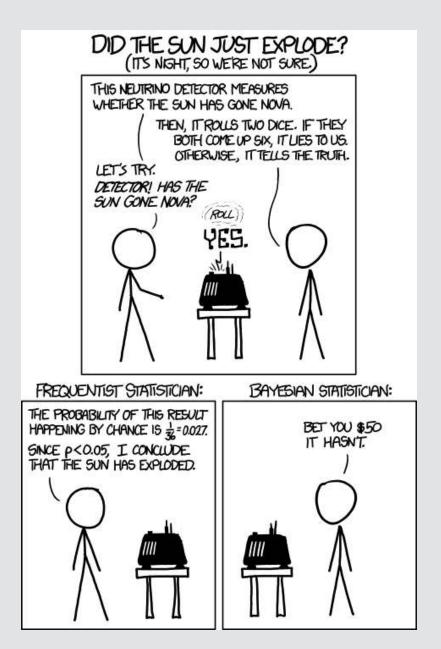
Focus on distributions and beliefs

- Prior distribution what is believed before the experiment
- Posterior distribution: an updated belief of the distribution due to the experiment
- Derive distributions of parameters
- Where it's used:
 - Many machine learning methods
 - Bayesian updating acts as the learning
 - Bayesian statistics

A separate school of statistics thought



Frequentist vs Bayesian methods



This is why we use more than 1 data point

Frequentist perspective: Repeat the test

```
detector <- function() {
  dice <- sample(1:6, size=2, replace=TRUE)
  if (sum(dice) == 12) {
    "exploded"
  } else {
    "still there"
    }
}
experiment <- replicate(1000,detector())
# p value
p <- sum(experiment == "still there") / 1000
if (p < 0.05) {
    paste("p-value: ", p, "-- Fail to reject H_A, sun appears to have exploded")
} else {
    paste("p-value: ", p, "-- Reject H_A that sun exploded")
}</pre>
```

[1] "p-value: 0.965 -- Reject H_A that sun exploded"

Frequentist: The sun didn't explode

5.5

R

Bayes persepctive: Bayes rule

$$P(A|B) = rac{P(B|A)P(A)}{P(B)}$$

- A: The sun exploded
- *B*: The detector said it exploded
- P(A): Really, really small. Say, ~0.

•
$$P(B): \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$$

• $P(B|A): \frac{35}{36}$

$$P(A|B) = rac{P(B|A)P(A)}{P(B)} = rac{rac{35}{36} imes \sim 0}{rac{1}{36}} =$$

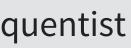
Bayesian: The sun didn't explode

$35 imes \sim 0 pprox 0$

What analytics typically relies on

- Regression approaches
 - Most often done in a frequentist manner
 - Can be done in a Bayesian manner as well
- Artificial Intelligence
 - Often frequentist
 - Sometimes neither "It just works"
- Machine learning
 - Sometimes Bayesian, sometime frequentist
 - We'll see both

We will use both to some extent – for our purposes, we will not debate the merits of either school of thought, but we will use tools derived from both



Confusion from frequentist approaches

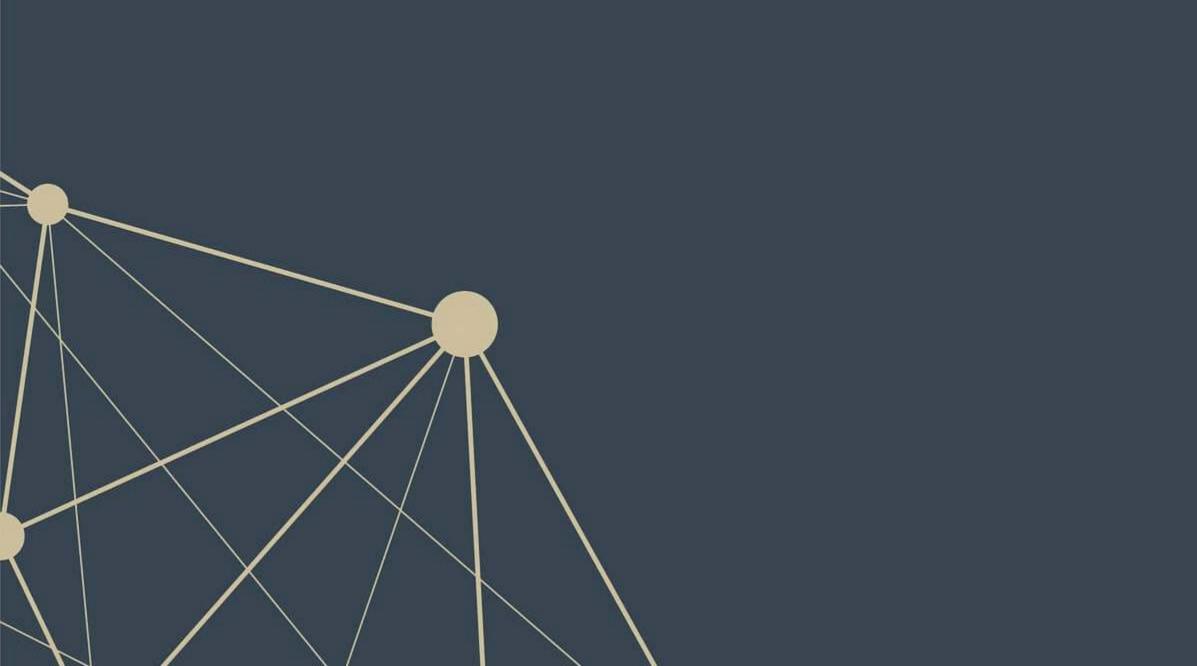
- Possible contradictions:
 - F test says the model is good yet nothing is statistically significant
 - Individual *p*-values are good yet the model isn't
 - One measure says the model is good yet another doesn't

There are many ways to measure a model, each with their own merits. They don't always agree, and it's on us to pick a reasonable measure.

Formalizing frequentist testing

Why formalize?

- Our current approach has been ad hoc
 - What is our goal?
 - How will we know if we have achieved it?
- Formalization provides more rigor



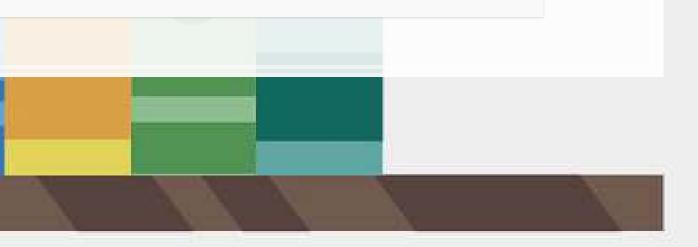
Scientific method

- 1. Question
 - What are we trying to determine?
- 2. Hypothesis
 - What do we think will happen? Build a model
- 3. Prediction
 - What exactly will we test? Formalize model into a statistical approach
- 4. Testing
 - Test the model
- 5. Analysis
 - Did it work?

Hypotheses

- Null hypothesis, a.k.a. H_0
 - The status quo
 - Typically: The model doesn't work
- Alternative hypothesis, a.k.a. H_1 or H_A
 - The model *does* work (and perhaps how it works)
- Frequentist statistics can never directly support H_0 !
 - Only can fail to find support for H_A
 - Even if our *p*-value is 1, we can't say that the results prove the null hypothesis!

We will use test statistics to test the hypotheses



Regression

Regression (like OLS) has the following assumptions
 1. The data is generated following some model

- E.g., a linear model
 - In two weeks, a logistic model

2. The data conforms to some statistical properties as required by the test

- 3. The model coefficients are something to precisely determine
 - I.e., the coefficients are constants
- 4. *p*-values provide a measure of the chance of an error in a particular aspect of the model
 - For instance, the p-value on eta_1 in $y=lpha+eta_1x_1+arepsilon$ essentially gives the probability that the sign of eta_1 is wrong

r aspect of the model ly gives the probability that the sign of

OLS Statistical properties

Theory: $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \varepsilon$ Data: $\hat{y} = lpha + eta_1 \hat{x}_1 + eta_2 \hat{x}_2 + \ldots + \hat{arepsilon}$

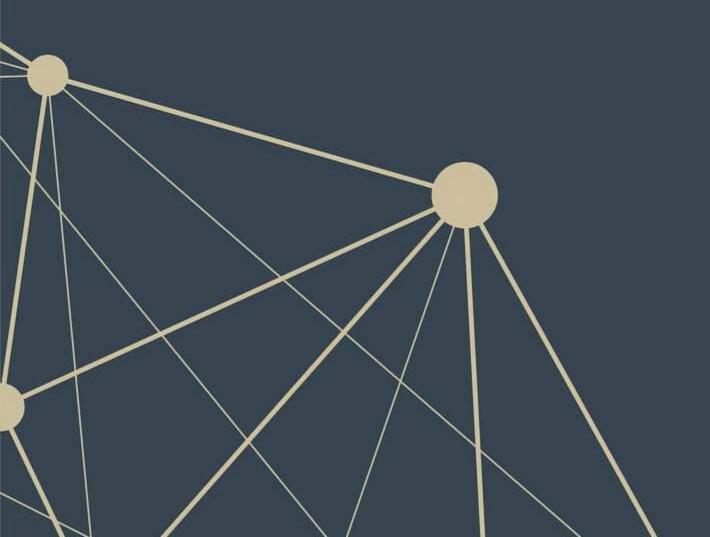
1. There should be a *linear* relationship between y and each x_i

- I.e., y is [approximated by] a constant multiple of each x_i
- Otherwise we **shouldn't** use a *linear* regression
- 2. Each \hat{x}_i is normally distributed
 - Not so important with larger data sets, but a good to adhere to
- 3. Each observation is independent
 - We'll violate this one for the sake of *causality*
- 4. Homoskedasticity: Variance in errors is constant
 - This is important
- 5. Not too much multicollinearity
 - Each \hat{x}_i should be relatively independent from the others
 - Some is OK

Practical implications

Models designed under a frequentist approach can only answer the question of "does this matter?"

• Is this a problem?



Linear model implementation

1

What exactly is a linear model?

- Anything OLS is linear
- Many transformations can be recast to linear
 - Ex.: $log(y) = lpha + eta_1 x_1 + eta_2 x_2 + eta_3 {x_1}^2 + eta_4 x_1 \cdot x_2$
 - This is the same as $y' = lpha + eta_1 x_1 + eta_2 x_2 + eta_3 x_3 + eta_4 x_4$ where:

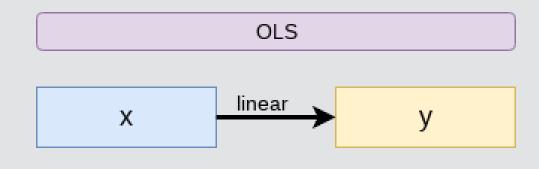
•
$$y' = log(y)$$

•
$$x_3=x_1$$

•
$$x_4=x_1\cdot x_2$$

Linear models are *very* flexible

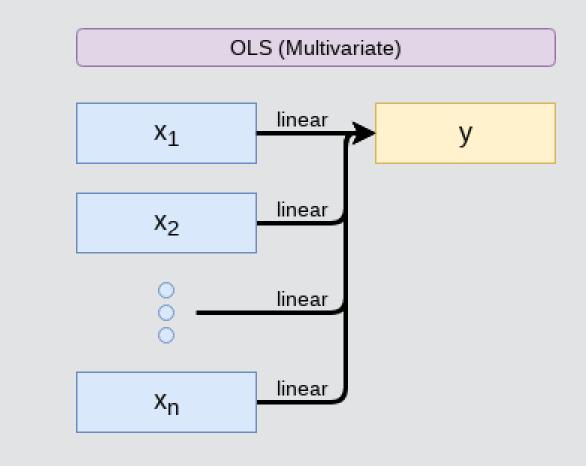
Mental model of OLS: 1 input



Simple OLS measures a simple linear relationship between an input and an output

• E.g.: Our first regression this week: Revenue on assets

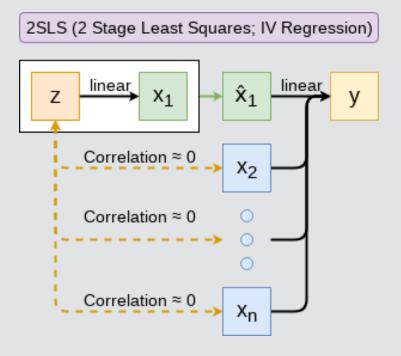
Mental model of OLS: Multiple inputs



OLS measures simple linear relationships between a set of inputs and one output

• E.g.: This is what we did when scaling up earlier this session

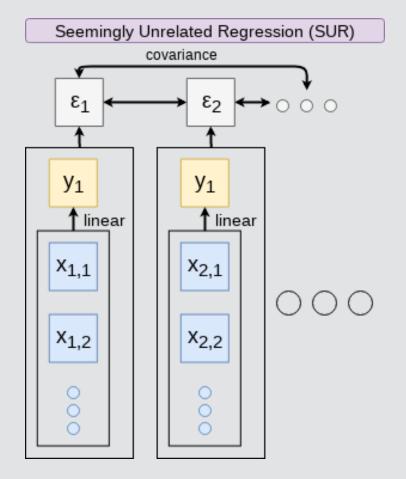
Other linear models: IV Regression (2SLS)



IV/2SLS models linear relationships where the effect of some x_i on y may be confounded by outside factors.

- E.g.: Modeling the effect of management pay duration (like bond duration) on firms' choice to issue earnings forecasts
 - Instrument with CEO tenure (Cheng, Cho, and Kim 2015)

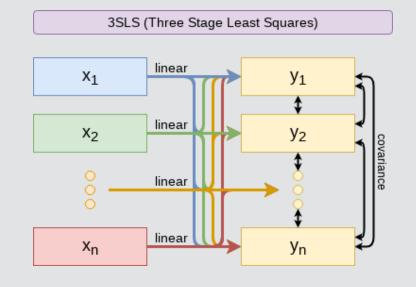
Other linear models: SUR



SUR models systems with related error terms

• E.g.: Modeling both revenue and earnings simultaneously

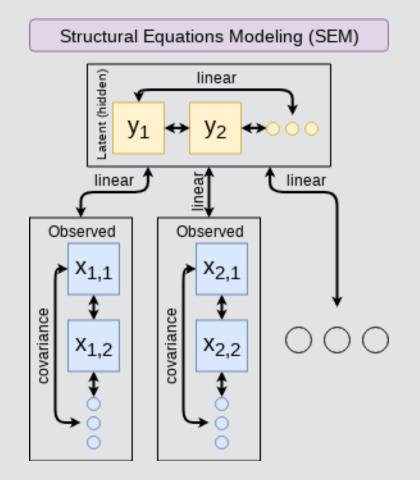
Other linear models: 3SLS



3SLS models systems of equations with *related outputs*

• E.g.: Modeling stock return, volatility, and volume simultaneously

Other linear models: SEM



SEM can model abstract and multi-level relationships

E.g.: Showing that organizational commitment leads to higher job satisfaction, not the other way around (Poznanski and Bline 1999)

Modeling choices: Model selection

Pick what fits your problem!

- For forecasting a quantity:
 - Usually some sort of linear model regressed using OLS
 - The other model types mentioned are great for simultaneous forecasting of multiple outputs
- For forecasting a binary outcome:
 - Usually logit or a related model (we'll start this in 2 weeks)
- For forensics:
 - Usually logit or a related model

There are many more model types though!

Modeling choices: Variable selection

- The options:
 - 1. Use your own knowledge to select variables
 - 2. Use a selection model to automate it

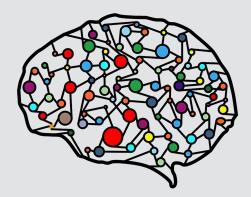
Own knowledge

- Build a model based on your knowledge of the problem and situation
- This is generally better
 - The result should be more interpretable
 - For prediction, you should know relationships better than most algorithms

variables it

Modeling choices: Automated selection

- Traditional methods include:
 - Forward selection: Start with nothing and add variables with the most contribution to Adj R^2 until it stops going up
 - Backward selection: Start with all inputs and remove variables with the worst (negative) contribution to Adj R^2 until it stops going up
 - Stepwise selection: Like forward selection, but drops non-significant predictors
- Newer methods:
 - Lasso and Elastic Net based models
 - Optimize with high penalties for complexity (i.e., # of inputs)
 - We will discuss these in week 5
 - These are proven to be better



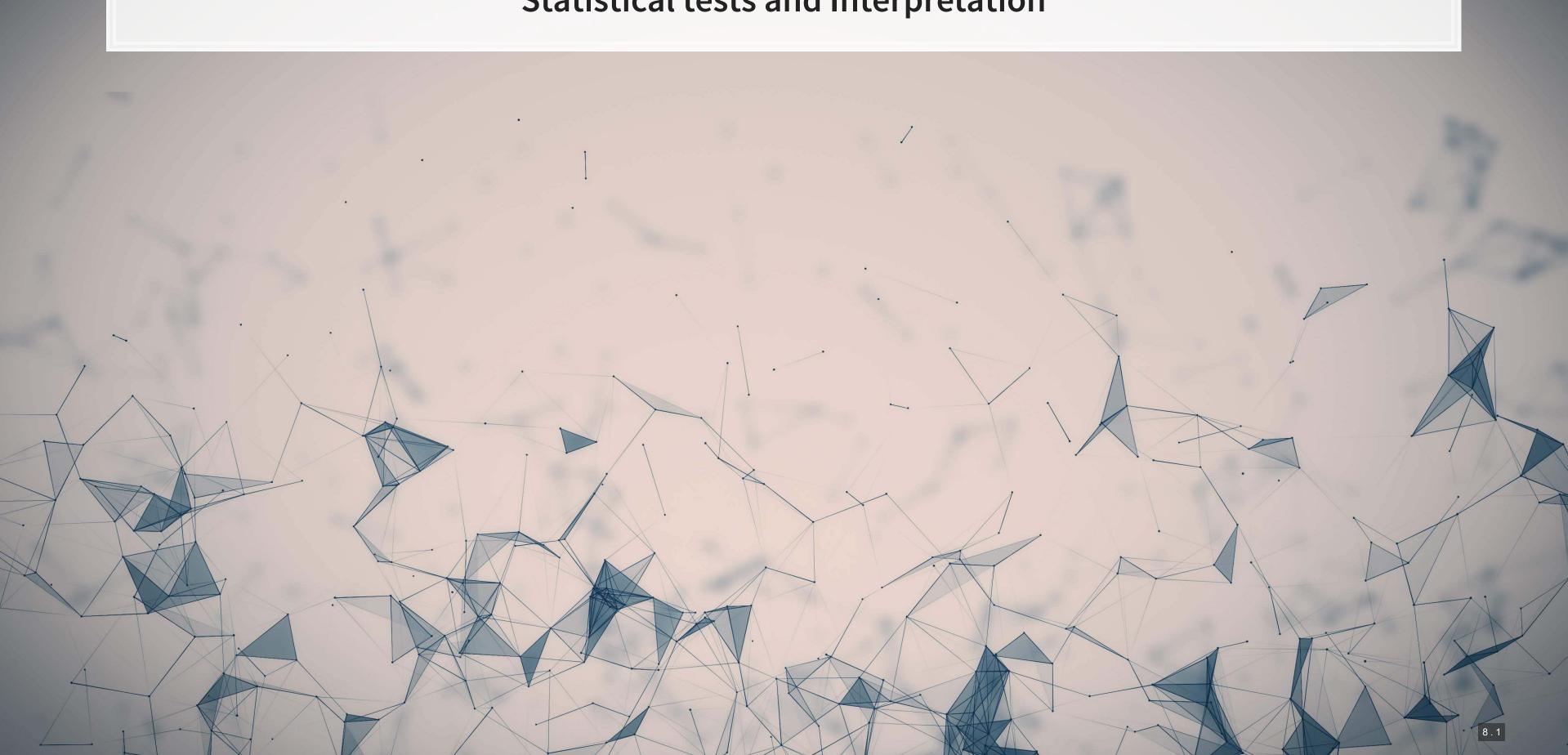
The overfitting problem

Or: Why do we like simpler models so much?

- Overfitting happens when a model fits in-sample data *too well*...
 - To the point where it also models any idiosyncrasies or errors in the data
 - This harms prediction performance
 - Directly harming our forecasts

An overfitted model works really well on its own data, and quite poorly on new data

Statistical tests and Interpretation



Coefficients

• In OLS: β_i

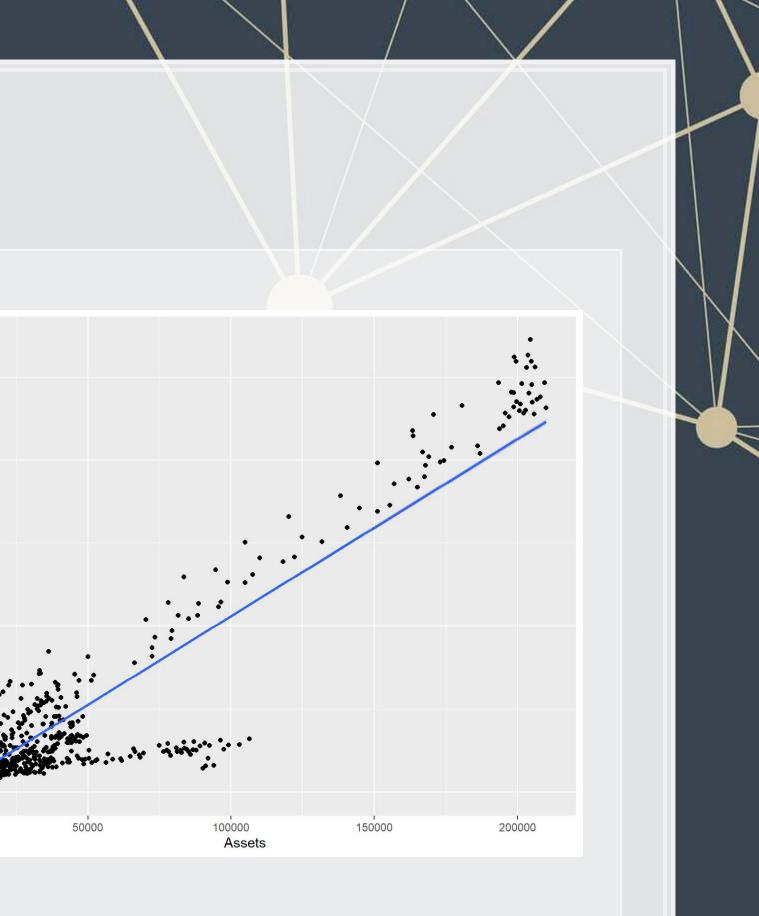
1e+05

5e+04

0e+00

Revenue

- A change in x_i by 1 leads to a change in y by eta_i
- Essentially, the slope between x and y
- The blue line in the chart is the regression line for $\hat{Revenue} = \alpha + \beta_i \hat{Assets}$ for retail firms since 1960



P-values

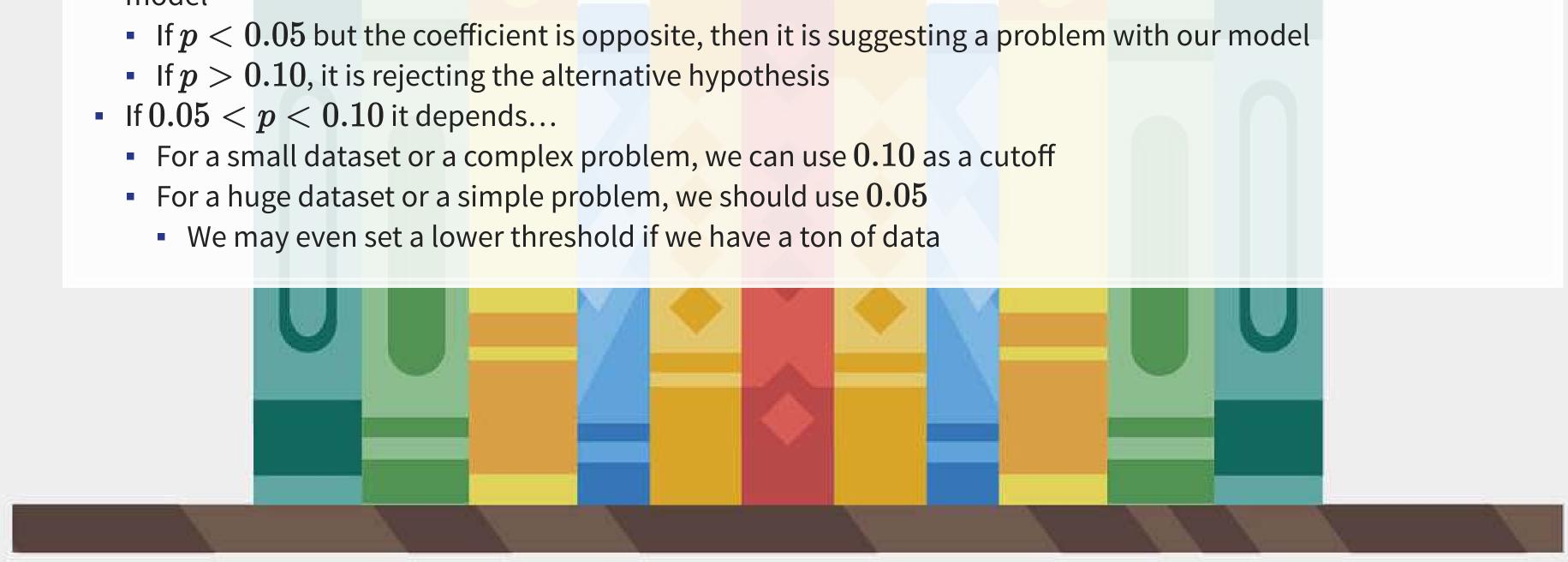
• *p*-values tell us the probability that an individual result is due to random chance

"The P value is defined as the probability under the assumption of no effect or no difference (null hypothesis), of obtaining a result equal to or more extreme than what was actually observed."

- Dahiru 2008
 - These are very useful, particularly for a frequentist approach
 - First used in the 1700s, but popularized by Ronald Fisher in the 1920s and 1930s

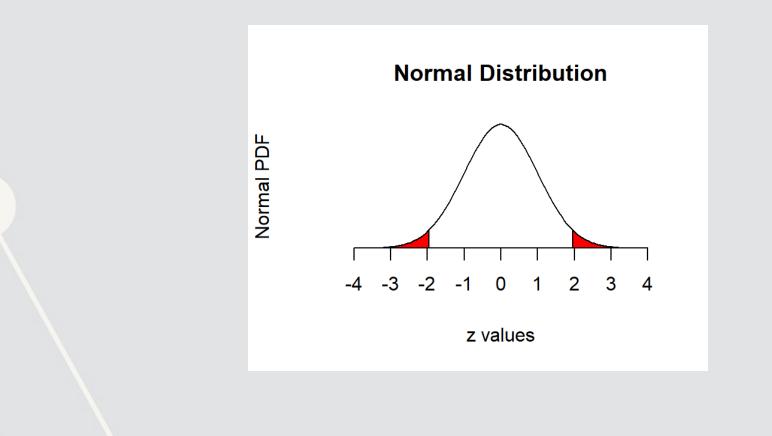
P-values: Rule of thumb

- If p < 0.05 and the coefficient sign matches our mental model, we can consider this as supporting our model



One vs two tailed tests

- Best practice:
 - Use a two tailed test
- Second best practice:
 - If you use a 1-tailed test, use a p-value cutoff of 0.025 or 0.05
 - This is equivalent to the best practice, just roundabout
- Common but generally inappropriate:
 - Use a one tailed test with cutoffs of 0.05 or 0.10 because your hypothesis is directional



R^2

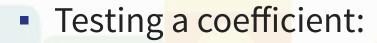
- R^2 = Explained variation / Total variation
 - Variation = difference in the observed output variable from its own mean
- A high R^2 indicates that the model fits the data very well
- A low R^2 indicates that the model is missing much of the variation in the output
- R^2 is technically a *biased* estimator
- Adjusted R^2 downweights R^2 and makes it unbiased

•
$$R^2_{Adj} = PR^2 + 1 - P$$

• Where
$$P=rac{n-1}{n-p-1}$$

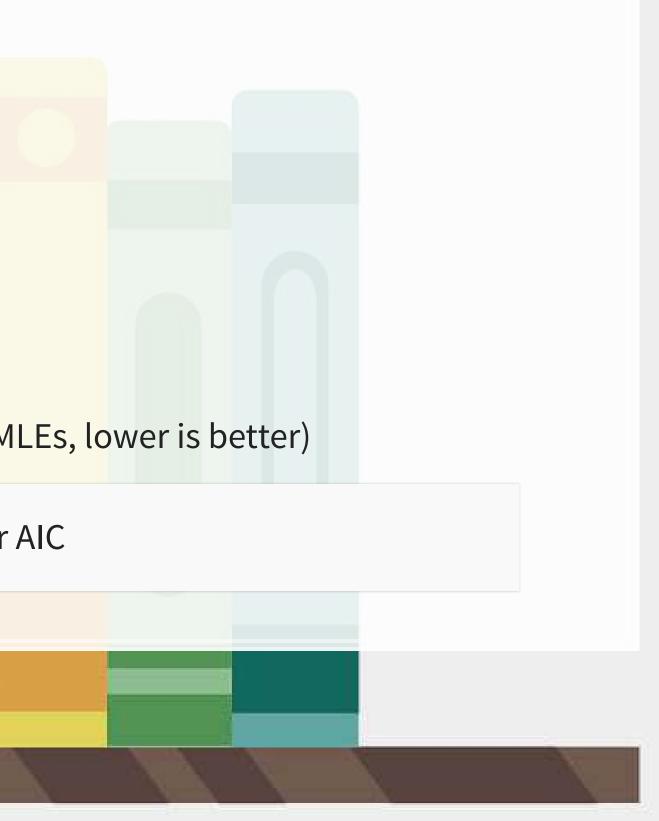
- *n* is the number of observations
- *p* is the number of inputs in the model

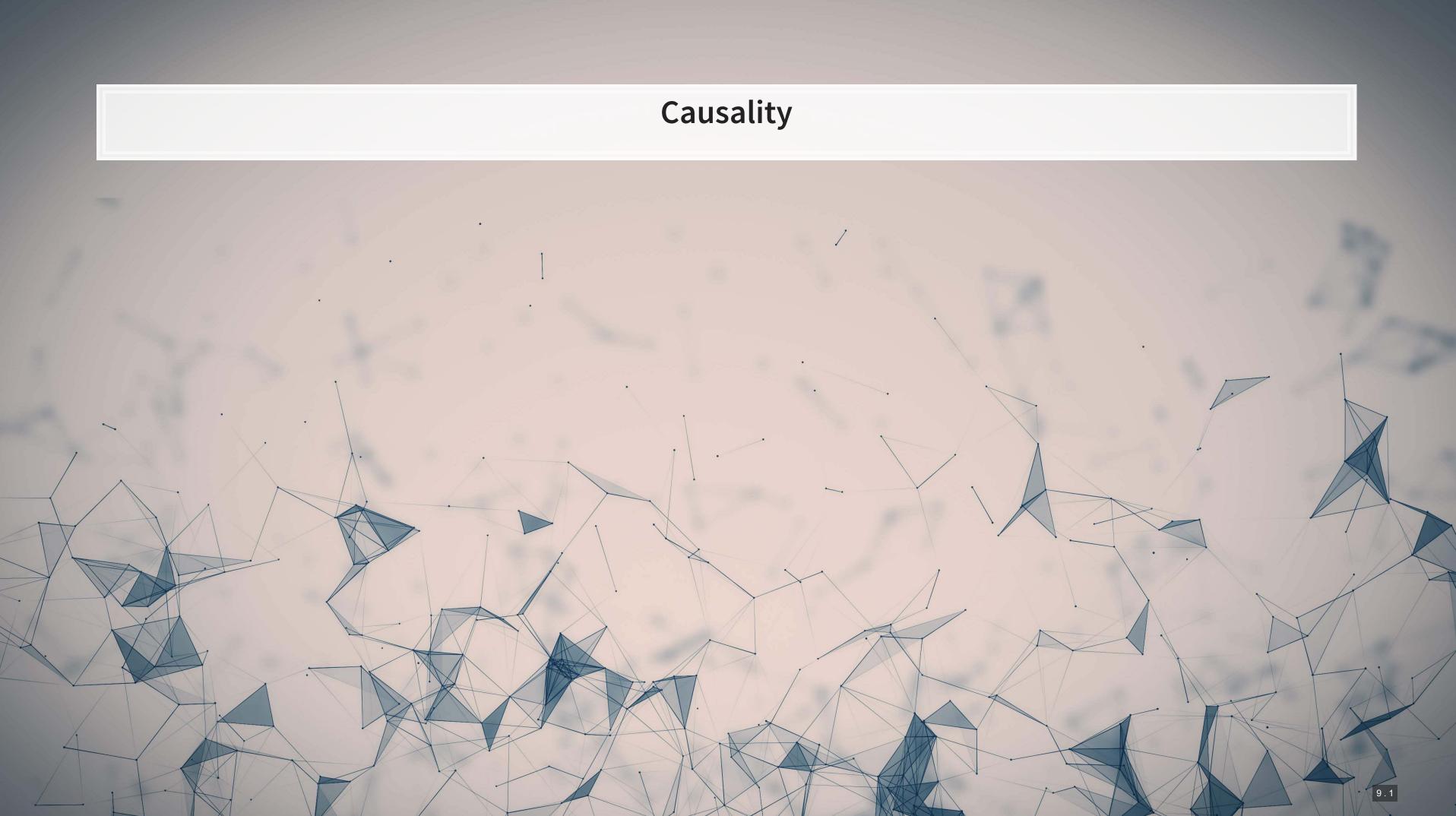
Test statistics



- Use a t or z test
- Testing a model as a whole
 - *F*-test, check *adjusted* R squared as well
- Testing across models
 - Chi squared (χ^2) test
 - Vuong test (comparing R^2)
 - Akaike Information Criterion (AIC) (Comparing MLEs, lower is better)

All of these have p-values, except for AIC

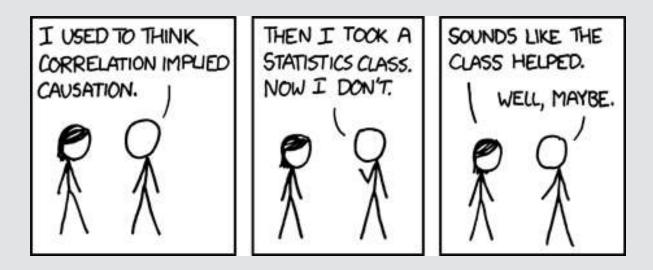




What is causality?

$A \rightarrow B$

- Causality is *A causing B*
 - This means more than A and B are correlated
- I.e., If A changes, B changes. But B changing doesn't mean A changed
 - Unless B is 100% driven by A
- Very difficult to determine, particularly for events that happen [almost] simultaneously
- Examples of correlations that aren't causation



Time and causality

 $A \rightarrow B \text{ or } A \leftarrow B?$

$A_t ightarrow B_{t+1}$

- If there is a separation in time, it's easier to say A caused B
 - Observe *A*, then see if *B* changes after
- Conveniently, we have this structure when forecasting
 - Consider a model like:

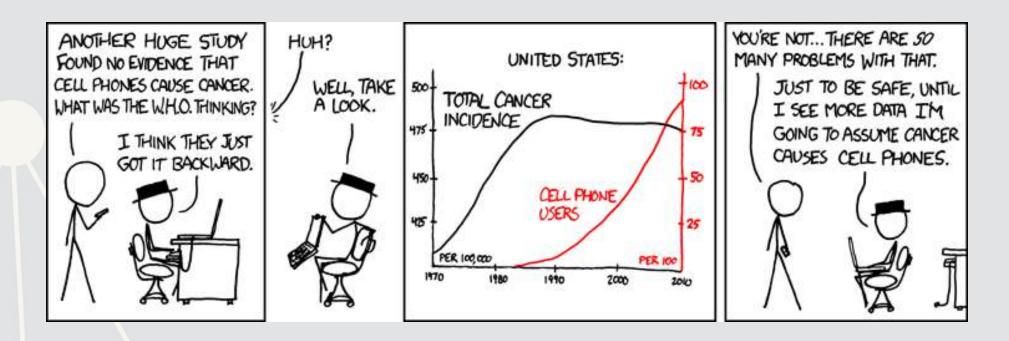
 $Revenue_{t+1} = Revenue_t + \dots$

It would be quite difficult for $Revenue_{t+1}$ to cause $Revenue_t$

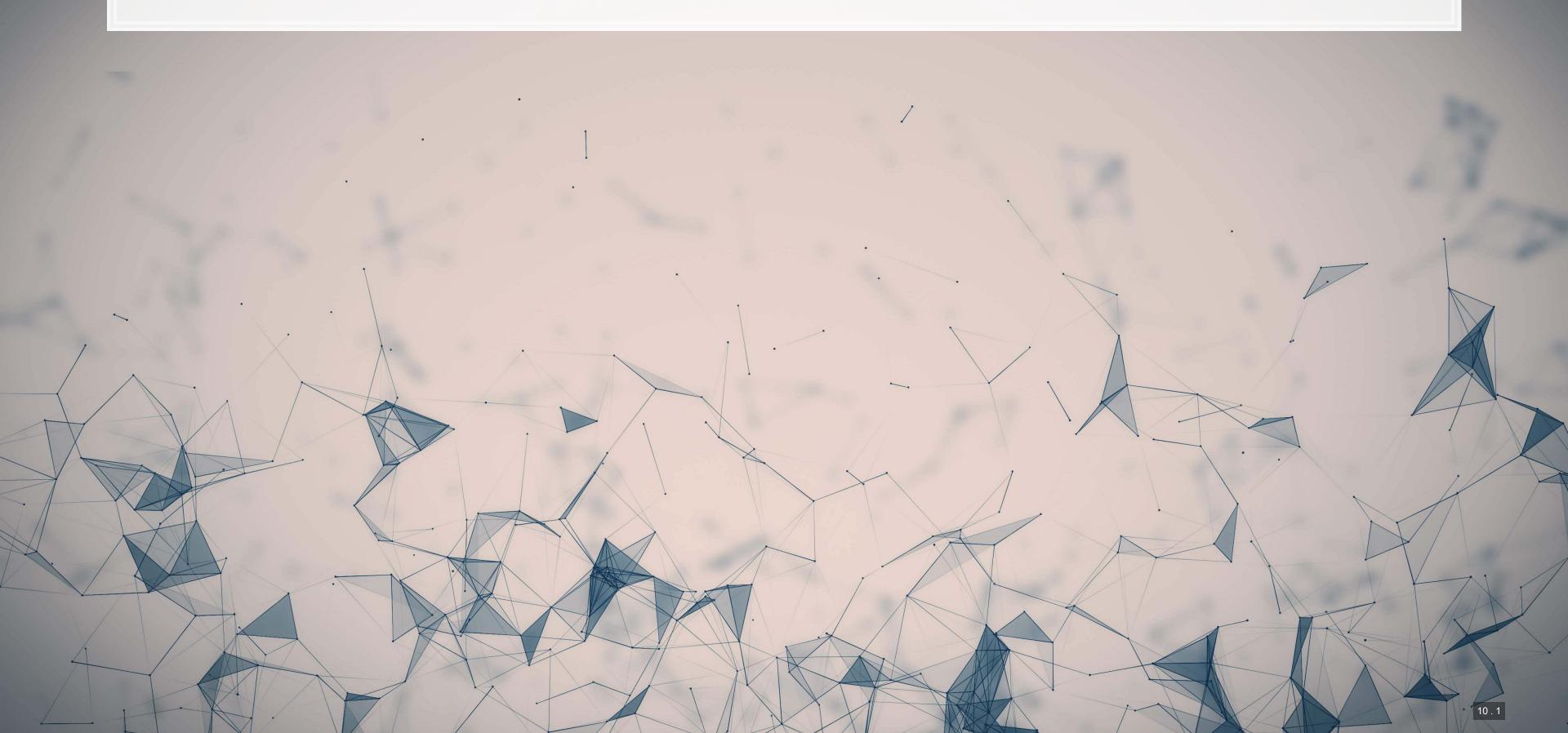
Time and causality break down

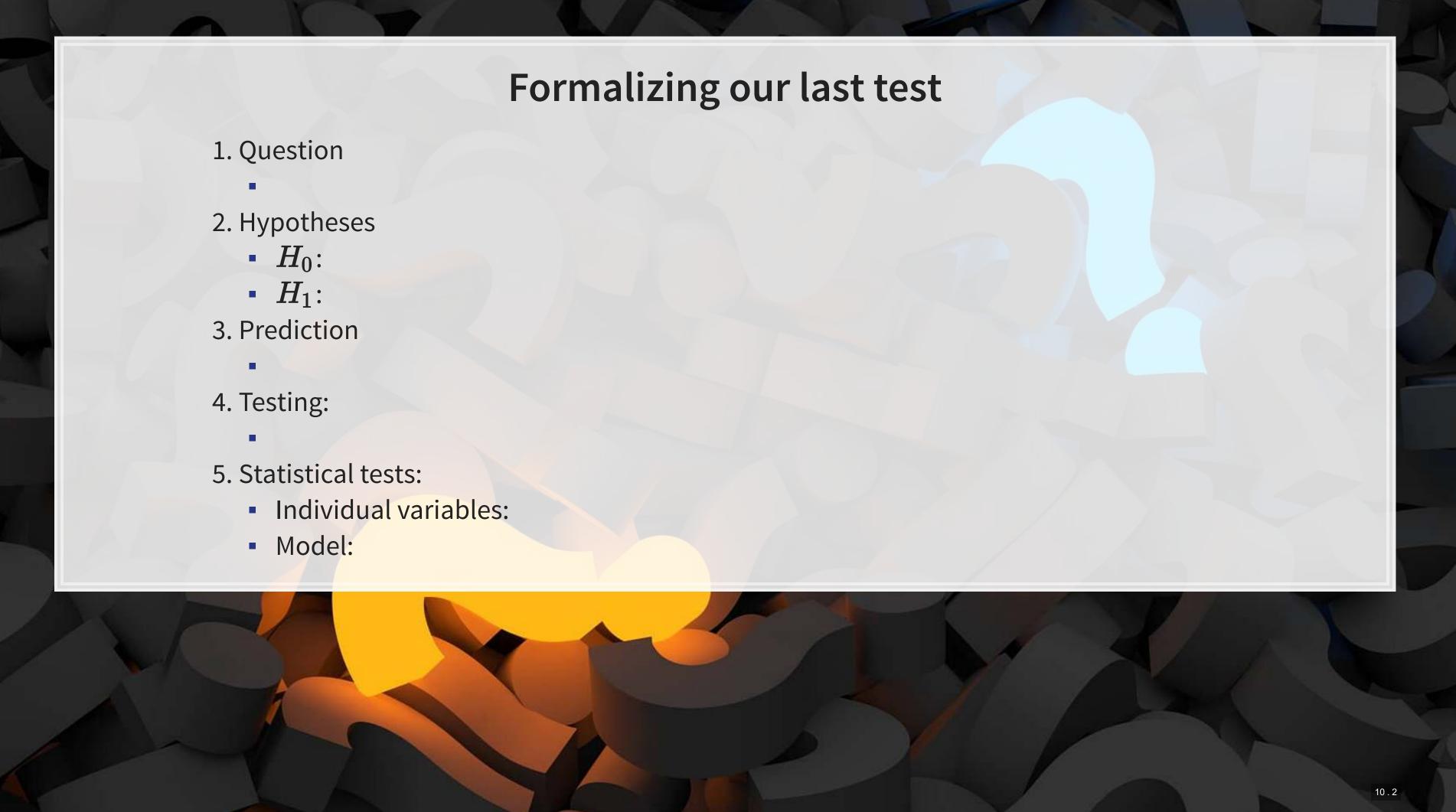
 $A_t
ightarrow B_{t+1}$? OR $C
ightarrow A_t$ and $C
ightarrow B_{t+1}$?

- The above illustrates the *Correlated omitted variable problem*
 - A doesn't cause B... Instead, some other force C causes both
 - The bane of social scientists everywhere
- This is less important for predictive analytics, as we care more about performance, but...
 - It can complicate interpreting your results
 - Figuring out C can help improve you model's predictions
 - So find C!



Revisiting the previous problem





Is this model better?

anova(mod2, mod3, test="Chisq")

```
## Analysis of Variance Table
##
## Model 1: revt_growth ~ at_growth
## Model 2: revt_growth ~ lct_growth + che_growth + ebit_growth
    Res.Df RSS Df Sum of Sq Pr(>Chi)
        26 1.5534
## 1
        24 1.1918 2 0.36168 0.0262 *
  2
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

A bit better at p < 0.05

• This means our model with change in current liabilities, cash, and EBIT appears to be better than the model with change in assets.

R

Panel data

/

Expanding our methodology

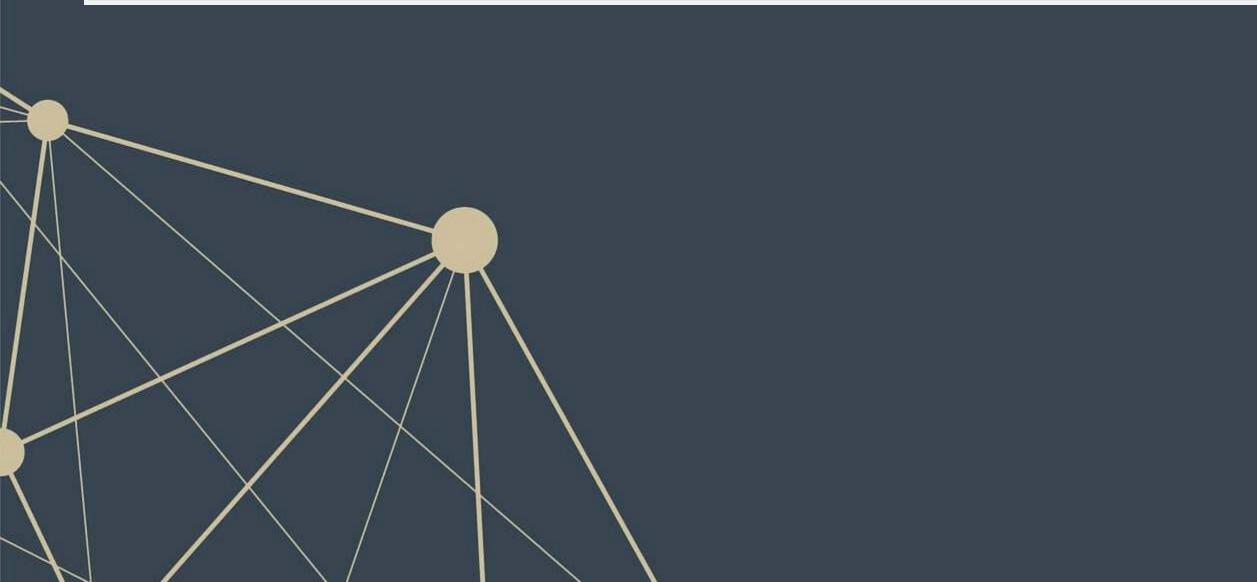
- Why should we limit ourselves to 1 firm's data?
- The nature of data analysis is such:

Adding more data usually helps improve predictions

- Assuming:
 - The data isn't of low quality (too noisy)
 - The data is relevant
 - Any differences can be reasonably controlled for

Expanding our question

- Previously: Can we predict revenue using a firm's accounting information?
 - This is simultaneous, and thus is not forecasting
- Now: Can we predict *future* revenue using a firm's accounting information?
 - By trying to predict ahead, we are now in the realm of forecasting
 - What do we need to change?
 - \hat{y} will need to be 1 year in the future



First things first

- When using a lot of data, it is important to make sure the data is clean
- In our case, we may want to remove any very small firms

Ensure firms have at least \$1M (local currency), and have revenue # df contains all real estate companies excluding North America df_clean <- df %>% filter(at>1, revt>0)

We cleaned out 578 observations!
print(c(nrow(df), nrow(df_clean)))

[1] 5161 4583

Another useful cleaning funtion: # Replaces NaN, Inf, and -Inf with NA for all numeric variables in the data! df_clean <- df_clean %>% mutate_if(is.numeric, list(~replace(., !is.finite(.), NA))) ure the data is clean ll firms

R

R

Looking back at the prior models

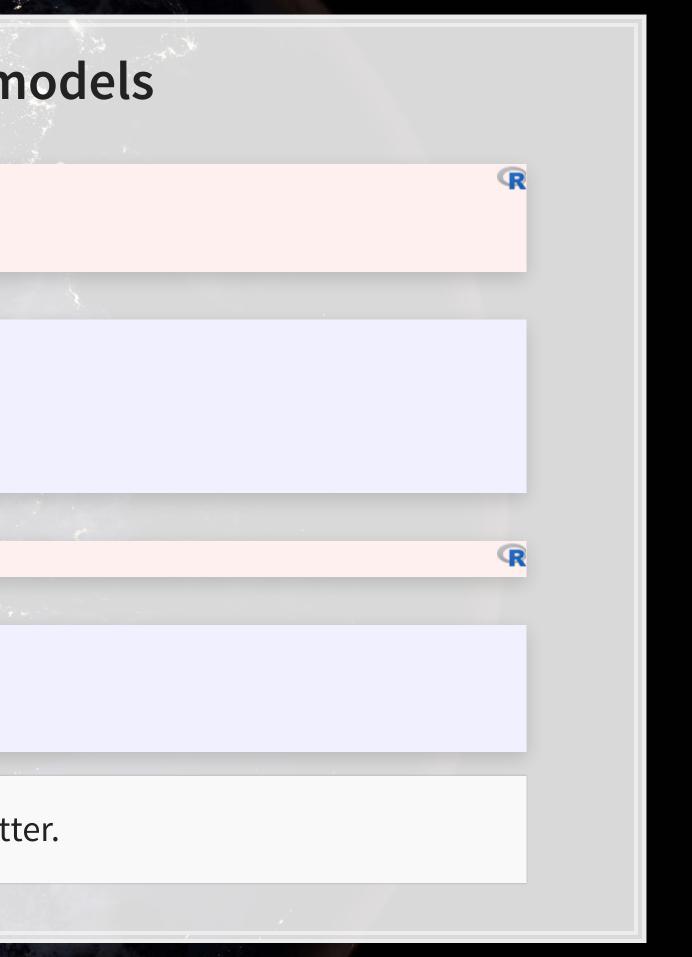
uol <- uol %>% mutate(revt_lead = lead(revt)) # From dplyr
forecast1 <- lm(revt_lead ~ lct + che + ebit, data=uol)
library(broom) # Lets us view bigger regression outputs in a tidy fashion
tidy(forecast1) # Present regression output</pre>

##	#	A tibble: 4	x 5			
##		term	estimate	std.error	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	87.4	124.	0.707	0.486
##	2	lct	0.213	0.291	0.731	0.472
##	3	che	0.112	0.349	0.319	0.752
##	4	ebit	2.49	1.03	2.42	0.0236

glance(forecast1) # Present regression statistics

```
A tibble: 1 x 12
    r.squared adj.r.squared sigma statistic
                                     p.value
                                                df logLik AIC BIC
##
##
       <dbl>
                  <dbl> <dbl>
                               <dbl>
                                      0.612 357.
##
                               15.2 0.00000939
       0.655
                                                 3 -202. 414. 421.
  1
    ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
```

This model is ok, but we can do better.

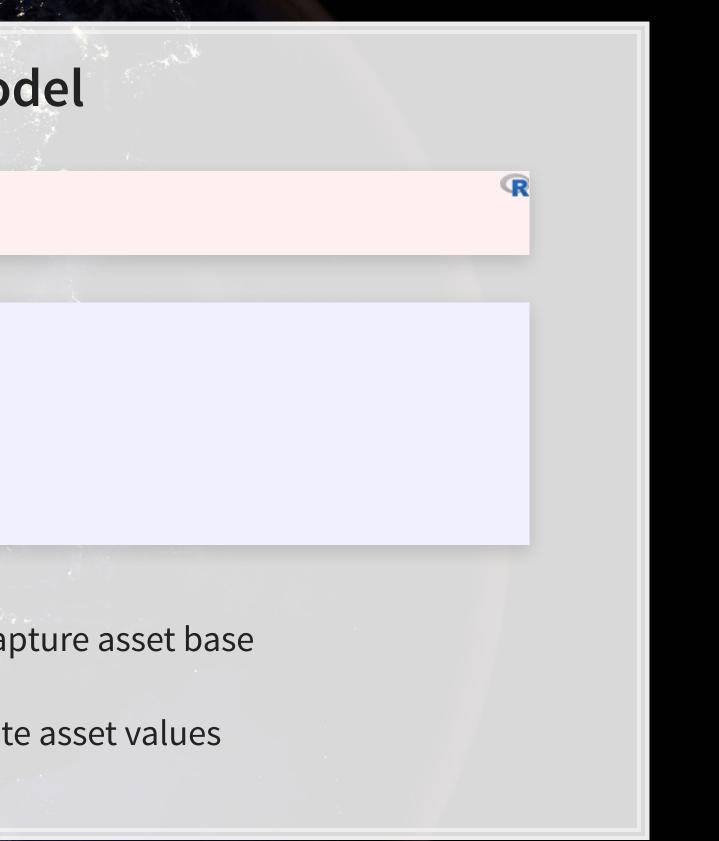


Expanding the prior model

forecast2 < lm(revt_lead ~ revt + act + che + lct + dp + ebit , data=uol)
tidy(forecast2)</pre>

##	#	A tibble: 7	x 5			
##		term	estimate	std.error	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	15.6	97.0	0.161	0.874
##	2	revt	1.49	0.414	3.59	0.00174
##	3	act	0.324	0.165	1.96	0.0629
##	4	che	0.0401	0.310	0.129	0.898
##	5	lct	-0.198	0.179	-1.10	0.283
##	6	dp	3.63	5.42	0.669	0.511
##	7	ebit	-3.57	1.36	-2.62	0.0161

- Revenue to capture stickiness of revenue
- Current assest & Cash (and equivalents) to capture asset base
- Current liabilities to capture payments due
- Depreciation to capture decrease in real estate asset values
- EBIT to capture operational performance



Expanding the prior model

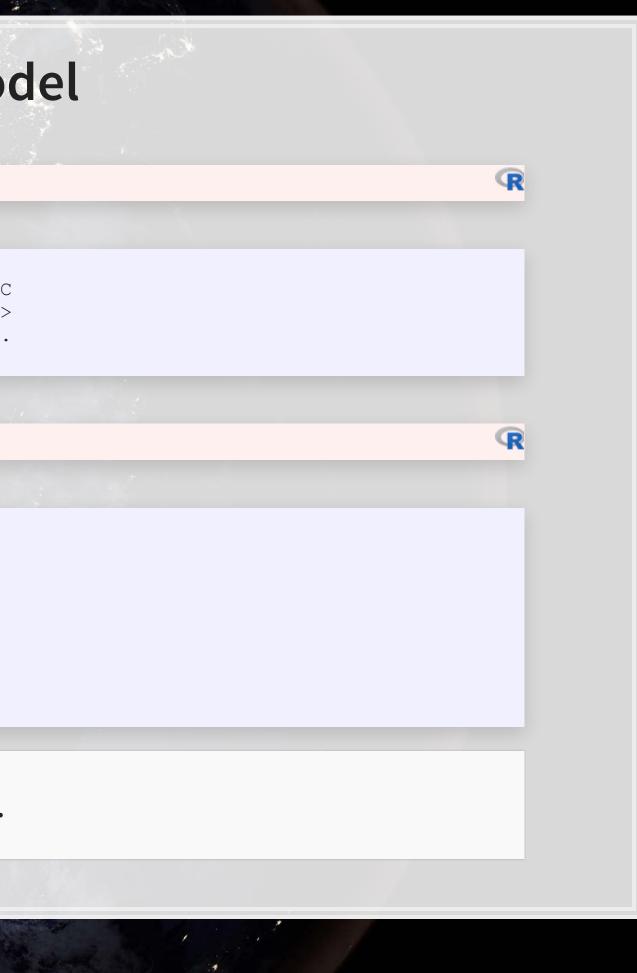
glance(forecast2)

A tibble: 1 x 12 ## r.squared adj.r.squared sigma statistic p.value df logLik AIC ## BIC <dbl> <dbl> <dbl> ## <dbl> ## 0.875 203. 32.5 0.0000000141 0.903 6 -184. 385. 396. 1 ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

anova(forecast1, forecast2, test="Chisq")

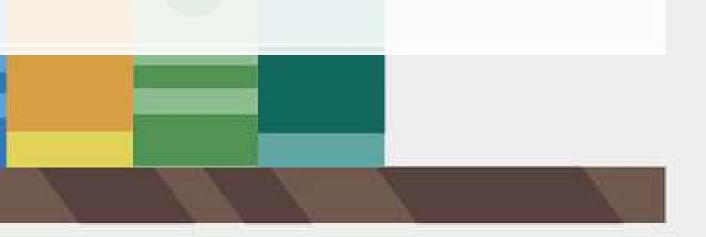
```
## Analysis of Variance Table
##
## Model 1: revt_lead ~ lct + che + ebit
## Model 2: revt_lead ~ revt + act + che + lct + dp + ebit
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 24 3059182
## 2 21 863005 3 2196177 1.477e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1
```

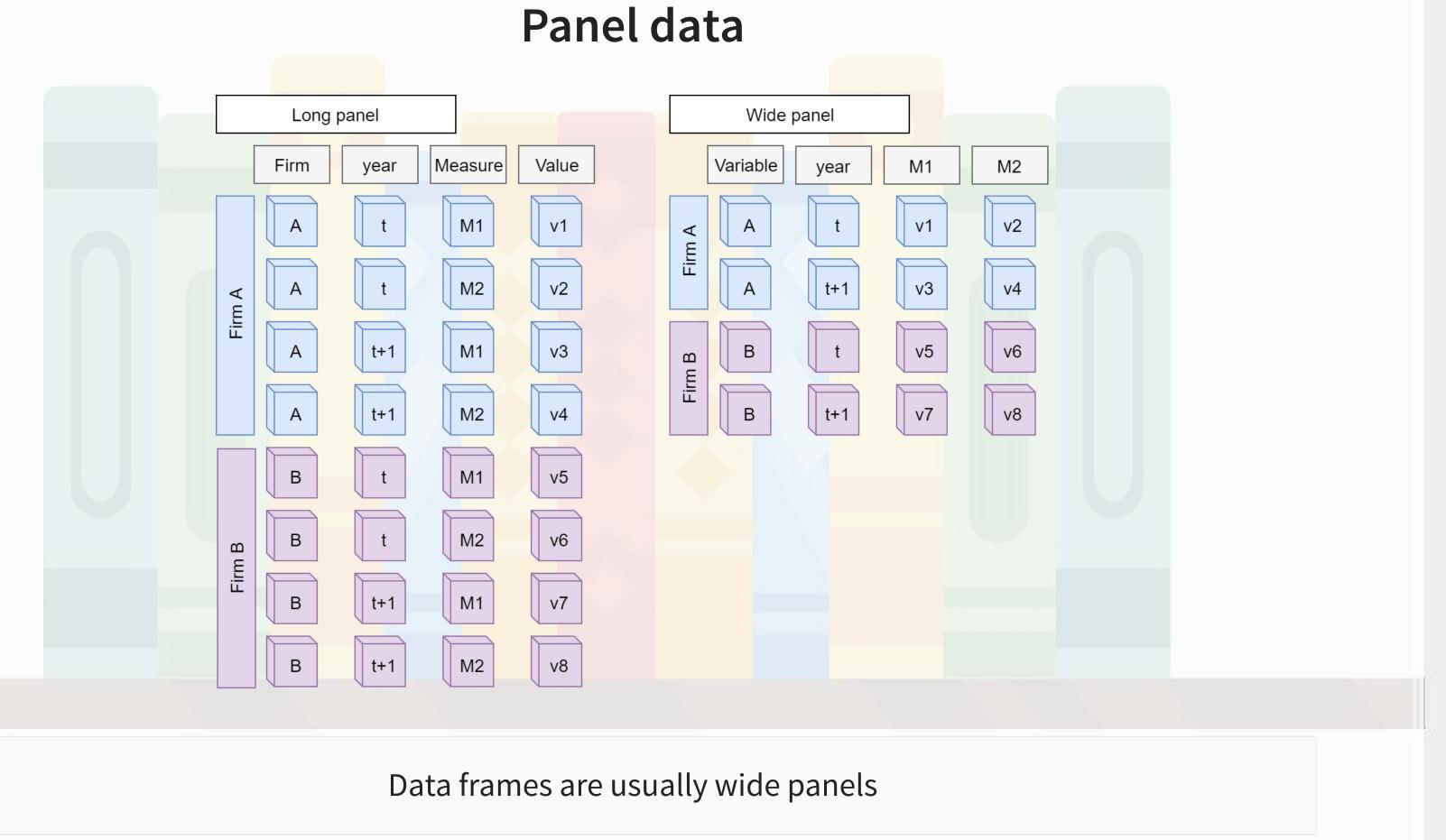
This is better (Adj. R^2 , χ^2 , AIC).



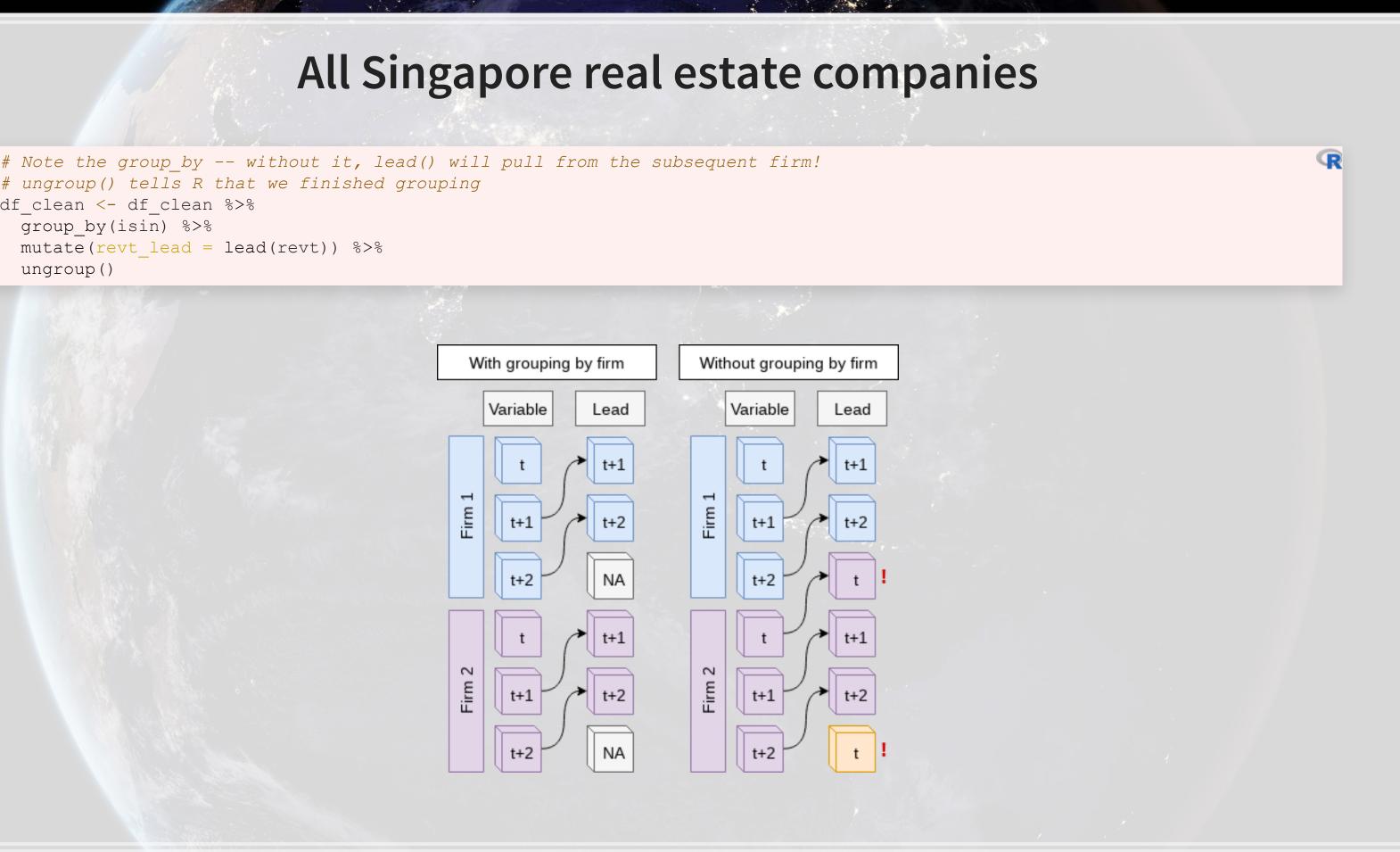
Panel data

- Panel data refers to data with the following characteristics:
 - There is a time dimension
 - There is at least 1 other dimension to the data (firm, country, etc.)
- Special cases:
 - A panel where all dimensions have the same number of observations is called balanced
 - Otherwise we call it unbalanced
 - A panel missing the time dimension is cross-sectional
 - A panel missing the other dimension(s) is a *time series*
- Format:
 - Long: Indexed by all dimensions
 - Wide: Indexed only by some dimensions



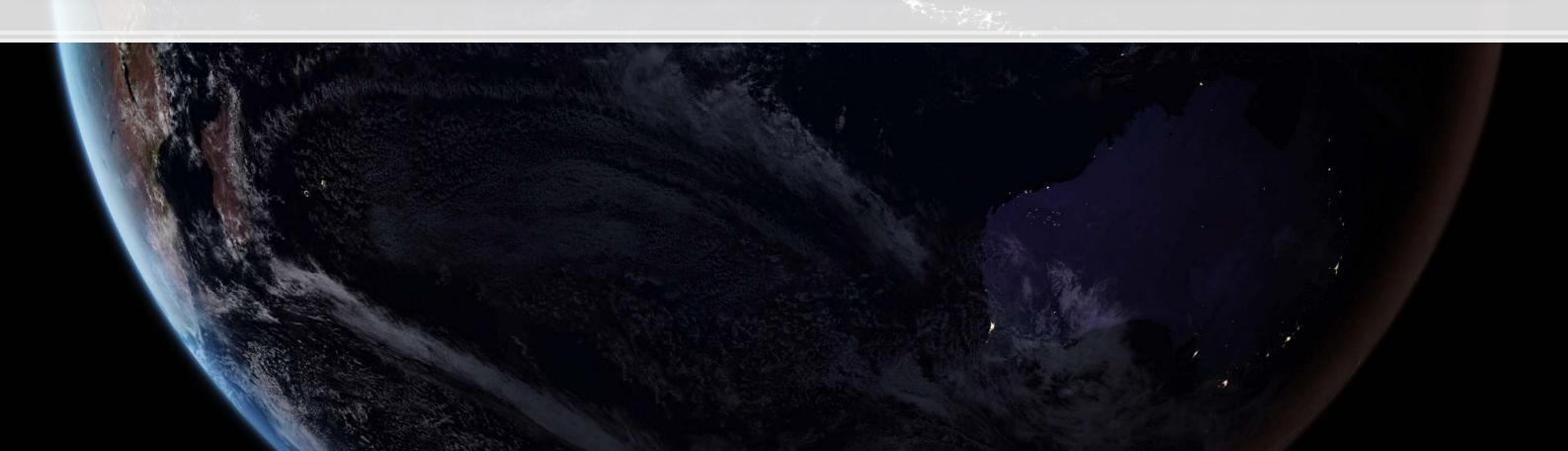


ungroup() tells R that we finished grouping df_clean <- df_clean %>% group by(isin) %>% mutate(revt_lead = lead(revt)) %>% ungroup()



All Singapore real estate companies

#	ŧ #	A tibble: 7	x 5			
# #	ŧ	term	estimate	std.error	statistic	p.value
# #	ŧ	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
# #	ŧ 1	(Intercept)	25.0	13.2	1.89	5.95e- 2
# #	ŧ 2	revt	0.505	0.0762	6.63	1.43e-10
# #	ŧ 3	act	-0.0999	0.0545	-1.83	6.78e- 2
# #	ŧ 4	che	0.494	0.155	3.18	1.62e- 3
# #	ŧ 5	lct	0.396	0.0860	4.60	5.95e- 6
# #	ŧ 6	dp	4.46	1.55	2.88	4.21e- 3
#	† 7	ebit	-0.951	0.271	-3.51	5.18e- 4

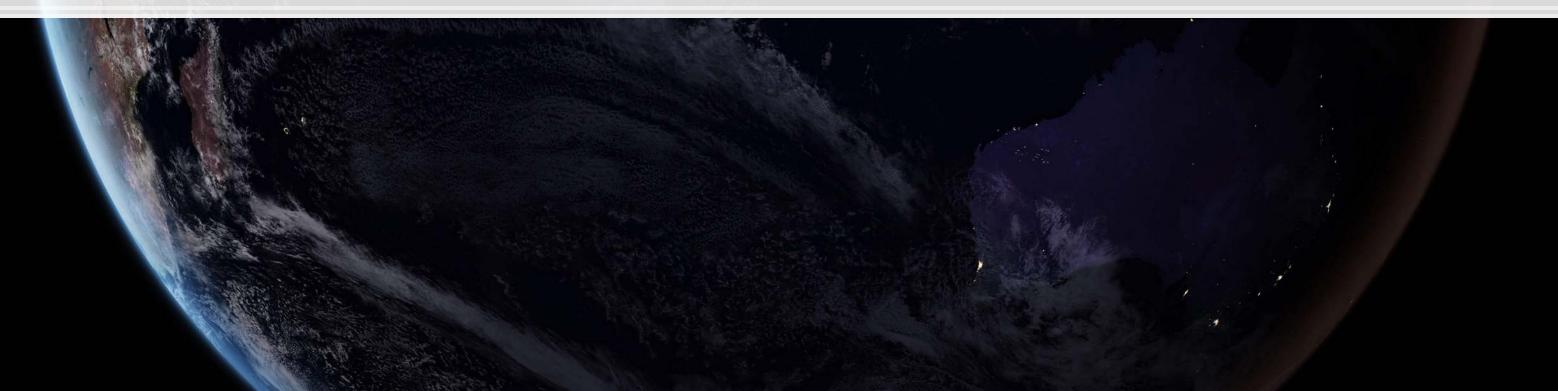


All Singapore real estate companies

glance(forecast3)

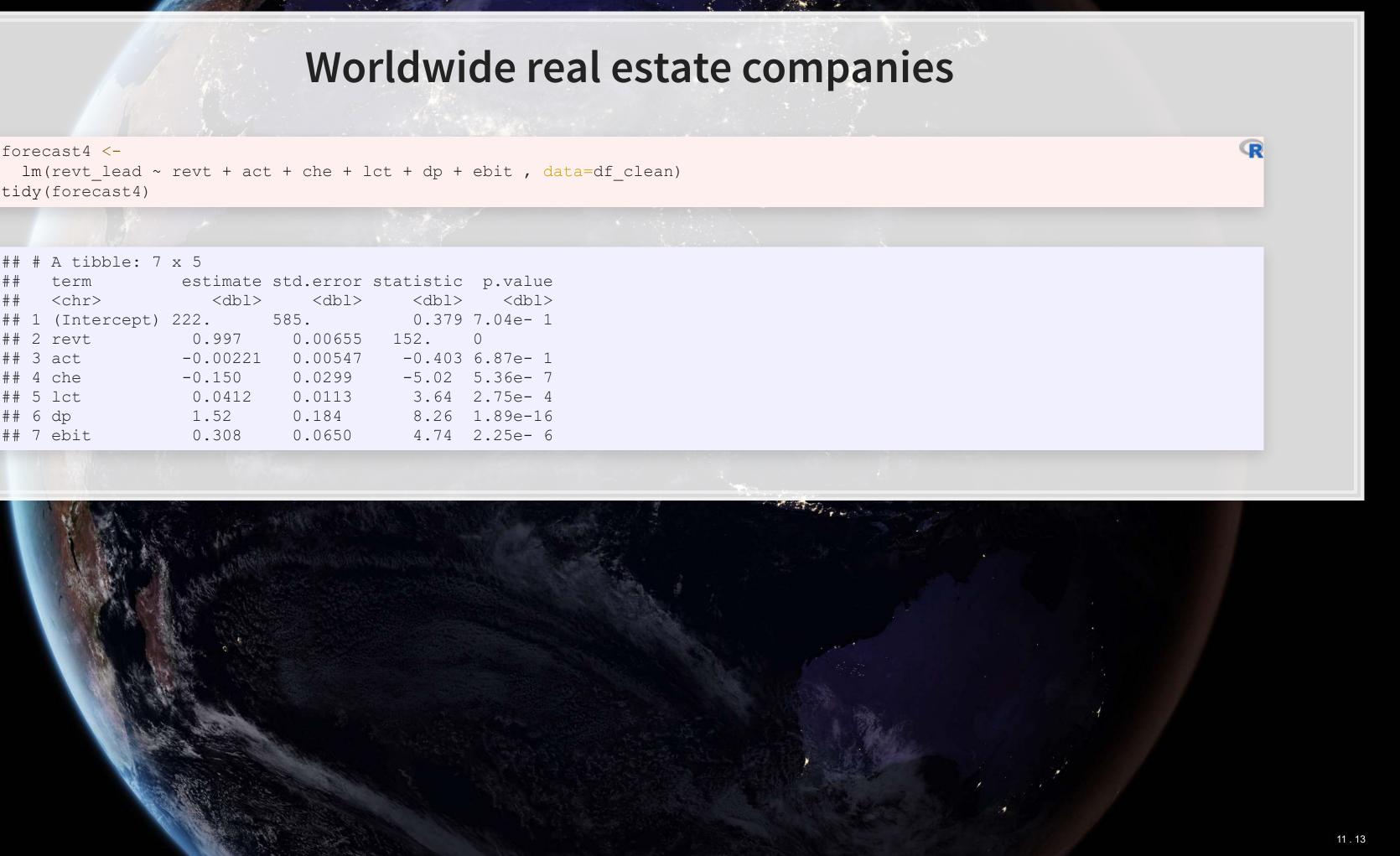
Lower adjusted R^2 – This is worse? Why?

Note: χ² can only be used for models on the same data
Same for AIC



tidy(forecast4)

##	# # A tibble: 7 x 5					
##		term	estimate	std.error	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	222.	585.	0.379	7.04e- 1
##	2	revt	0.997	0.00655	152.	0
##	3	act	-0.00221	0.00547	-0.403	6.87e- 1
##	4	che	-0.150	0.0299	-5.02	5.36e- 7
##	5	lct	0.0412	0.0113	3.64	2.75e- 4
##	6	dp	1.52	0.184	8.26	1.89e-16
##	7	ebit	0.308	0.0650	4.74	2.25e- 6



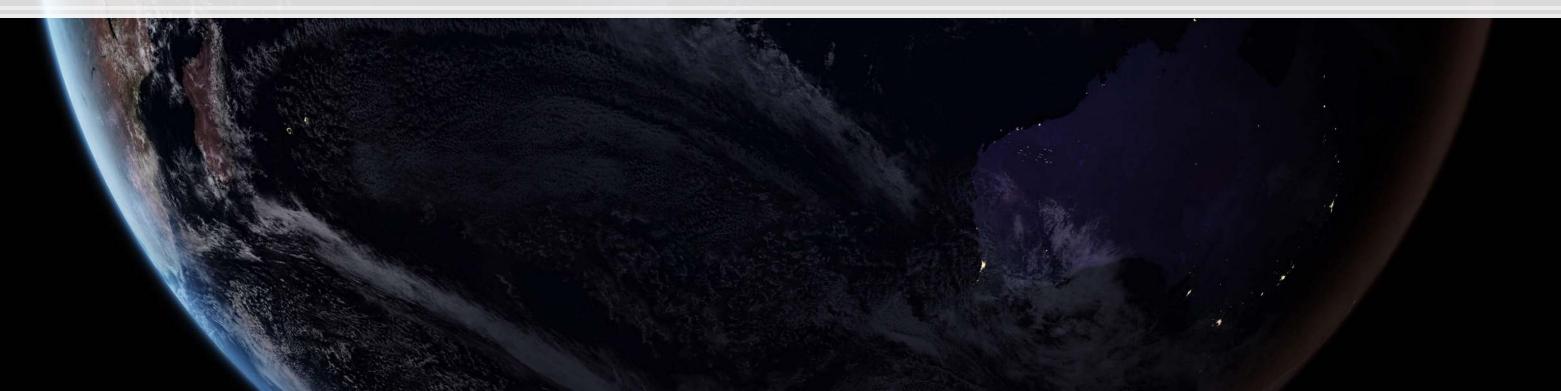
Worldwide real estate companies

glance(forecast4)

A tibble: 1 x 12 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC <dbl> <dbl> <dbl> ## 0.944 0.944 36459. 11299. 6 -47819. 95654. 95705. 0 ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

Higher adjusted R^2 – better!

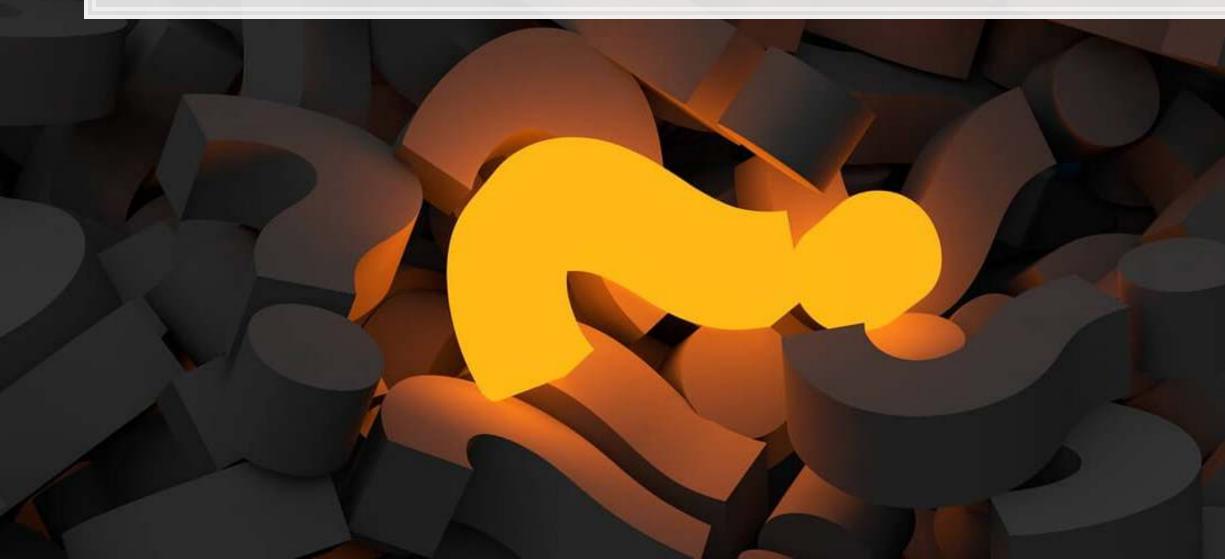
• Note: χ^2 can only be used for models on the same data Same for AIC



Model accuracy

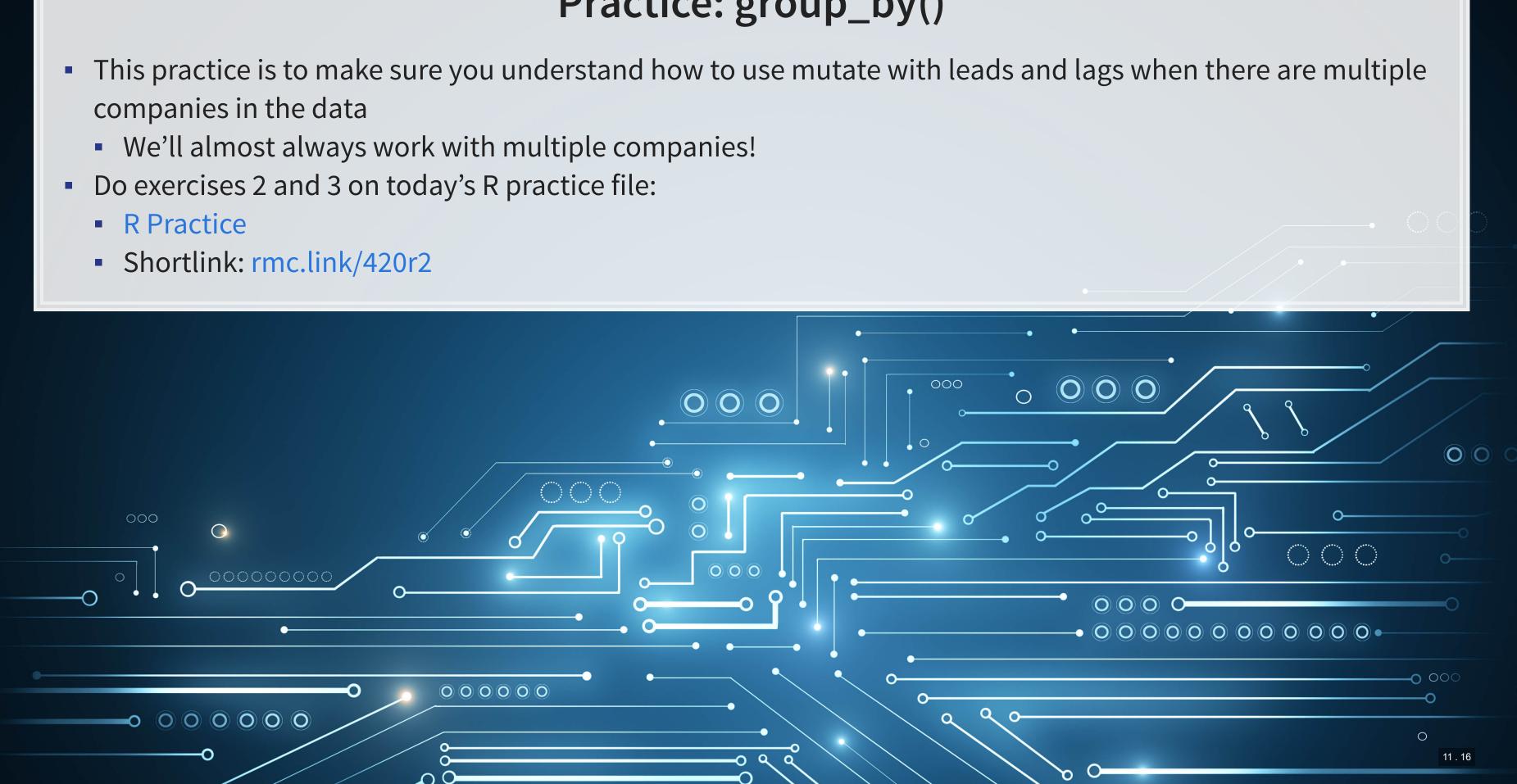
Why is the UOL model better than the Singapore model?

- Ranking:
 - 1. Worldwide real estate model
 - 2. UOL model
 - 3. Singapore real estate model



Practice: group_by()

- companies in the data



Dealing with noise

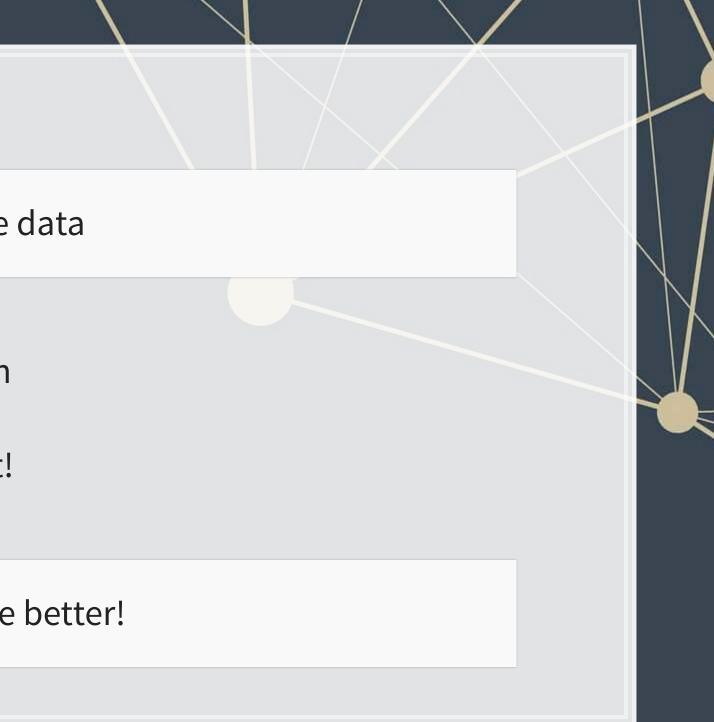
/

Noise

Statistical noise is random error in the data

- Many sources of noise:
 - Other factors not included in
 - Error in measurement
 - Accounting measurement!
 - Unexpected events / shocks

Noise is OK, but the more we remove, the better!



Removing noise: Singapore model

- Different companies may behave slightly differently
 - Control for this using a *Fixed Effect*
 - Note: ISIN uniquely identifies companies

```
forecast3.1 <-
 lm(revt lead ~ revt + act + che + lct + dp + ebit + factor(isin),
    data=df_clean[df_clean$fic=="SGP",])
 n=7 to prevent outputting every fixed effect
print(tidy(forecast3.1), n=15)
```

##	# Z	A tibble: 27 x 5				
##		term	estimate	std.error	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	1.58	39.4	0.0401	0.968
##	2	revt	0.392	0.0977	4.01	0.0000754
##	3	act	-0.0538	0.0602	-0.894	0.372
##	4	che	0.304	0.177	1.72	0.0869
##	5	lct	0.392	0.0921	4.26	0.0000276
##	6	dp	4.71	1.73	2.72	0.00687
##	7	ebit	-0.851	0.327	-2.60	0.00974
##	8	factor(isin)SG1AA6000000	218.	76.5	2.85	0.00463
##	9	factor(isin)SG1AD8000002	-11.7	67.4	-0.174	0.862
##	10	factor(isin)SG1AE2000006	4.02	79.9	0.0503	0.960
##	11	factor(isin)SG1AG000003	-13.6	61.1	-0.223	0.824
##	12	factor(isin)SG1BG1000000	-0.901	69.5	-0.0130	0.990
##	13	factor(isin)SG1BI9000008	7.76	64.3	0.121	0.904
##	14	factor(isin)SG1DE5000007	-10.8	61.1	-0.177	0.860
##	15	factor(isin)SG1EE1000009	-6.90	66.7	-0.103	0.918
##	#	with 12 more rows				

Removing noise: Singapore model

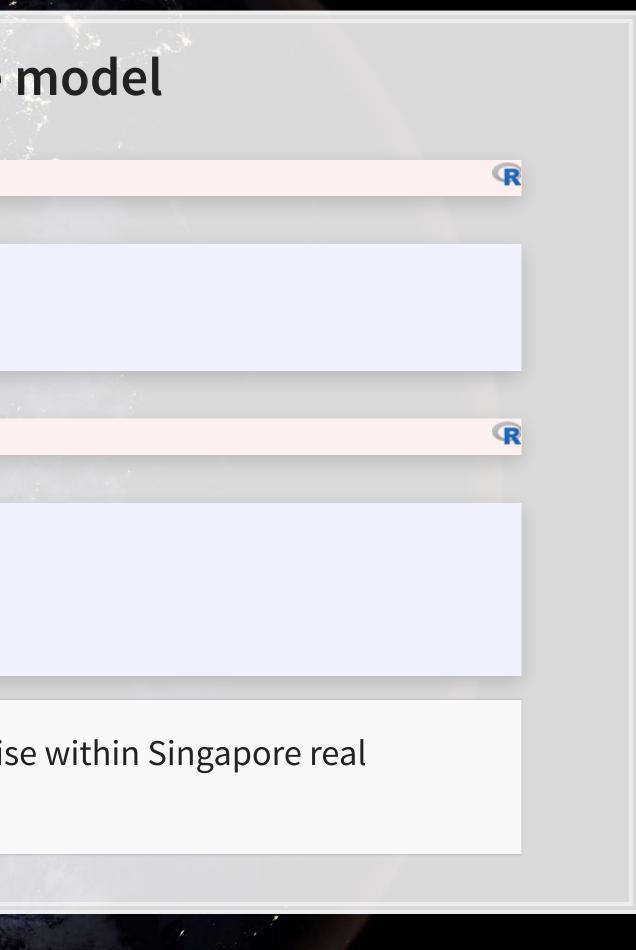
glance(forecast3.1)

A tibble: 1 x 12 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC <dbl> <dbl> ## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 0.856 0.844 208. 69.4 1.15e-111 26 -2223. 4502. 4609. ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

anova(forecast3, forecast3.1, test="Chisq")

```
## Analysis of Variance Table
##
## Model 1: revt_lead ~ revt + act + che + lct + dp + ebit
## Model 2: revt_lead ~ revt + act + che + lct + dp + ebit + factor(isin)
## Res.Df RSS Df Sum of Sq Pr(>Chi)
## 1 324 14331633
## 2 304 13215145 20 1116488 0.1765
```

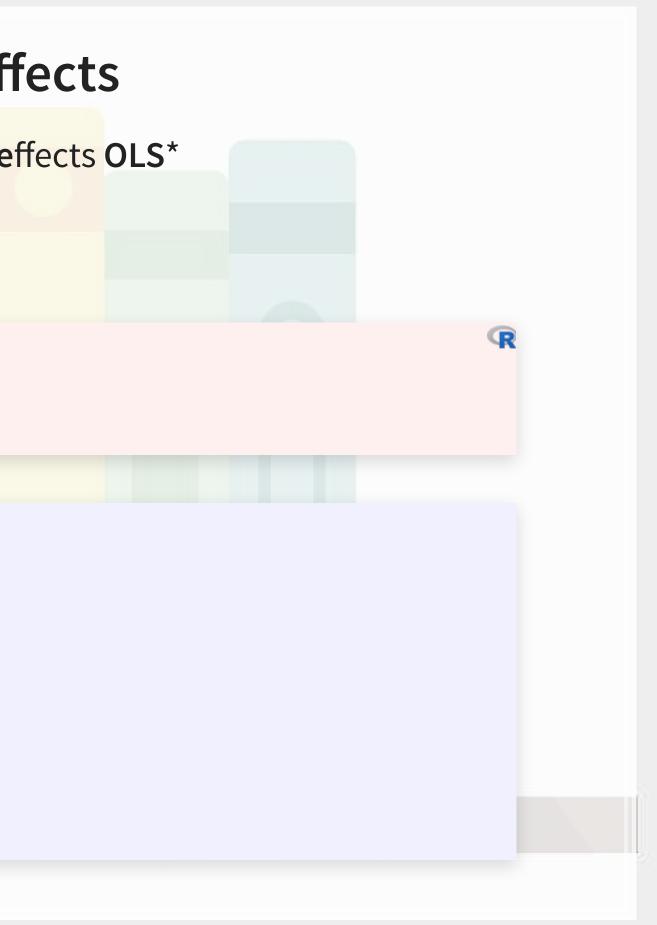
This isn't much different. Why? There is another source of noise within Singapore real estate companies



Another way to do fixed effects

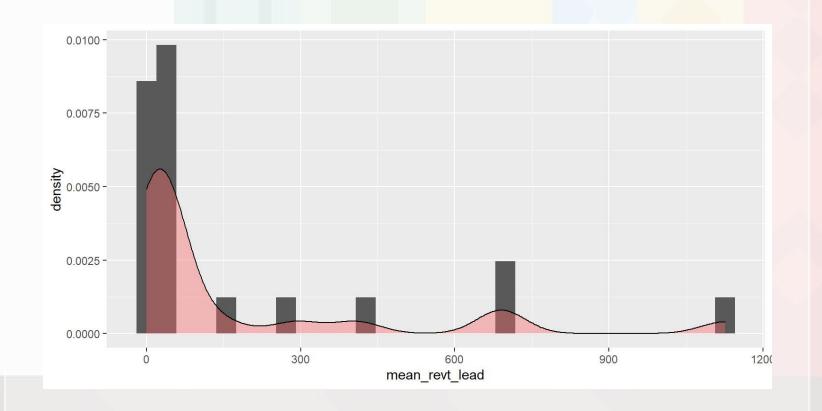
- The library fixest has feels (): fixed effects OLS*
 - Better for complex models
 - Extremely efficient computationally

```
## OLS estimation, Dep. Var.: revt lead
## Observations: 331
## Fixed-effects: isin: 21
## Standard-errors: Clustered (isin)
        Estimate Std. Error t value Pr(>|t|))
##
  revt 0.392002 0.188714 2.077200 0.050877
##
## act -0.053816 0.154148 -0.349119 0.730649
      0.303696 0.302854 1.002800 0.327946
## che
       0.392086 0.238711 1.642500 0.116115
## lct
        4.712800 2.630500 1.791600 0.088347.
## dp
## ebit -0.850798 0.779077 -1.092100 0.287788
##
  ___
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 199.8
               Adj. R2: 0.843506
                Within R2: 0.780586
```



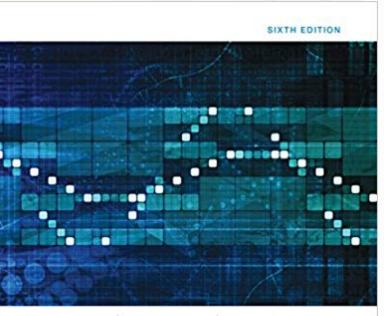
Why exactly would we use fixed effects?

- Fixed effects are used when the average of \hat{y} varies by some group in our data
 - In our problem, the average revenue of each firm is different
- Fixed effects absorb this difference



- Further reading:
 - Wooldridge

Introductory Econometrics by Jeffrey M.



Introductory Econometrics A Modern Approach

JEFFREY M. WOOLDRIDGE

What else can we do?

What else could we do to improve our prediction model?

Assuming: We have access to any data that is publicly available

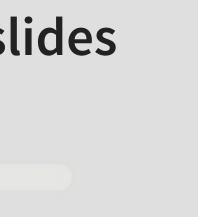
For next week

- For next week:
 - 2 chapters on Datacamp
 - First assignment
 - Turn in on eLearn before class in 2 weeks
 - You can work on this in pairs or individually

weeks weeks

Packages used for these slides

- broom
- DT
- fixest
- knitr
- magrittr
- plotly
- revealjs
- tidyverse



13.3

Custom code

Graph showing squared error (slide 4.6)
uolg <- uol[,c("at","revt")]
uolg\$resid <- modl\$residuals
uolg\$xleft <- ifelse(uolg\$resid < 0,uolg\$at,uolg\$at - uolg\$resid)
uolg\$xright <- ifelse(uolg\$resid < 0,uolg\$at - uolg\$resid, uol\$at)
uolg\$ytop <- ifelse(uolg\$resid < 0,uolg\$revt - uolg\$resid,uol\$revt)
uolg\$ybottom <- ifelse(uolg\$resid < 0,uolg\$revt, uolg\$revt - uolg\$resid)
uolg\$point <- TRUE</pre>

uolg2 <- uolg uolg2\$point <- FALSE uolg2\$at <- ifelse(uolg\$resid < 0,uolg2\$xright,uolg2\$xleft) uolg2\$revt <- ifelse(uolg\$resid < 0,uolg2\$ytop,uolg2\$ybottom)</pre>

uolg <- rbind(uolg, uolg2)</pre>

uolg %>% ggplot(aes(y=revt, x=at, group=point)) +
 geom_point(aes(shape=point)) +
 scale_shape_manual(values=c(NA,18)) +
 geom_smooth(method="lm", se=FALSE) +
 geom_errorbarh(aes(xmax=xright, xmin = xleft)) +
 geom_errorbar(aes(ymax=ytop, ymin = ybottom)) +
 theme(legend.position="none")

# Chart of mean revt lead for Singaporean firms (slide 12.6)			
df_clean %>%	# Our data frame		
filter(fic=="SGP") %>%	# Select only Singaporean firms		
group_by(isin) %>%	# Group by firm		
<pre>mutate(mean_revt_lead=mean(revt_lead, na.rm=T)) %>%</pre>	# Determine each firm's mean revenue (lead)		
slice(1) %>%	# Take only the first observation for each group		
ungroup() %>%	# Ungroup (we don't need groups any more)		
ggplot(aes(x=mean_revt_lead)) +	# Initialize plot and select data		
<pre>geom_histogram(aes(y =density)) +</pre>	<i>#</i> Plots the histogram as a density so that geom_density is visible		
<pre>geom_density(alpha=.4, fill="#FF66666")</pre>	# Plots smoothed density		

