ACCT 420: Logistic Regression

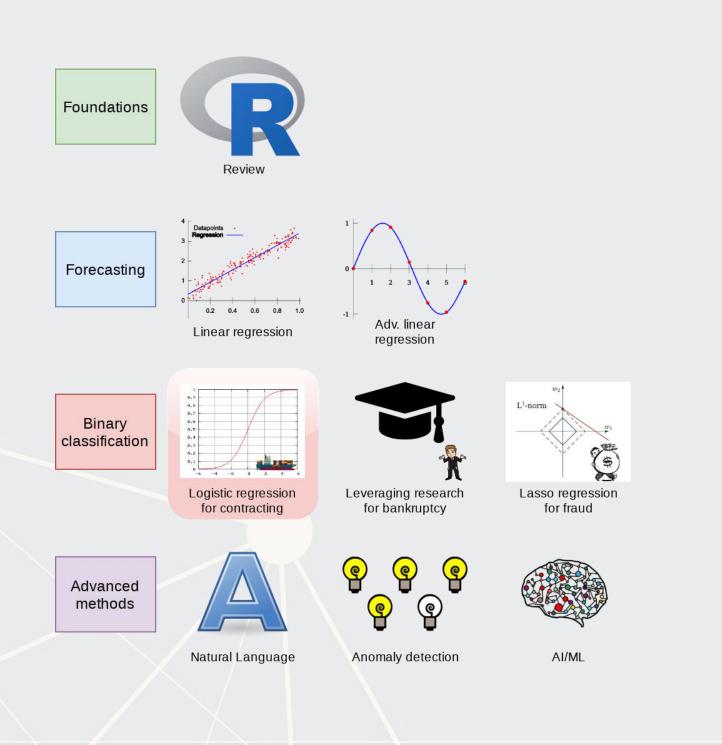
Session 4

Dr. Richard M. Crowley rcrowley@smu.edu.sg http://rmc.link/

Front matter

/

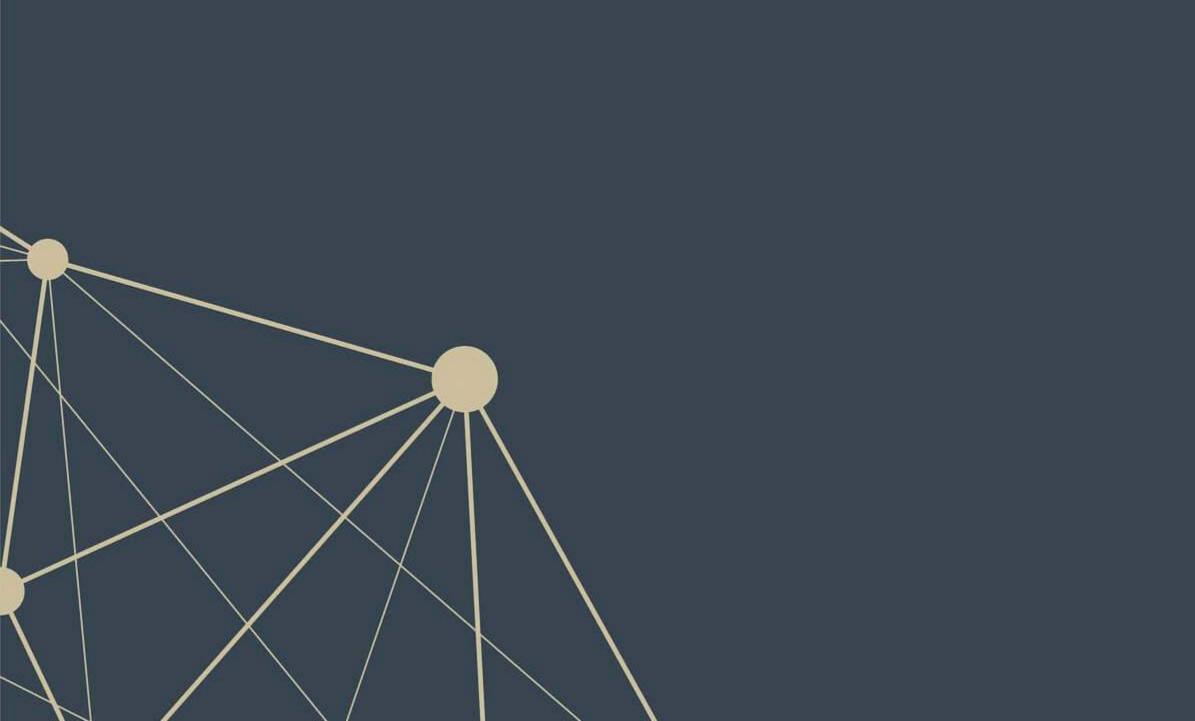
Learning objectives

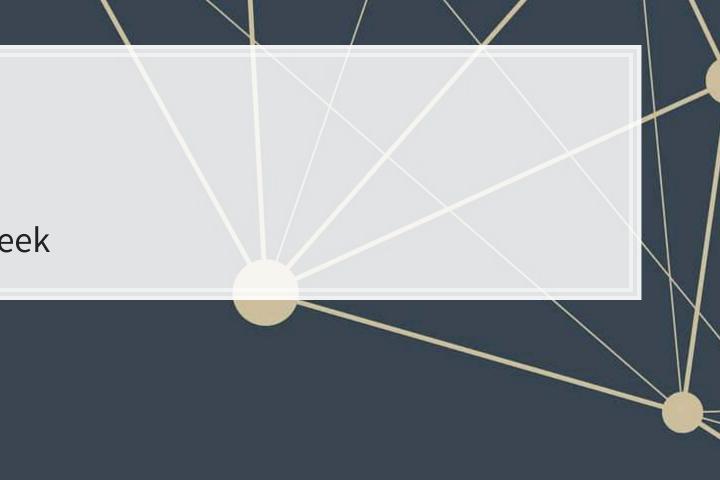


- Theory:
 - Understanding binary problems
- Application:
 - Detecting shipping delays caused by typhoons
- Methodology:
 - Logistic regression
 - Spatial visualization

Datacamp

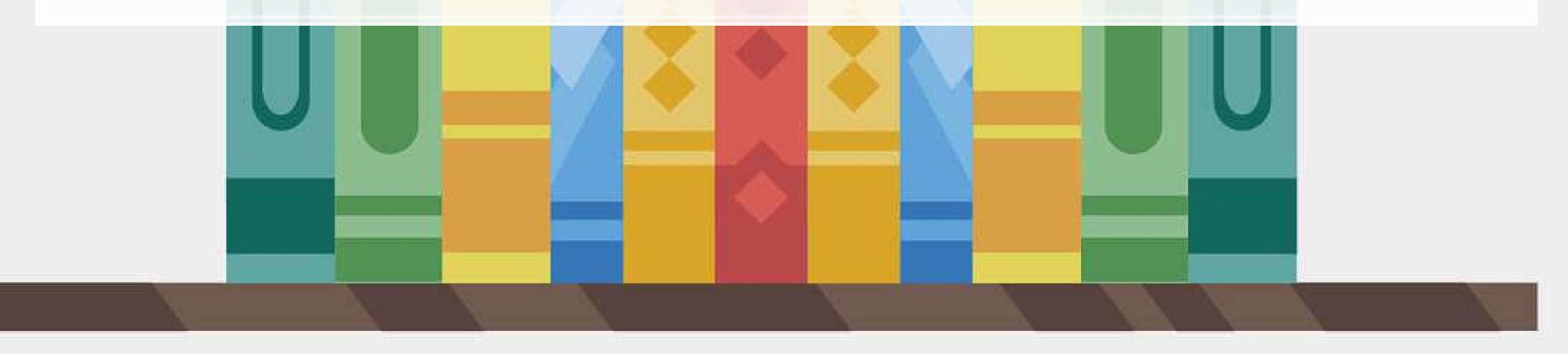
- Explore on your own
- No specific required class this week

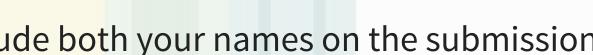




Assignment 2

- Looking at Singaporean retail firms
 - Mostly focused on time and cyclicality
 - Some visualization
 - A little of what we cover today
- Optional (but encouraged):
 - You can work in pairs on this assignment
 - If you choose to do this, please only make 1 submission and include both your names on the submission



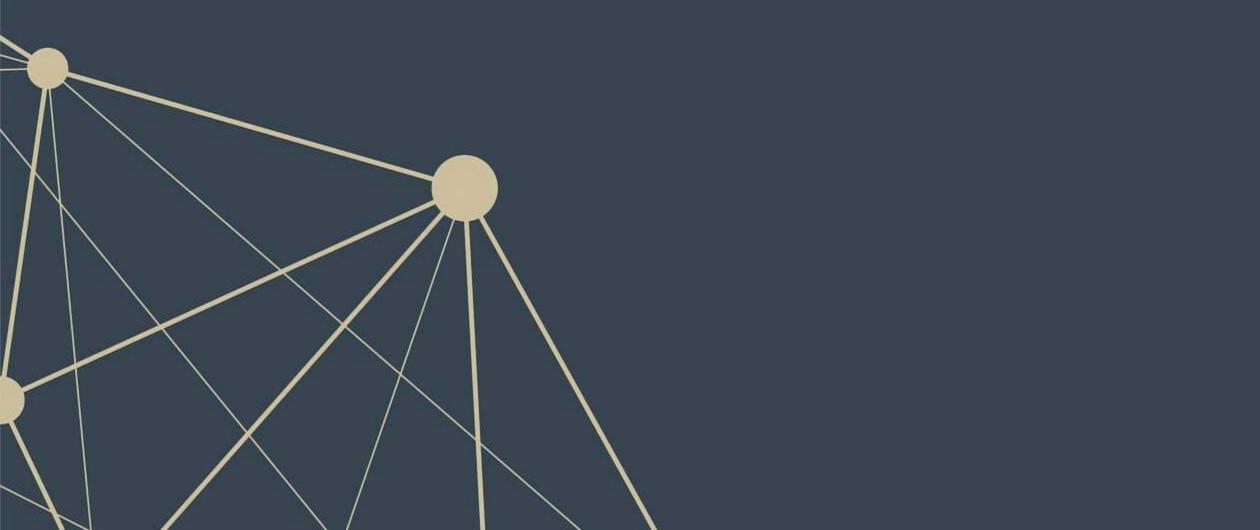


Binary outcomes

/

What are binary outcomes?

- Thus far we have talked about events with continuous outcomes
 - Revenue: Some positive number
 - Earnings: Some number
 - ROA: Some percentage
- Binary outcomes only have two possible outcomes
 - Did something happen, *yes* or *no*?
 - Is a statement *true* or *false*?



Accounting examples of binary outcomes

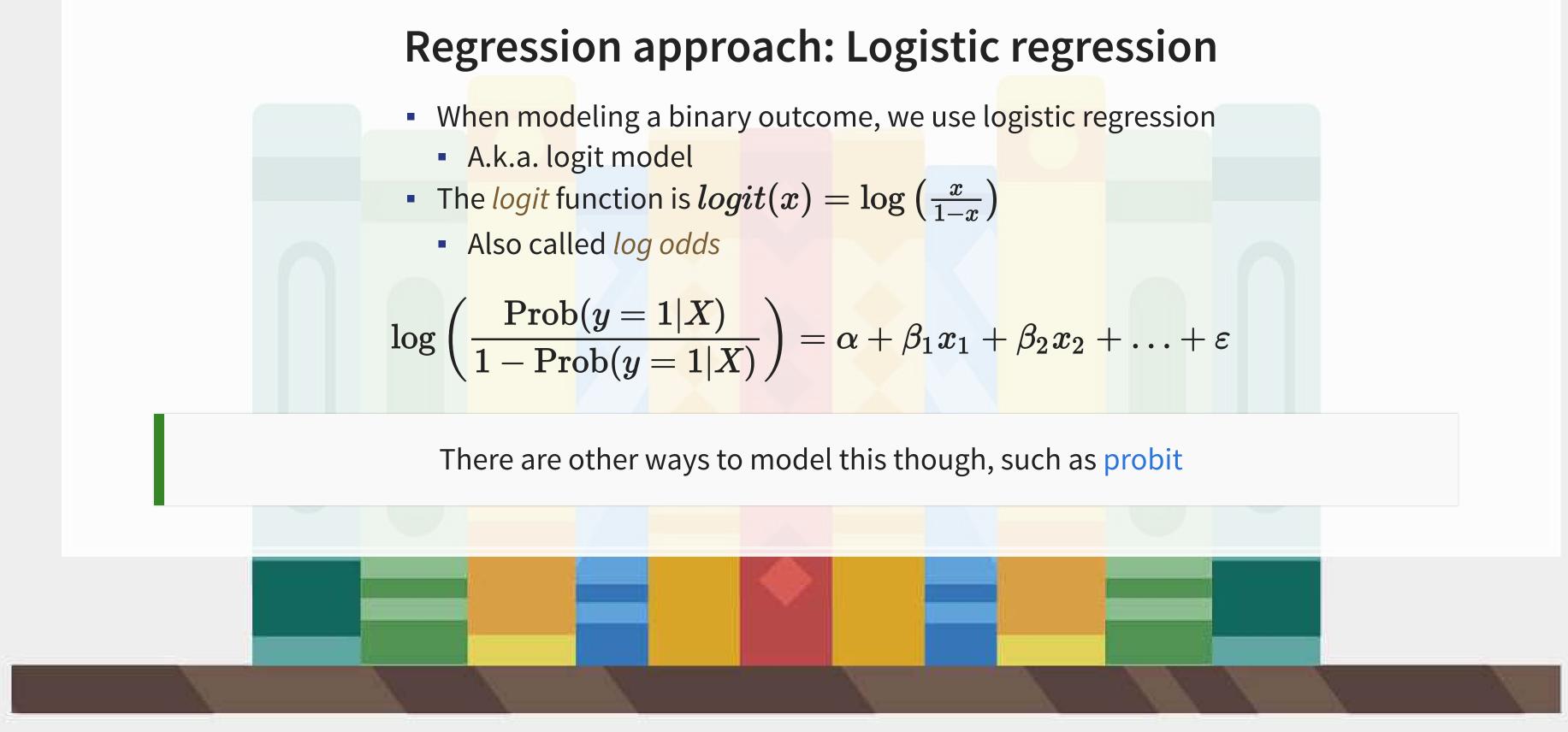
- Financial accounting:
 - Will the company's earnings meet analysts' expectations?
 - Will the company have positive earnings?
- Managerial accounting:
 - Will we have ____ problem with our supply chain?
 - Will our customer go bankrupt?
- Audit:
 - Is the company committing fraud?
- Taxation:
 - Is the company too aggressive in their tax positions?

We can assign a probability to any of these

Brainstorming...

What types of business problems or outcomes are binary?

$$\log\left(rac{\mathrm{Prob}(y=1|X)}{1-\mathrm{Prob}(y=1|X)}
ight)=lpha+eta_1x_1+eta_1x_1+eta_1x_2$$

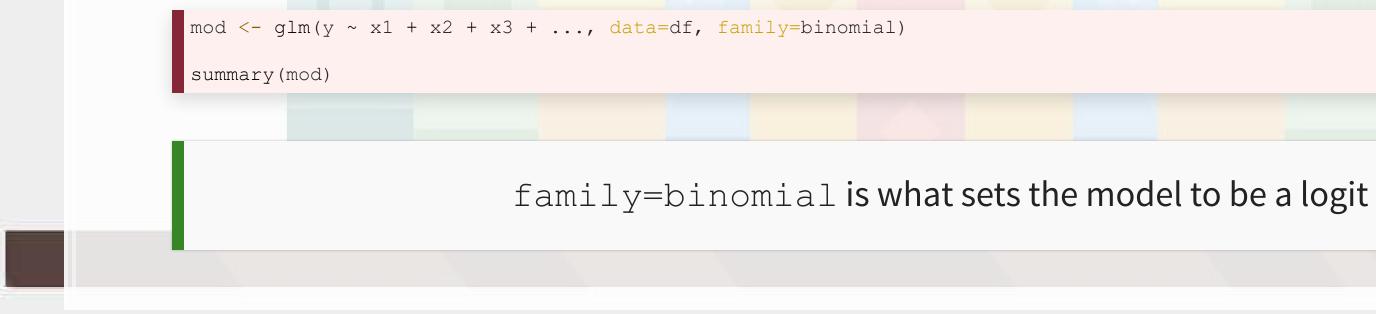


Implementation: Logistic regression

The logistic model is related to our previous linear models as such:

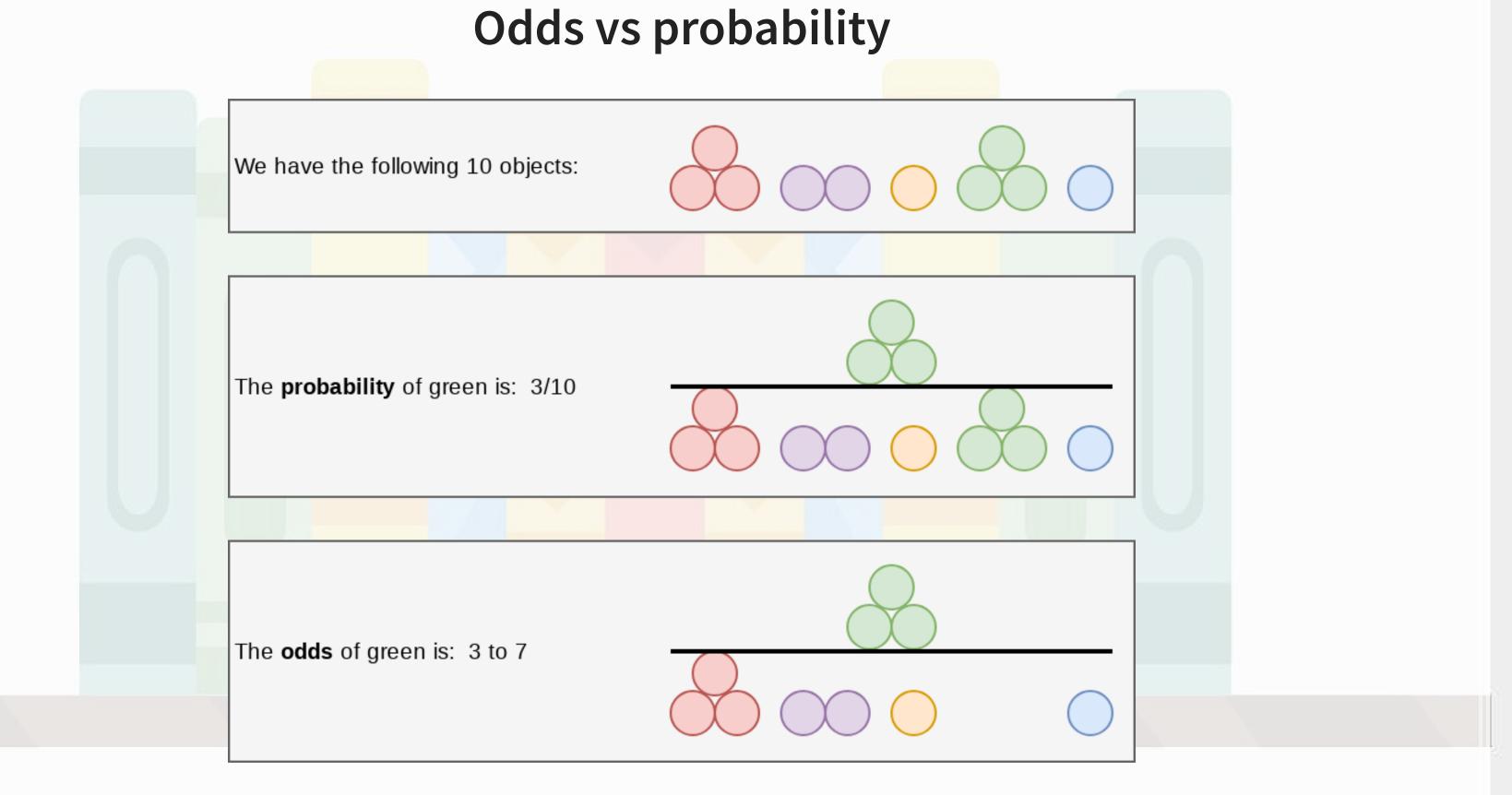
Both linear and logit models are under the class of General Linear Models (GLMs)

- To regress a GLM, we use the glm () command.
 - In fact, the lm() command we have been using is actually glm() when you specify the option family=gaussian
- To run a logit regression:



Interpreting logit values

- The sign of the coefficients means the same as before
 - +: increases the likelihood of y occurring
 - -: decreases the likelihood of y occurring
- The level of a coefficient is different
 - The relationship isn't linear between x_i and y now
 - Instead, coefficients are in log odds
 - Thus, e^{β_i} gives you the odds, o
- You can interpret the odds for a coefficient
 - Increased by [o-1]%
- You need to sum all relevant log odds before converting to a probability!



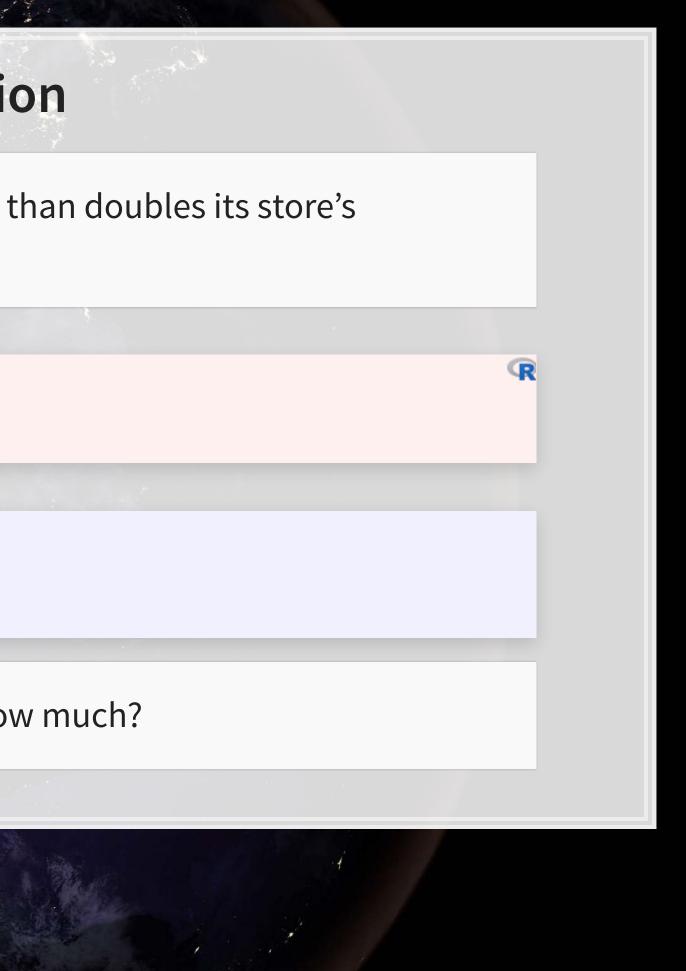
Example logit regression

Do holidays increase the likelihood that a department more than doubles its store's average weekly sales across departments?

Create the binary variable from Walmart sales data
df\$double <- ifelse(df\$Weekly_Sales > df\$store_avg*2,1,0)
fit <- glm(double ~ IsHoliday, data=df, family=binomial)
tidy(fit)</pre>

##	#	A tibble: 2 x	5			
##		term	estimate	std.error	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	-3.45	0.00924	-373.	0
##	2	IsHolidayTRUE	0.539	0.0278	19.4	1.09e-83

Holidays increase the odds... but by how much?



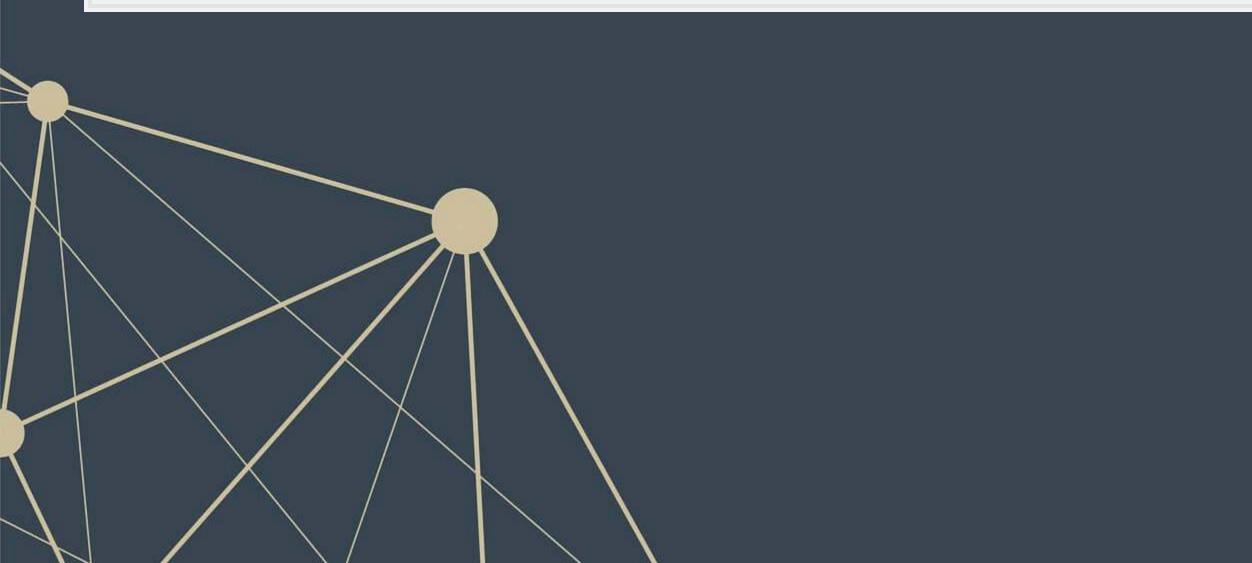
Logistic regression interpretation

A simple interpretation

• The model we just saw the following model:

 $logodds(Double \ sales) = -3.45 + 0.54 IsHoliday$

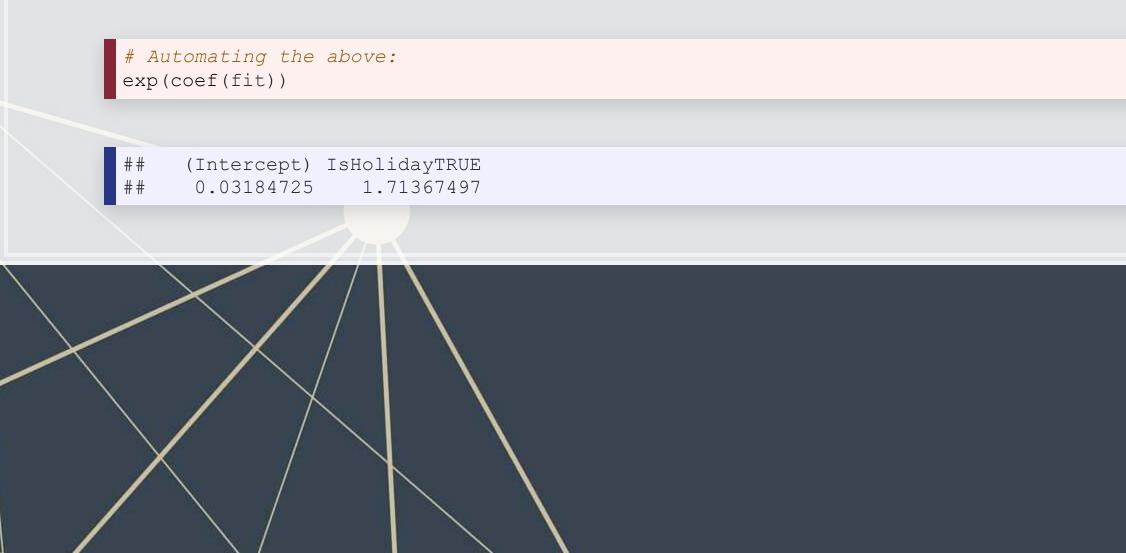
• There are two ways to interpret this: 1. Coefficient by coefficient 2. In total



Interpretting specific coefficients

 $logodds(Double \ sales) = -3.45 + 0.54IsHoliday$

- Interpreting specific coefficients is easiest done manually
- Odds for the *IsHoliday* coefficient are exp(0.54) = 1.72
 - This means that having a holiday modifies the baseline (i.e., non-Holiday) odds by 1.72 to 1
 - Where 1 to 1 is considered no change
 - Baseline is 0.032 to 1



R

Interpretting in total

- It is important to note that log odds are additive
 - So, calculate a new log odd by plugging in values for variables and adding it all up
 - Holiday: -3.45 + 0.54 * 1 = -2.89
 - No holiday: -3.45 + 0.54 * 0 = -3.45
- Then calculate odds and log odds like before
 - With holiday: exp(-2.89) = 0.056
 - Without holiday: exp(-3.45) = 0.032
 - Ratio of holiday to without: 1.72!
 - This is the individual log odds for holiday

We need to specify values to calculate log odds in total

Converting to probabilities

• We can calculate a probability at any given point using the log odds

$$Probability = rac{odds}{odds+1}$$

- Probability of double sales...
 - With a holiday: 0.056 / (0.056 + 1) = 0.052
 - Without a holiday: 0.032 / (0.032 + 1) = 0.031

These are easier to interpret, but require specifying values for each model input to calculate

Using predict() to simplify it

- predict() can calculate log odds and probabilities for us with minimal effort
 - Specify type="response" to get probabilities

test_data <- as.data.frame(IsHoliday = c(0,1))</pre> predict(model, test_data) # log odds

[1] -3.44 -2.90

predict(model, test_data, type="response") #probabilities

[1] 0.03106848 0.05215356

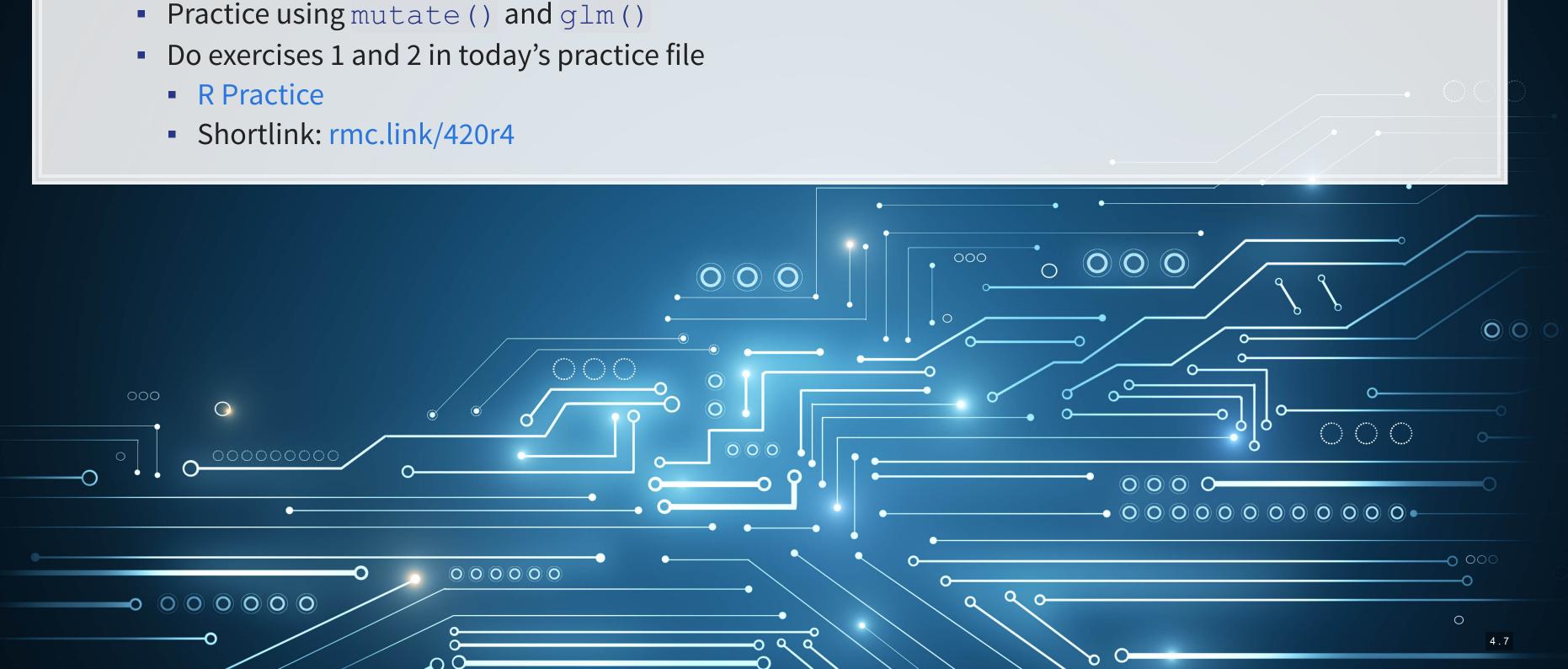
- Here, we see the baseline probability is 3.1%
- The probability of doubling sales on a holiday is higher, at 5.2%

R

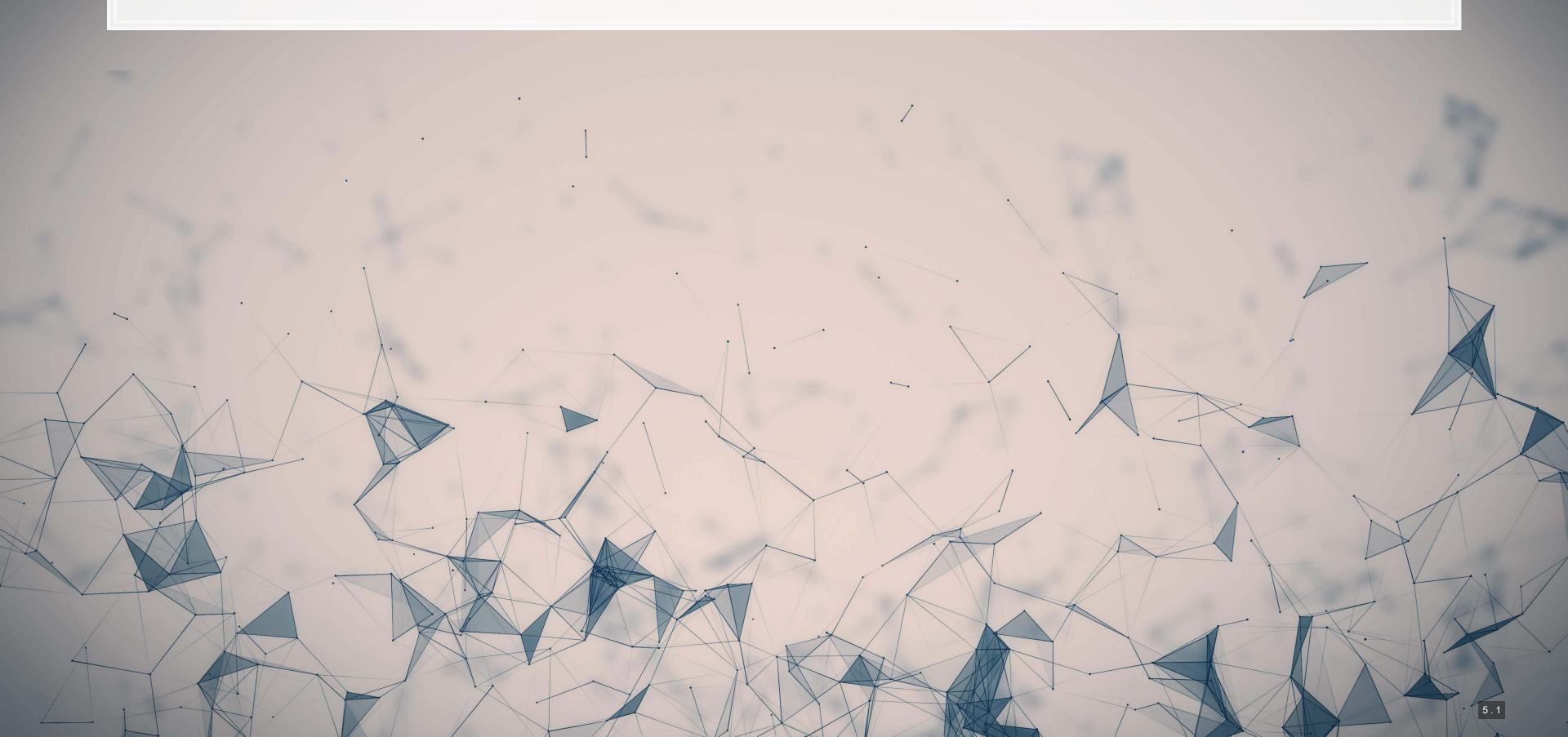
R

R practice: Logit

- A continuation of last week's practices answering:
 - Is Walmart more likely to see a year over year decrease in quarterly revenue during a recession?
- Practice using mutate() and glm()

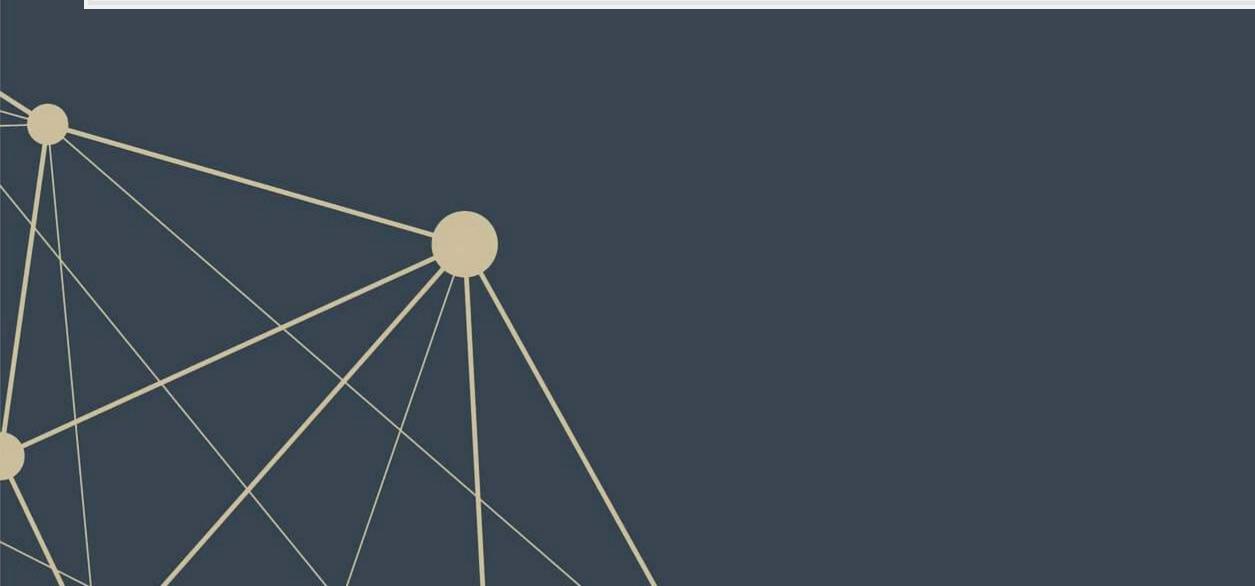


Logistic regression interpretation redux



What about more complex models?

- Continuous inputs in the model
 - What values do we pick to determine probabilities?
- Multiple inputs?
 - We can scale up what we did, but things get messy
 - Mathematically, the inputs get interacted within the inner workings of logit...
 - So the impact of each input depends on the values of the others!

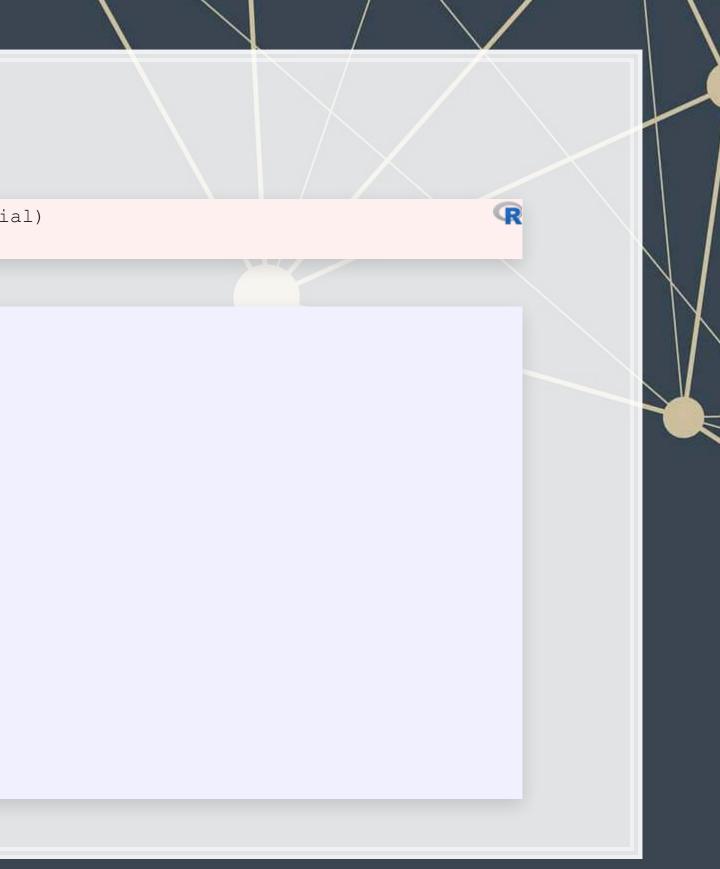


e inner workings of logit... es of the others!

Consider this model

model2 <- glm(double ~ IsHoliday + Temperature + Fuel_Price, data=df, family=binomial)
summary(model2)</pre>

```
##
## Call:
## glm(formula = double ~ IsHoliday + Temperature + Fuel Price,
##
      family = binomial, data = df)
##
## Deviance Residuals:
##
      Min 1Q Median 3Q Max
## -0.4113 -0.2738 -0.2464 -0.2213 2.8562
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.7764917 0.0673246 -26.39 <2e-16 ***
## IsHolidayTRUE 0.3704298 0.0284395 13.03 <2e-16 ***
## Temperature -0.0108268 0.0004698 -23.04 <2e-16 ***
## Fuel Price -0.3091950 0.0196234 -15.76 <2e-16 ***
##
  ___
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 120370 on 421569 degrees of freedom
##
```



Odds and probabilities

Odds
exp(coef(model2))

##(Intercept) IsHolidayTRUETemperatureFuel_Price##0.16923081.44835700.98923160.7340376

Typical September days

hday_sep <- mean(predict(model2, filter(df, IsHoliday, month==9), type="response"))
no_hday_sep <- mean(predict(model2, filter(df, !IsHoliday, month==9), type="response"))
Typical December days</pre>

hday_dec <- mean(predict(model2, filter(df, IsHoliday, month==12), type="response"))
no hday dec <- mean(predict(model2, filter(df, !IsHoliday, month==12), type="response"))</pre>

html_df(data.frame(Month=c(9,9,12,12),

IsHoliday=c(FALSE,TRUE,FALSE,TRUE),

Probability=c(no_hday_sep, hday_sep, no_hday_dec, hday_dec)))

Month	IsHoliday	Probability		
9	FALSE	0.0266789		
9	TRUE	0.0374761		
12	FALSE	0.0398377		
12	TRUE	0.0586483		

A bit easier: Marginal effects

Marginal effects tell us the *average* change in our output for a change of 1 to an input

- The above definition is very similar to how we interpret linear regression coefficients
 - The only difference is the word *average* the effect changes a bit depending on the input data
- Using margins, we can calculate marginal effects
- There are a few types that we could calculate:
 - An Average Marginal Effect tells us what the average effect of an input is across all values in our data
 - This is the default method in the package
 - We can also specify a specific value to calculate marginal effects at (like with our probabilities last slides)

Marginal effects in action

```
Calculate AME marginal effects
library(margins)
 <- margins (model2)
```

Temperature Fuel_Price IsHoliday -0.0003377 -0.009644 0.01334

- A holiday increase the probability of doubling by a flat 1.33%
 - Not too bad when you consider that the probability of doubling is 3.23%
- If the temperature goes up by 1°F (0.55°C), the probability of doubling changes by -0.03%
- If the fuel price increases by 1 USD for 1 gallon of gas, the probability of doubling changes by -0.96%

R

margins niceties

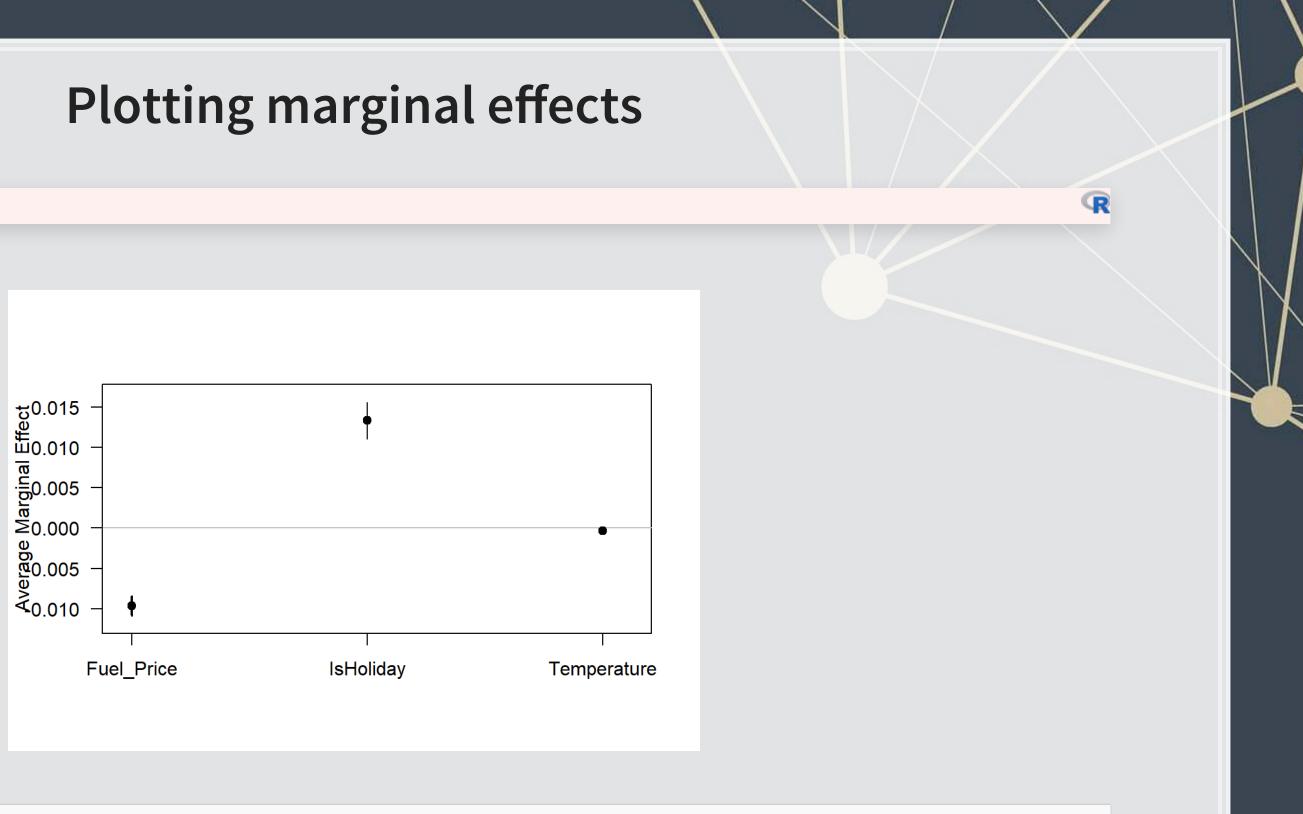
• We can get some extra information about our marginal effects through summary ():

summary(m) %>% html_df()

factor	AME	SE	Z	р	lower	upper
Fuel_Price	-0.0096438	0.0006163	-15.64800	0	-0.0108517	-0.0084359
IsHoliday	0.0133450	0.0011754	11.35372	0	0.0110413	0.0156487
Temperature	-0.0003377	0.0000149	-22.71255	0	-0.0003668	-0.0003085

- Those p-values work just like with our linear models
- We also get a confidence interval
 - Which we can plot!

R



Note: The which... part is absolutely necessary at the moment due to a bug in the package

Marginal effects at a specified value

factor	IsHoliday	AME	SE	Z	р	lower	upper
Fuel_Price	FALSE	-0.0093401	0.0005989	-15.59617	0	-0.0105139	-0.0081664
Fuel_Price	TRUE	-0.0131335	0.0008717	-15.06650	0	-0.0148420	-0.0114250
Temperature	FALSE	-0.0003271	0.0000146	-22.46024	0	-0.0003556	-0.0002985
Temperature	TRUE	-0.0004599	0.0000210	-21.92927	0	-0.0005010	-0.0004188

factor	Temperature	AME	SE	Z	р
IsHoliday	0	0.0234484	0.0020168	11.62643	0
IsHoliday	25	0.0184956	0.0015949	11.59704	0
IsHoliday	50	0.0144798	0.0012679	11.42060	0
IsHoliday	75	0.0112693	0.0010161	11.09035	0
IsHoliday	100	0.0087305	0.0008213	10.62977	0

R

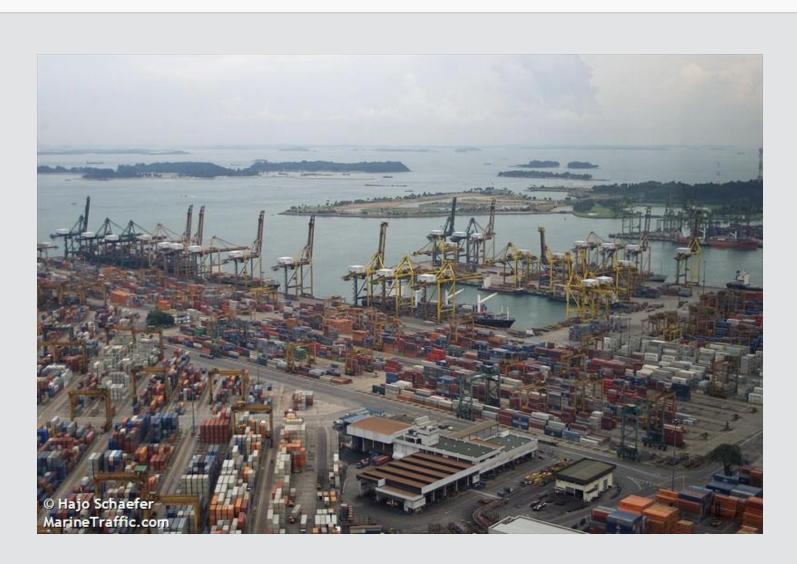
R

lower	upper
0.0194955	0.0274012
0.0153697	0.0216214
0.0119948	0.0169648
0.0092777	0.0132609
0.0071207	0.0103402

Today's Application: Shipping delays

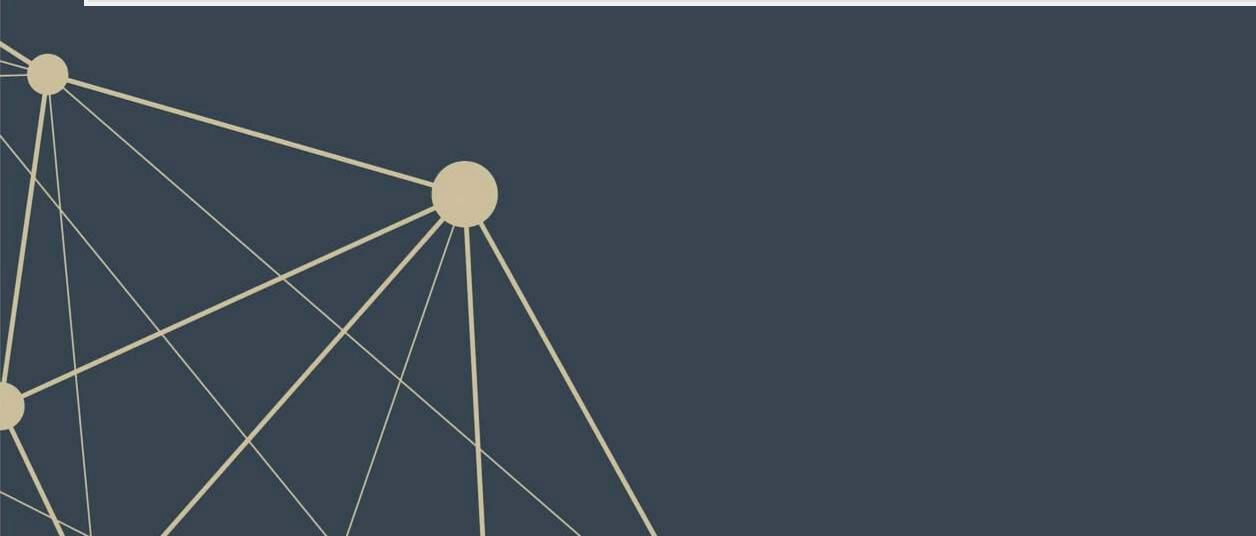
The question

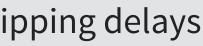
Can we leverage global weather data to predict shipping delays?



Formalization

- 1. Question
 - How can predict naval shipping delays?
- 2. Hypothesis (just the alternative ones)
 - 1. Global weather data helps to predict shipping delays
- 3. Prediction
 - Use Logistic regression and z-tests for coefficients
 - No hold out sample this week too little data



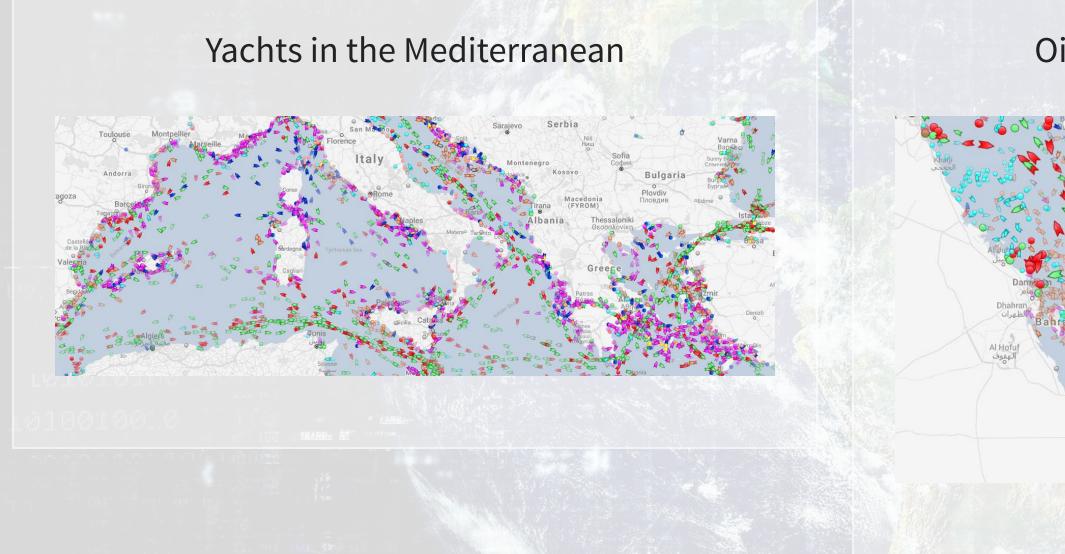


A bit about shipping data

- WRDS doesn't have shipping data
- There are, however, vendors for shipping data, such as:

- They pretty much have any data you could need:
 - Over 650,000 ships tracked using ground and satellite based AIS
 - AIS: Automatic Identification System
 - Live mapping
 - Weather data
 - Fleet tracking
 - Port congestion
 - Inmarsat support for ship operators

0011000 0010 . een What can we see from naval data? Oil tankers in the Persian gulf

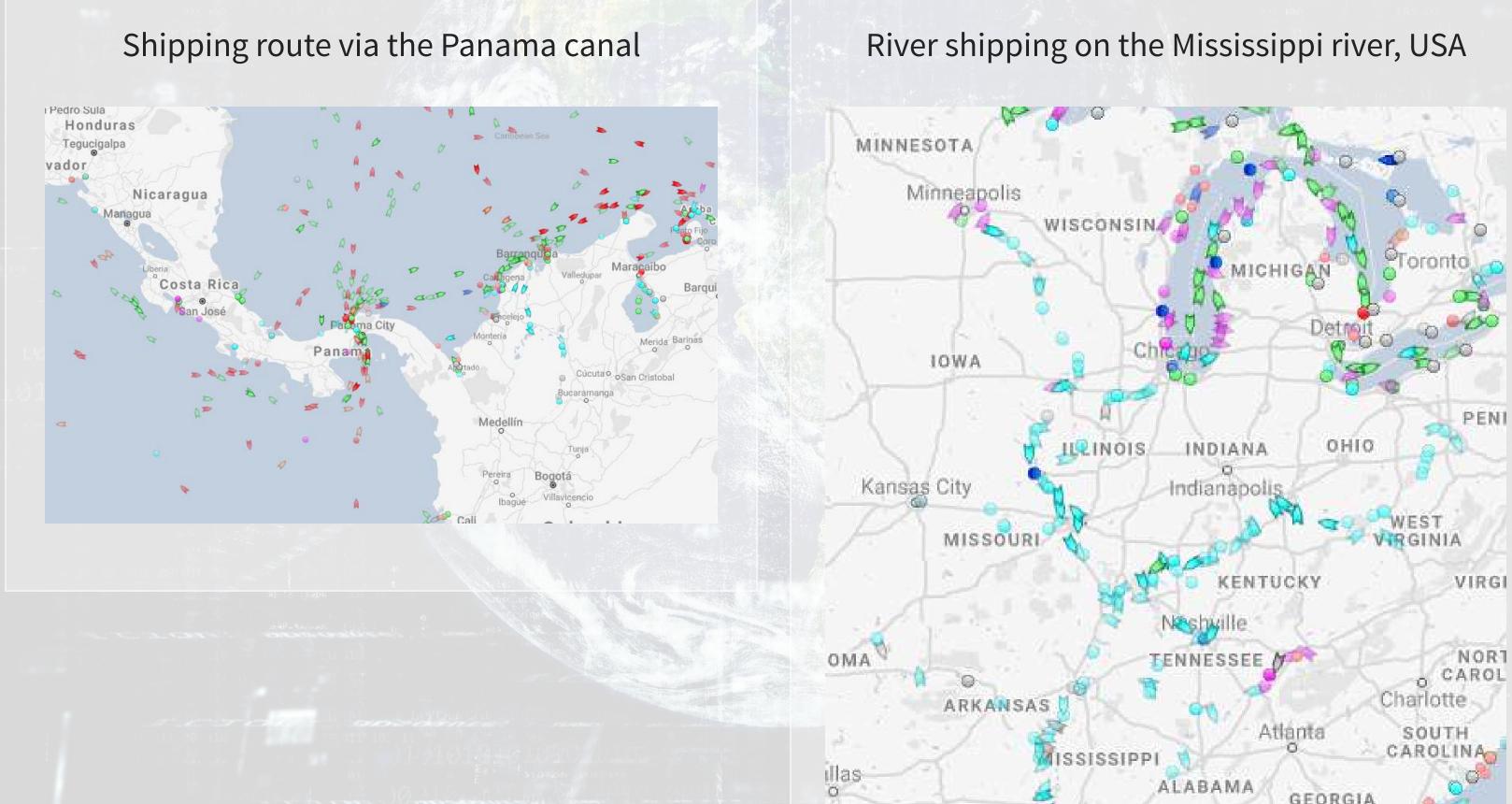


1000

生活生活

6.5

What can we see from naval data?



1000

生活生活

0011000

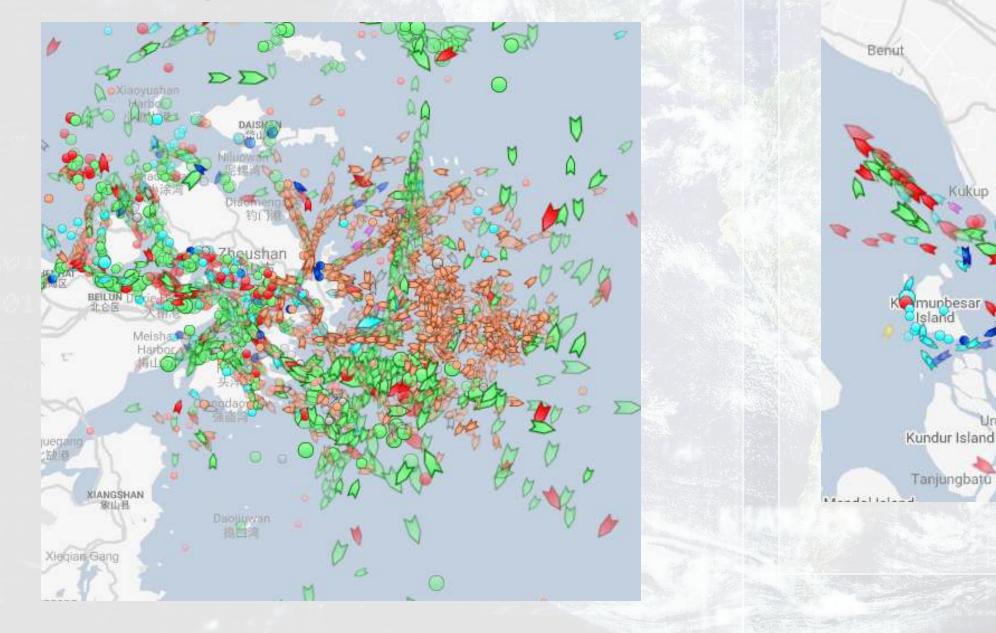
0010 . Den de la company de

What can we see from naval data?

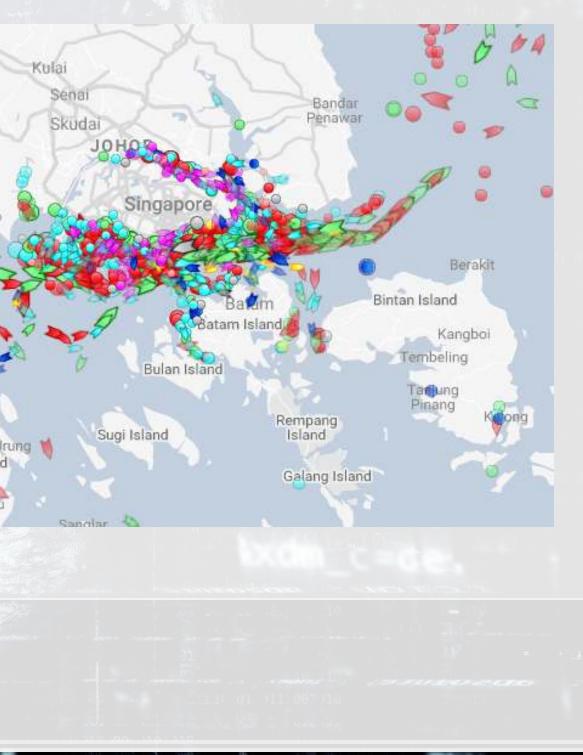
Busiest ports by containers and tons (Shanghai & Ningbo-Zhoushan, China)

1000

生活生成



Busiest port for transshipment (Singapore)



0011000

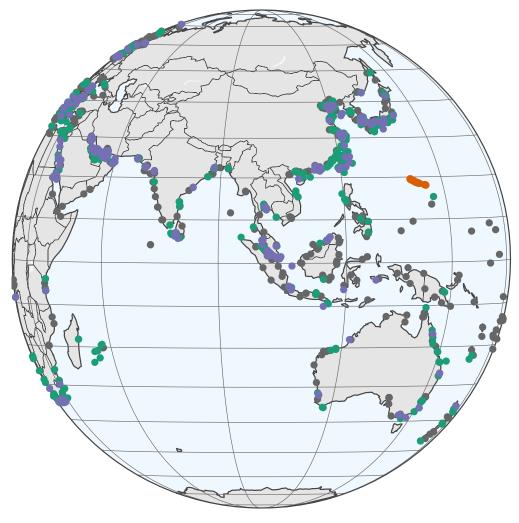
1001(1000(

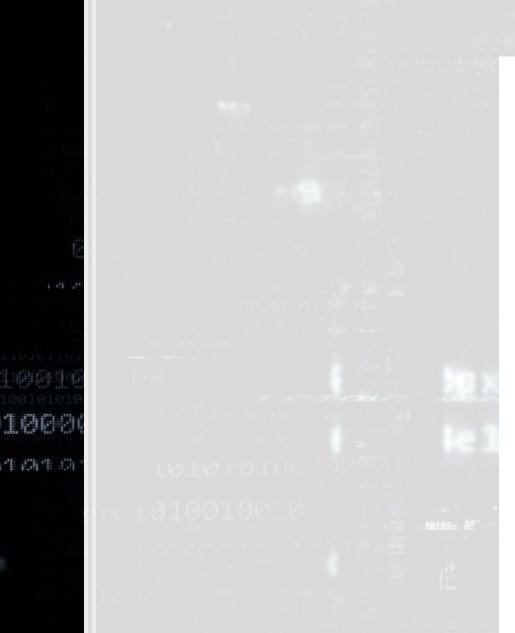
(rtt)

1011 (c.). 2<mark>12 (c.</mark>)

Examining Singaporean owned ships

Singaporean owned container and tanker ships, August 31, 2018





0011000

- Port
- Cargo
- Tanker
- TYPHOON

0010 . Dende

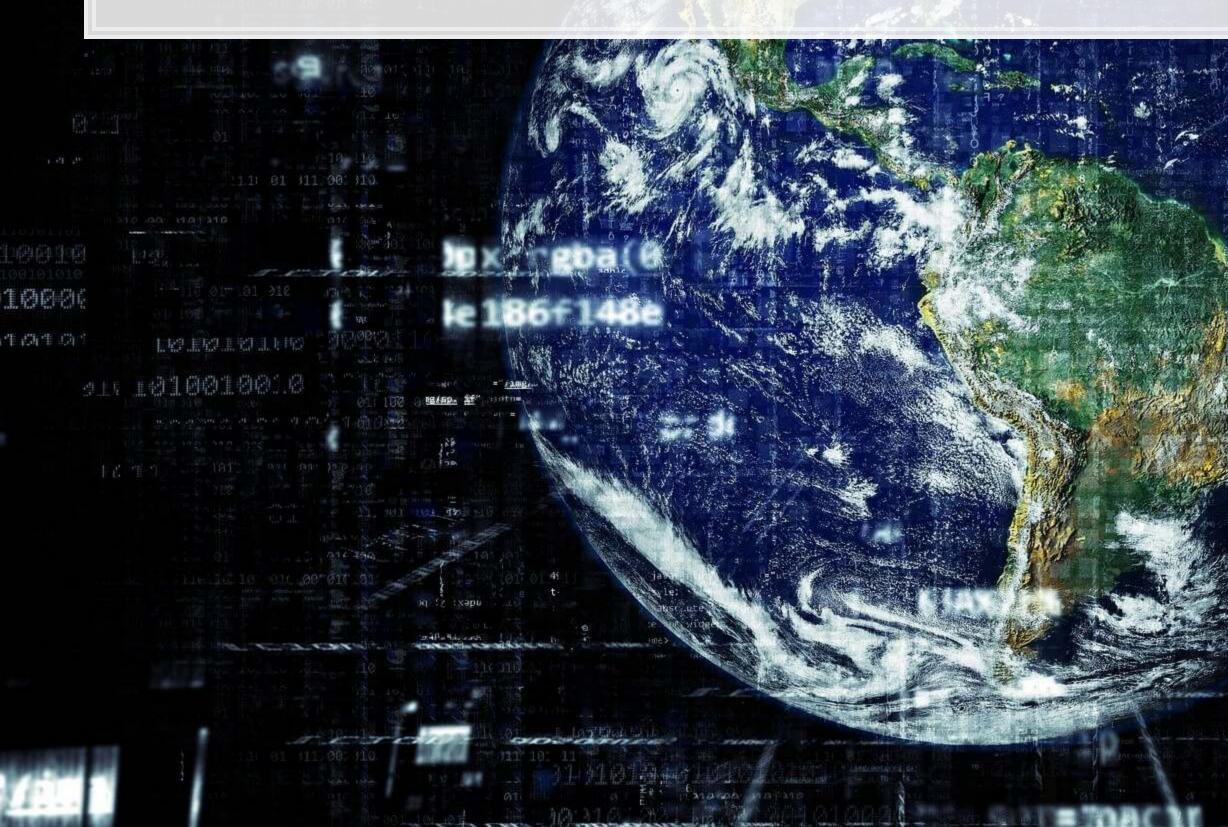
Code for last slide's map

- plot_geo() is from plotly
- add markers() adds points to the map
- layout() adjusts the layout
- Within geo, a list, the following makes the map a globe
 - projection=list(type="orthographic")

mapaglobe graphic")

Singaporean ship movement

Link to ship movement animation



0011000

0010

Den

ae1.8

A P 1gn1

6.10

Code for last slide's map

$\bigcirc \bigcirc \bigcirc \bigcirc$

- world1 contains the map data
- geom sf() plots map data passed to ggplot()
- geom point() plots ship locations as longitude and latitude
- ggplotly() converts the graph to html and animates it
 - Animation follows the frame aesthetic

20

, 000 -0

 \bigcirc

What might matter for shipping? {databackground="../Backgrounds/group.jpg" class="default present-not"}+

What observable events or data might provide insight as to whether a naval shipment will be delayed or not?

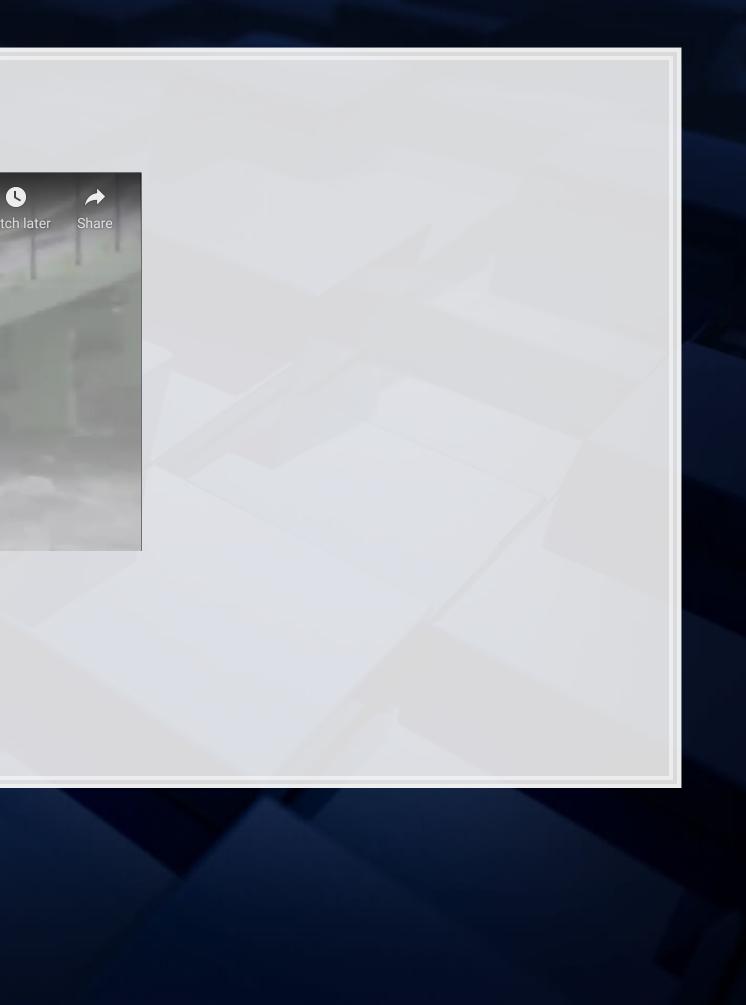
Typhoon Jebi

G Ship crashes into airport bridge as Typhoon Jebi reac...

100.001

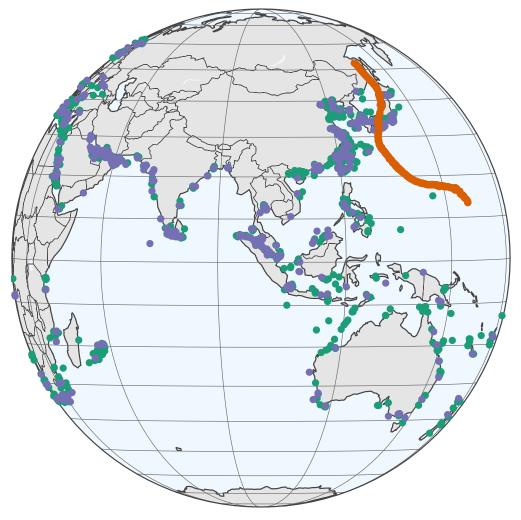
The Guardian

- link
- Nullschool plot



Typhoons in the data

Singaporean container/tanker ships, September 4, 2018, evening



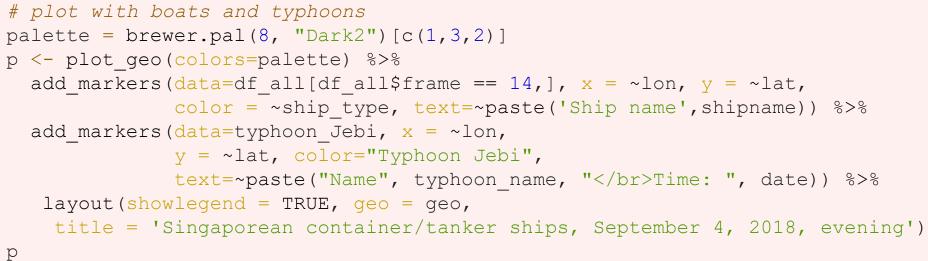
1000

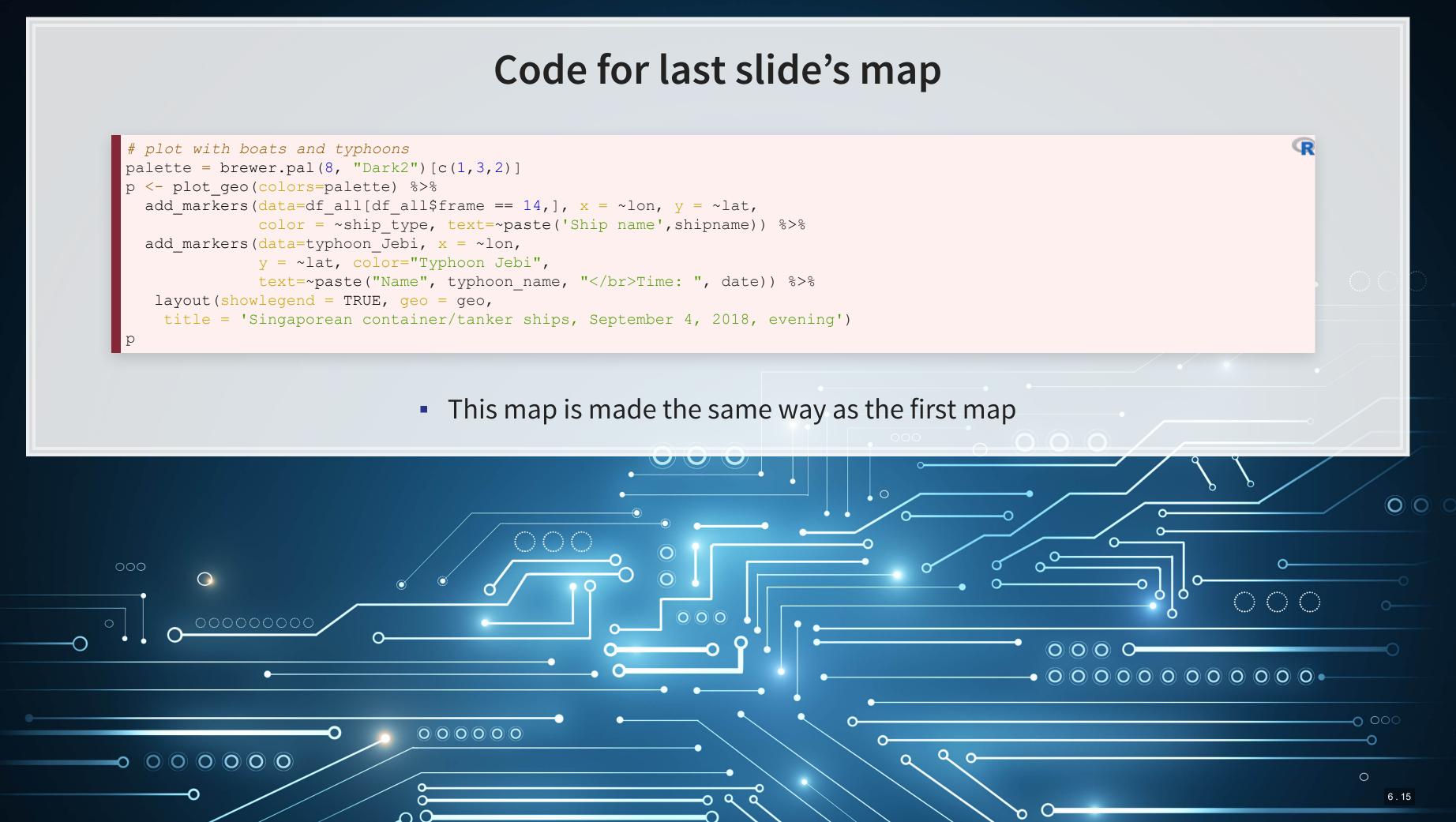
生活生活

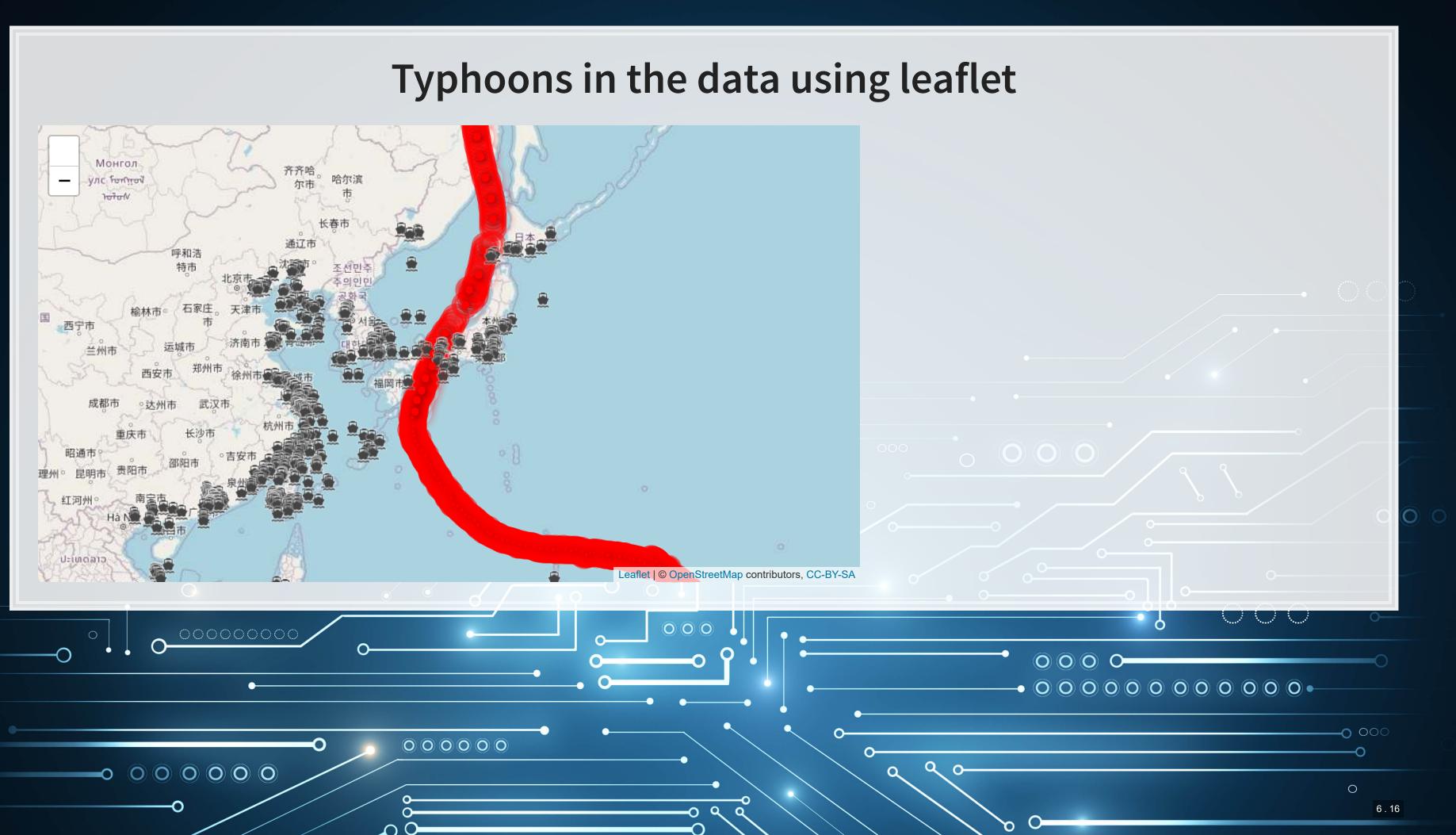
.0011000

0010 loeef

- Cargo
- Tanker
- Typhoon Jebi







Code for last slide's map

```
library(leaflet)
library(leaflet.extras)
```

```
# typhoon icons
icons <- pulseIcons(color='red',
    heartbeat = ifelse(typhoon_Jebi$intensity_vmax > 150/1.852, 0.8,
    ifelse(typhoon$intensity_vmax < 118/1.852, 1.6, 1.2)),
    iconSize=ifelse(typhoon_Jebi$intensity_vmax > 150/1.852, 5,
        ifelse(typhoon_Jebi$intensity_vmax < 118/1.852, 2, 3)))</pre>
```

- pulseIcons():pulsing icons from leaflet.extras
- booteconList(): pulls icons stored on your computer
 - leaflet():start the map; addTiles() pulls from OpenStreetMap
 - setView(): sets the frame for the map
 - addPulseMarkers(): adds pulsing markers
- addCircleMarkers():adds circular markers

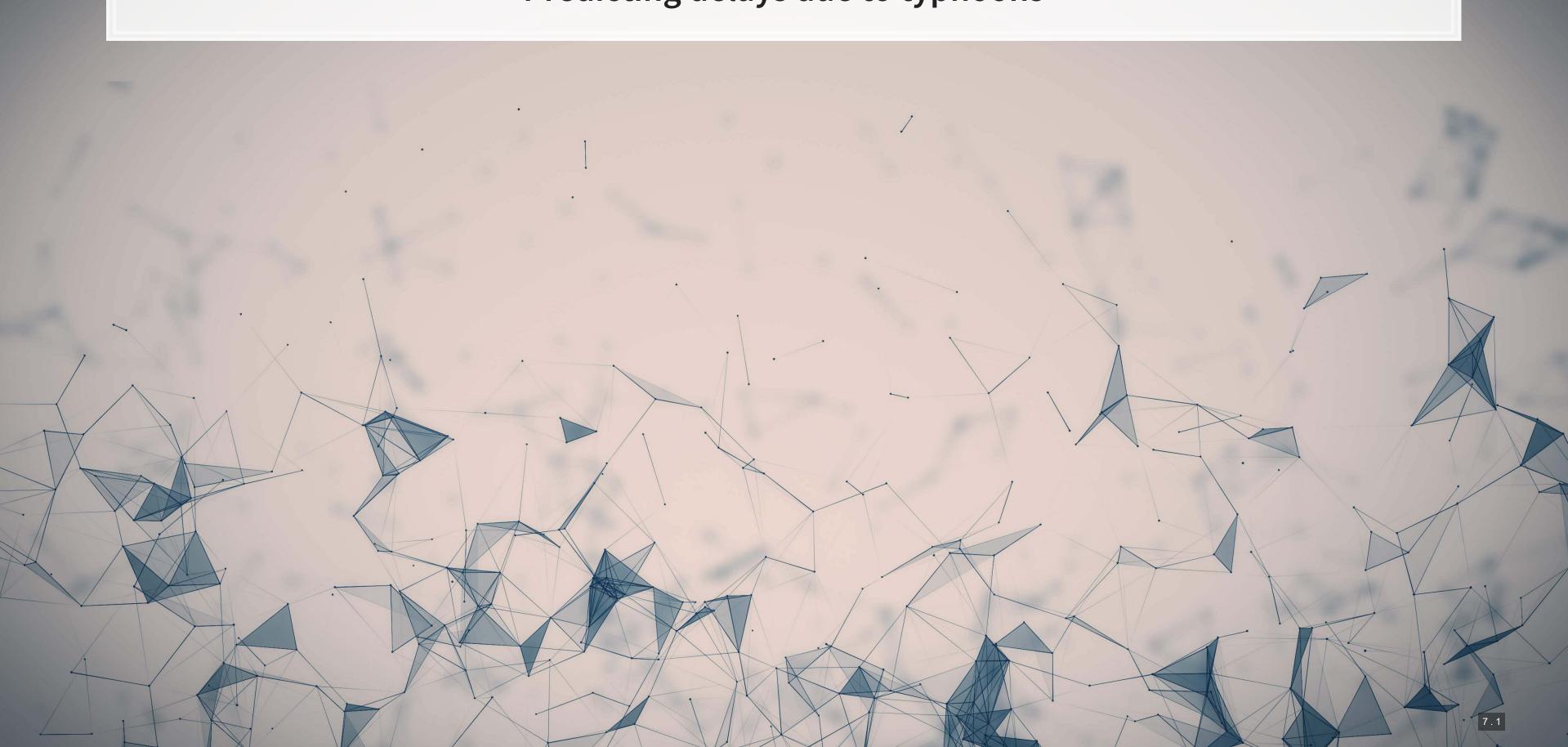
rom OpenStreetMap

6.17

R Practice on mapping

- Practice mapping typhoon data
 - I map using plotly
 - I map using leaflet
- Practice using plotly and leaflet
 - No practice using ggplot2 as sf is missing on DataCamp light
 - And sf can be tough to install for anyone on a Mac
- Do exercises 3 and 4 in today's practice file
 - R Practice

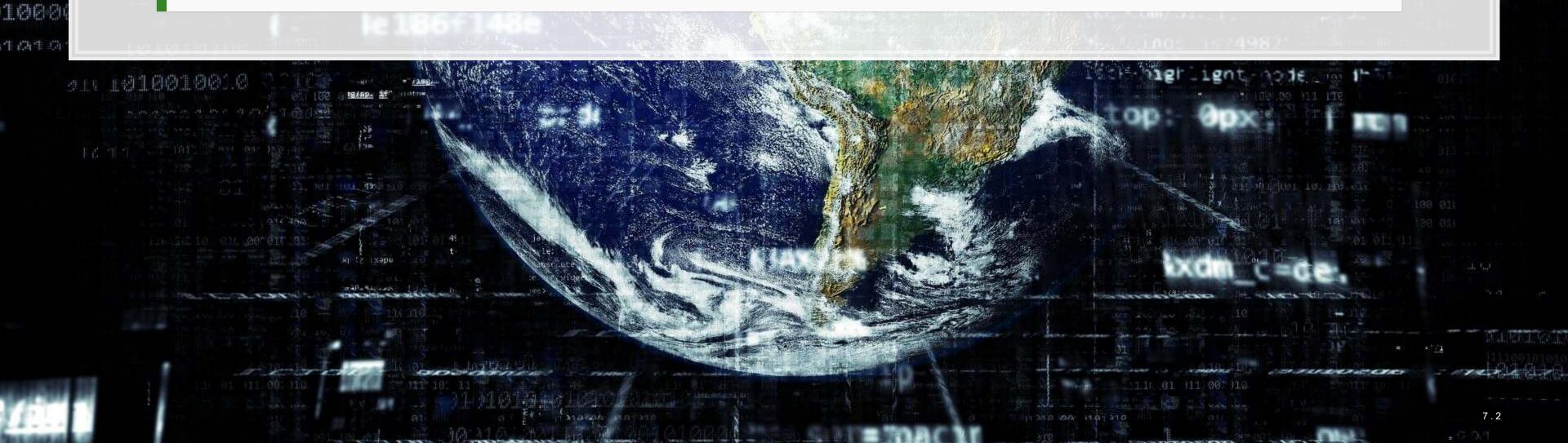
Predicting delays due to typhoons



Data

- If the ship will report a delay of at least 3 hours some time in the next 12-24 hours
- What we have:
 - Ship location
 - Typhoon location
 - Typhoon wind speed

We need to calculate distance between ships and typhoons



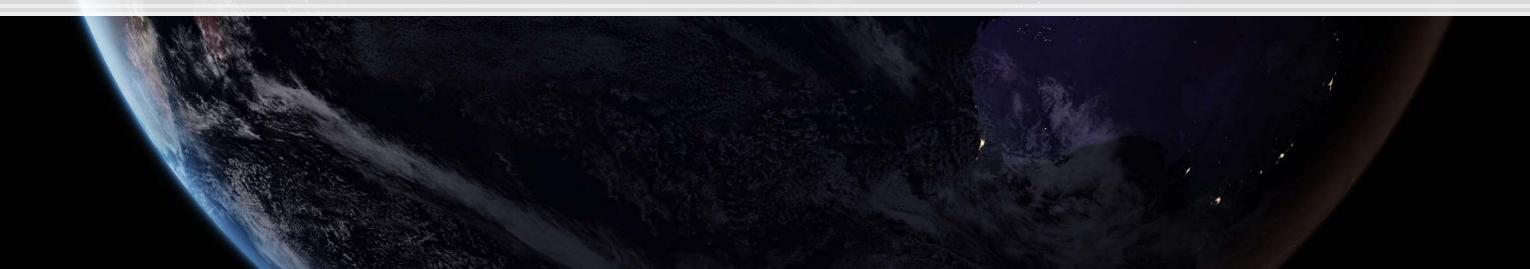
0011000

0010 . Den de la companya de la comp

Distance for geo

- There are a number of formulas for this
 - Haversine for a simple calculation
 - *Vincenty's formulae* for a complex, incredibly accurate calculation
 - Accurate within 0.5mm
- Use distVincentyEllipsoid() from geosphere to get a reasonably quick and accurate calculation
 - Calculates distance between two sets of points, x and y, structured as matrices
 - Matrices must have longitude in the first column and latitude in the second column
 - Provides distance in meters by default

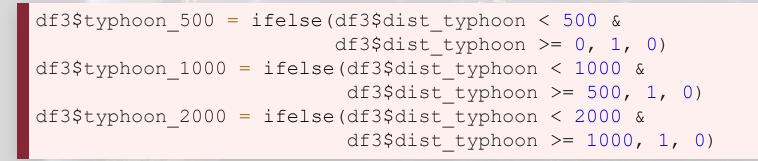
```
library(geosphere)
x <- as.matrix(df3[,c("lon","lat")]) # ship location
y <- as.matrix(df3[,c("ty_lon","ty_lat")]) # typhoon location
df3$dist_typhoon <- distVincentyEllipsoid(x, y) / 1000</pre>
```

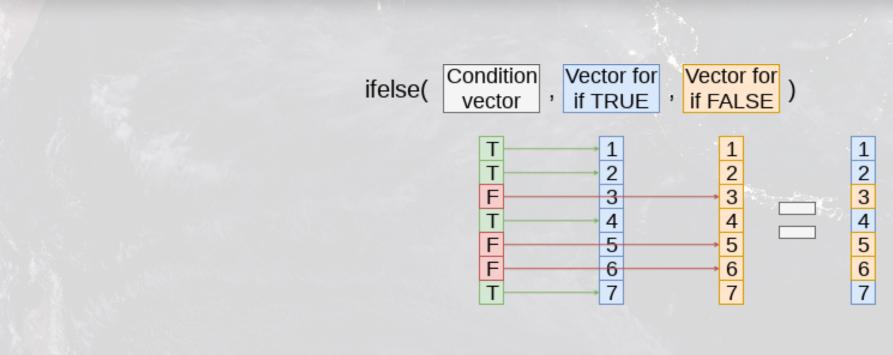


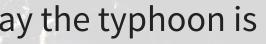
sonably quick and accurate calculation I as matrices e second column

Clean up

• Some indicators to cleanly capture how far away the typhoon is



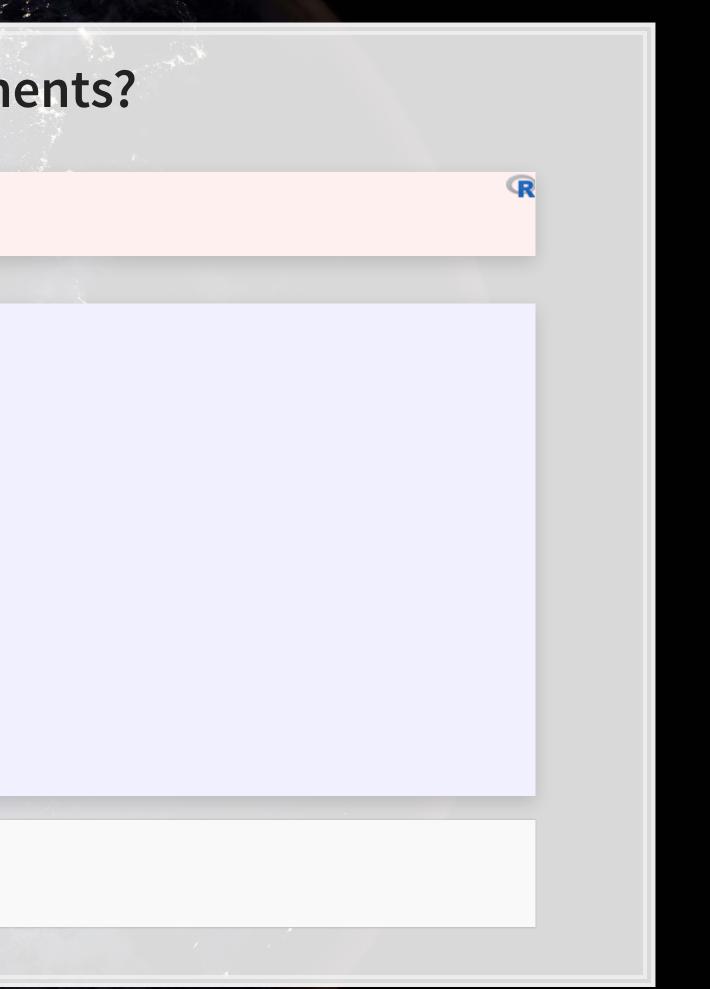


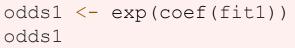


Do typhoons delay shipments?

```
##
## Call:
## glm(formula = delayed ~ typhoon 500 + typhoon 1000 + typhoon 2000,
       family = binomial, data = df3)
##
##
##
  Deviance Residuals:
                1Q Median
##
      Min
                                  ЗQ
                                          Max
  -0.2502 -0.2261 -0.2261 -0.2261 2.7127
##
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.65377
                          0.02934 -124.547
                                              <2e-16 ***
## typhoon 500
               0.14073
                          0.16311
                                       0.863
                                              0.3883
## typhoon 1000 0.20539
                           0.12575
                                      1.633
                                              0.1024
## typhoon 2000 0.16059
                           0.07106
                                       2.260
                                              0.0238 *
##
   ___
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 14329 on 59184 degrees of freedom
```

It appears so!

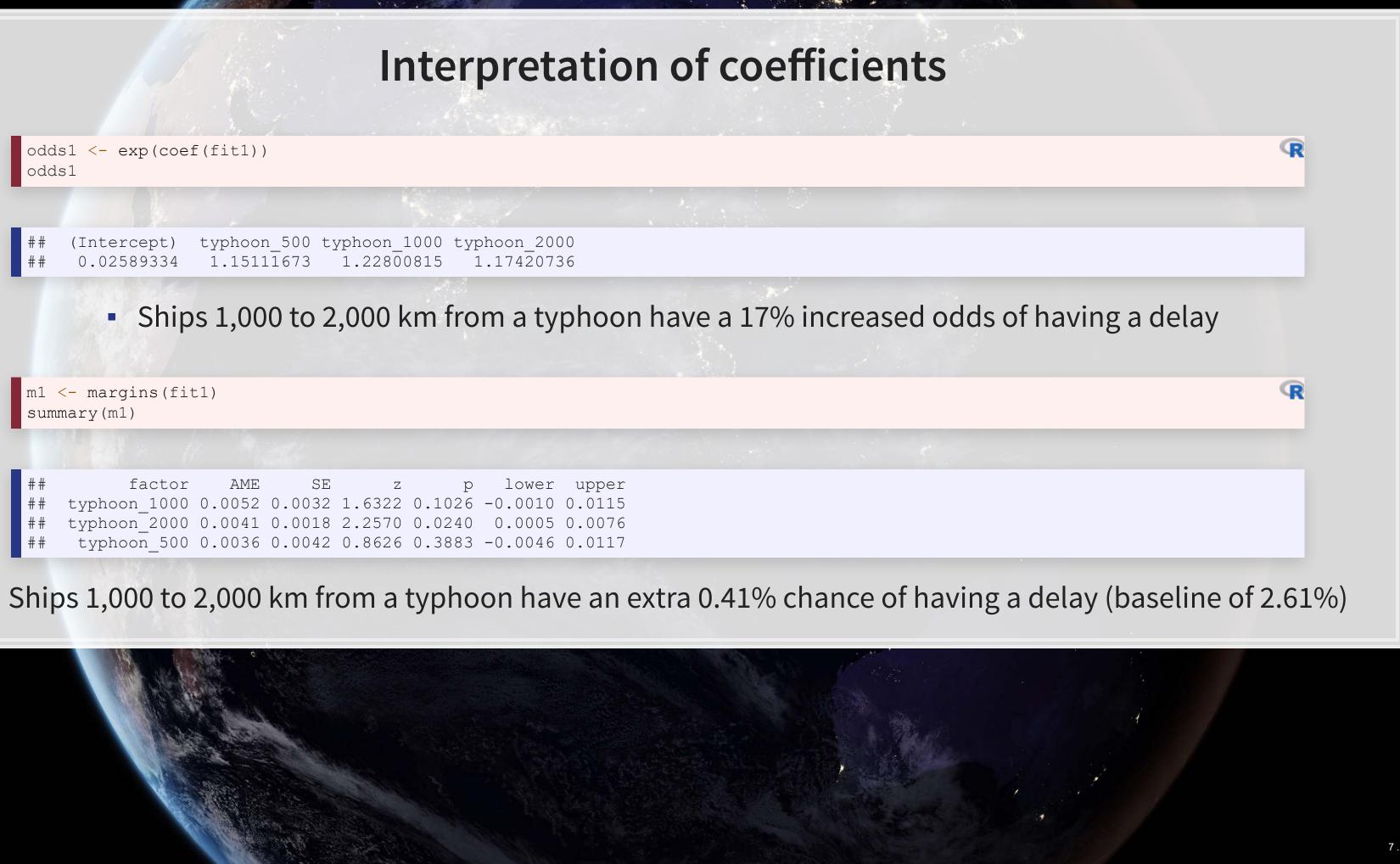




0.02589334

summary(m1)

factor SE AME Ζ р lower upper typhoon_1000 0.0052 0.0032 1.6322 0.1026 -0.0010 0.0115 ## typhoon_2000 0.0041 0.0018 2.2570 0.0240 0.0005 0.0076 ## typhoon 500 0.0036 0.0042 0.8626 0.3883 -0.0046 0.0117



What about typhoon intensity?

- Hong Kong's typhoon classification: Official source 1. 41-62 km/h: Tropical depression
 - 2. 63-87 km/h: Tropical storm
 - 3. 88-117 km/h: Severe tropical storm
 - 4. 118-149 km/h: **Typhoon**
 - 5. 150-184 km/h: Severe typhoon
 - 6. 185+km/h: **Super typhoon**

```
# Cut makes a categorical variable out of a numerical variable using specified bins
df3$Super <- ifelse(df3$intensity vmax * 1.852 > 185, 1, 0)
df3$Moderate <- ifelse(df3$intensity vmax * 1.852 >= 88 &
                         df3$intensity vmax * 1.852 < 185, 1, 0)
df3$Weak <- ifelse(df3$intensity vmax * 1.852 >= 41 &
                   df3$intensity_vmax * 1.852 < 88, 1, 0)
df3$HK_intensity <- cut(df3$intensity_vmax * 1.852 ,c(-1,41, 62, 87, 117, 149, 999)
table(df3$HK intensity)
```

##							
##	(-1,41]	(41,62]	(62,87]	(87,117]	(117,149]	(149,999]	
##	3398	12039	12615	11527	2255	21141	

5	
)	

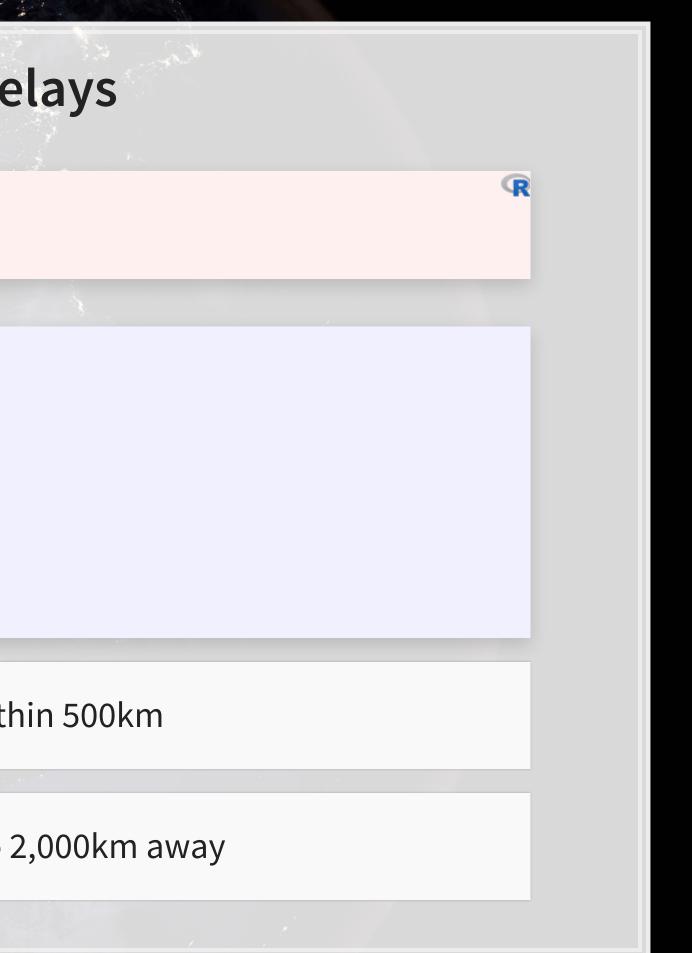
Typhoon intensity and delays

```
fit2 <- glm(delayed ~ (typhoon_500 + typhoon_1000 + typhoon_2000) :
                (Weak + Moderate + Super), data=df3,
                family=binomial)
tidy(fit2)</pre>
```

##	# Z	A tibble: 10 x 5				
##		term	estimate	std.error	statistic	p.value
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	(Intercept)	-3.65	0.0290	-126.	0
##	2	typhoon_500:Weak	-0.00879	0.213	-0.0413	0.967
##	3	typhoon_500:Moderate	0.715	0.251	2.86	0.00430
##	4	typhoon_500:Super	-8.91	123.	-0.0726	0.942
##	5	typhoon_1000:Weak	0.250	0.161	1.55	0.121
##	6	typhoon_1000:Moderate	0.123	0.273	0.451	0.652
##	7	typhoon_1000:Super	-0.0269	0.414	-0.0648	0.948
##	8	typhoon_2000:Weak	0.182	0.101	1.80	0.0723
##	9	typhoon_2000:Moderate	0.0253	0.134	0.189	0.850
##	10	typhoon_2000:Super	0.311	0.136	2.29	0.0217

Moderate storms predict delays when within 500km

Super typhoons predict delays when 1,000 to 2,000km away

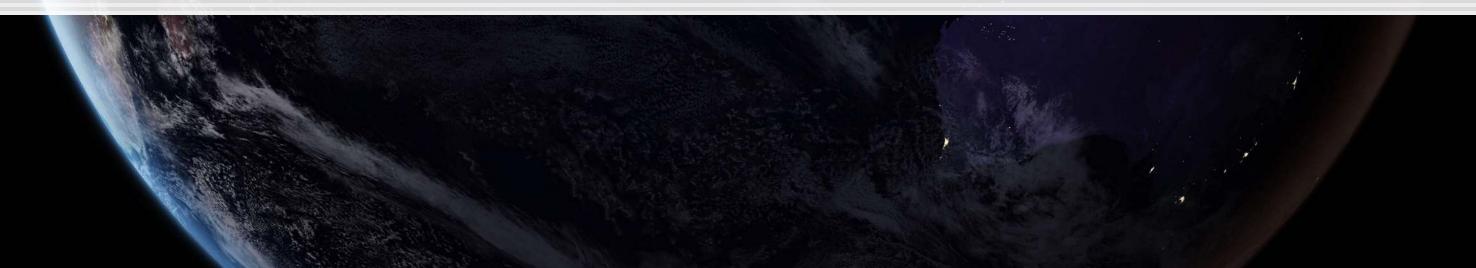


Interpretation of coefficients

m2 <- margins(fit2)</pre> summary(m2) %>% html_df()

factor	AME	SE	z	р
Moderate	0.0007378	0.0006713	1.0990530	0.2717449
Super	-0.0050241	0.0860163	-0.0584087	0.9534231
typhoon_1000	0.0035473	0.0036186	0.9802921	0.3269420
typhoon_2000	0.0039224	0.0017841	2.1985908	0.0279070
typhoon_500	-0.0440484	0.6803640	-0.0647424	0.9483791
Weak	0.0009975	0.0005154	1.9353011	0.0529534

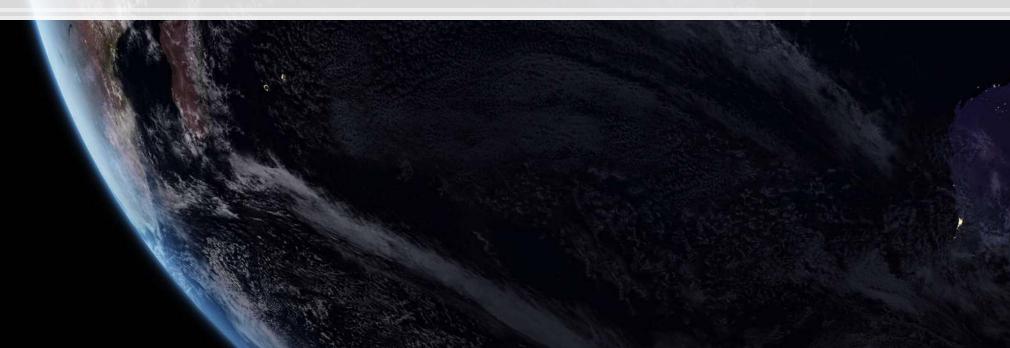
• Delays appear to be driven mostly by 2 factors: 1. A typhoon 1,000 to 2,000 km away from the ship 2. Weak typhoons



lower	upper
-0.0005779	0.0020535
-0.1736129	0.1635647
-0.0035450	0.0106396
0.0004257	0.0074191
-1.3775373	1.2894405
-0.0000127	0.0020077

Interpretating interactions

factor	Weak	AME	SE	z	p J c	lower	upper
typhoon_1000	1	0.0073057	0.0053682	1.360938	0.1735332	-0.0032157	0.0178271
typhoon_2000	1	0.0067051	0.0031225	2.147328	0.0317671	0.0005850	0.0128251
typhoon_500	1	-0.0458116	0.7052501	-0.064958	0.9482075	-1.4280764	1.3364531
factor	Moderate	AME	SE	z	р	lower	upper
typhoon_1000	1	0.0059332	0.0078245	0.7582856	0.4482800	-0.0094025	0.0212688
typhoon_2000	1	0.0044871	0.0039453	1.1373050	0.2554108	-0.0032457	0.0122198
typhoon_500	1	-0.0311946	0.6847130	-0.0455586	0.9636620	-1.3732074	1.3108182
factor	Super	AME	SE	Z	р	lower	upper
typhoon_1000	1	0.0030638	0.0111295	0.2752891	0.7830941	-0.0187495	0.0248772
typhoon_2000	1	0.0102513	0.0041568	2.4661549	0.0136572	0.0021041	0.0183985
typhoon_500	1	-0.2241250	3.1608062	-0.0709076	0.9434713	-6.4191913	5.9709413



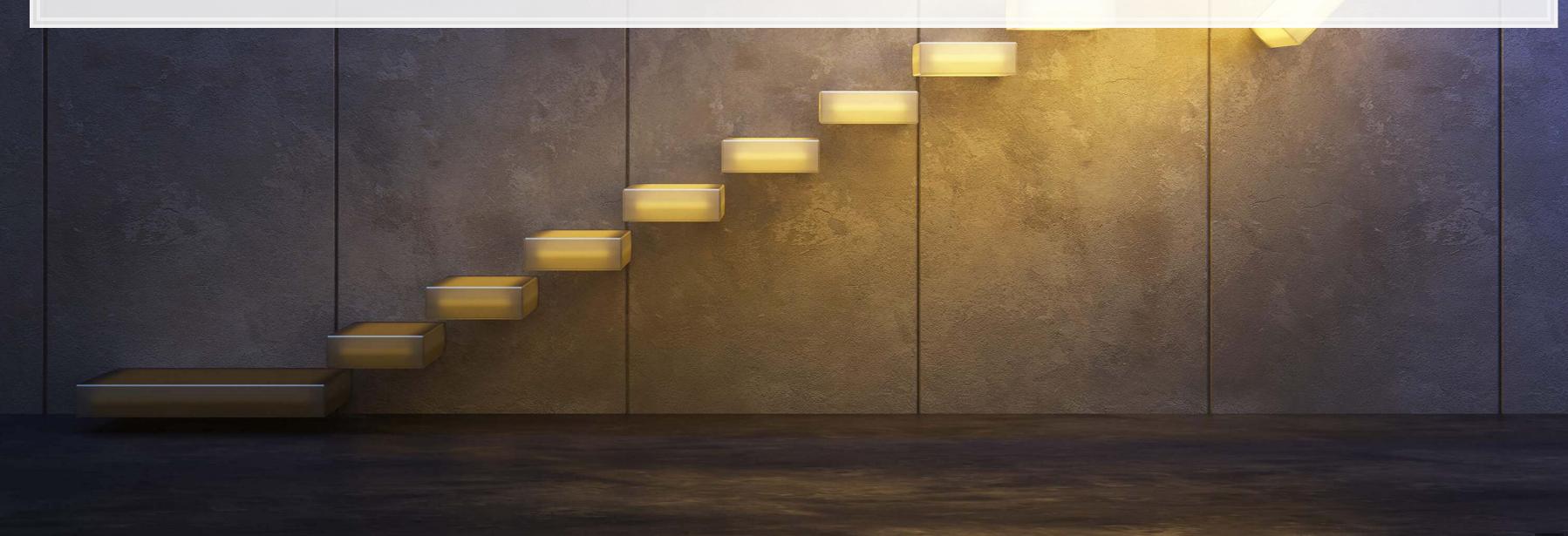
What might matter for shipping?

What other observable events or data might provide insight as to whether a naval shipment will be delayed or not?

- What is the reason that this event or data would be useful in predicting delays?
 - I.e., how does it fit into your mental model?

For next week

- For next week:
 - Second individual assignment
 - Finish by 2 classes from now
 - Submit on eLearn
 - Think about who you want to work with for the project



Packages used for these slides

- broom
- geosphere
- kableExtra
- knitr
- leaflet
- leaflet.extras
- lubridate
- magrittr

- margins
- maps
- maptools
- plotly
- revealjs
- rgeos
- sf
- tidyverse

Custom code

```
# styling for plotly maps
geo <- list(</pre>
 showland = TRUE,
 showlakes = TRUE,
 showcountries = TRUE,
 showocean = TRUE,
 countrywidth = 0.5,
 landcolor = toRGB("grey90"),
 lakecolor = toRGB("aliceblue"),
 oceancolor = toRGB("aliceblue"),
 projection = list(
   type = 'orthographic', # detailed at https://plot.ly/r/reference/#layout-geo-projection
   rotation = list(
    lon = 100,
    lat = 1,
    roll = 0
   )
 ),
 lonaxis = list(
   showgrid = TRUE,
   gridcolor = toRGB("gray40"),
   gridwidth = 0.5
 ),
 lataxis = list(
   showgrid = TRUE,
   gridcolor = toRGB("gray40"),
   gridwidth = 0.5
```

