
ACCT 420: Logistic Regression for

Corporate Fraud

Session 6

Dr. Richard M. Crowley
 rcrowley@smu.edu.sg

http://rmc.link/

1

mailto:rcrowley@smu.edu.sg
http://rmc.link/

Front matter

2 . 1

▪ Theory:

▪ Economics

▪ Psychology

▪ Application:

▪ Predicting fraud contained in annual reports

▪ Methodology:

▪ Logistic regression

▪ LASSO

Learning objectives

2 . 2

Datacamp

▪ Explore on your own

▪ No specific required class this week

2 . 3

Corporate/Securities Fraud

3 . 1

Traditional accounting fraud

1. A company is underperforming

2. Management cooks up some scheme to increase earnings

▪ Worldcom (1999-2001)

▪ Fake revenue entries

▪ Capitalizing line costs (should be expensed)

▪ Olympus (late 1980s-2011): Hide losses in a separate entity

▪ “Tobashi scheme”

▪ Wells Fargo (2011-2018?)

▪ Fake/duplicate customers and transactions

3. Create accounting statements using the fake information

3 . 2

Reversing it

1. A company is overperforming

2. Management cooks up a scheme to “save up” excess performance for a rainy day

▪

▪ Cookie jar reserve, from secret payments by Intel, made up to 76% of quarterly income

▪

3. Recognize revenue/earnings when needed in the future to hit earnings targets

Dell (2002-2007)

Brystol-Myers Squibb (2000-2001)

3 . 3

https://www.economist.com/newsbook/2010/07/23/taking-away-dells-cookie-jar
https://www.sec.gov/news/press/2004-105.htm

Other accounting fraud types

▪ Options backdating:

▪ Using an auditor that isn’t registered:

▪ Releasing financial statements that were not reviewed by an auditor:

▪ Related party transactions (transferring funds to family members):

▪ Insufficient internal controls: via Banamex and

▪ Round-tripping: Transactions to inflate revenue that have no substance:

▪ Bribery: , $55M USD in bribes to Brazilian officials for contracts

▪ Fake the whole company:

▪ Getting funding from insurance fraud, the�, credit card fraud, and fake contracts; faking a real project to

get a clean audit to take the company public

▪ Ponzi scheme:

▪ Material omissions and misstatements:

▪ Failed to file annual and quarterly reports:

▪ Aiding another company’s fraud (Take Two, by parking 2 video games):

▪ Misleading statements on Twitter:

Apple (2001)

Commerce Group Corp (2003)

Cardiff International (2017)

China North East Petroleum Holdings

Limited

Citigroup (2008-2014) Asia Pacific Breweries

Suprema Specialties (1998-2001)

Keppel O&M (2001-2014)

ZZZZ Best (1982-1987)

Bernard Madoff

Imaging Diagnostic Systems (2013)

Applied Wellness Corporation (2008)

Capitol Distributing LLC

Tesla (2018)

3 . 4

https://www.sec.gov/news/press/2007/2007-70.htm
https://dart.deloitte.com/USDART/resource/b44c3afb-3f7f-11e6-95db-51a9f8be3f47
https://www.sec.gov/litigation/admin/2018/34-84258.pdf
https://www.sec.gov/litigation/litreleases/2012/lr22552.htm
https://www.sec.gov/litigation/admin/2018/34-83858.pdf
http://eresources.nlb.gov.sg/infopedia/articles/SIP_422_2005-01-25.html
https://www.sec.gov/news/press/2004-2.htm
https://www.channelnewsasia.com/news/business/keppel-o-m-bribery-case-what-you-need-to-know-9836154
https://www.nytimes.com/1990/02/25/books/nothing-but-zzzz-best.html
https://www.nytimes.com/2009/01/25/business/25bernie.html
https://www.sec.gov/litigation/litreleases/2013/lr22801.htm
https://www.sec.gov/litigation/admin/2010/34-61344a.pdf
https://www.sec.gov/litigation/admin/2008/34-57303.pdf
https://www.sec.gov/news/press-release/2018-219

Some of the more interesting cases

▪

▪ Claimed it was developing processor microcode independently, when it actually provided Intel’s

microcode to it’s engineers

▪

▪ Sham sale-leaseback of a bar to a corporate officer

▪

▪ Not using mark-to-market accounting to fair value stuffed animal inventories

▪

▪ Gold reserves were actually… dirt.

▪

▪ Employees created 1,280 fake memberships, sold them, and retained all profits ($37.5M)

AMD (1992-1993)

Am-Pac International (1997)

CVS (2000)

Countryland Wellness Resorts, Inc. (1997-2000)

Keppel Club (2014)

3 . 5

https://www.sec.gov/litigation/admin/3437730.txt
https://www.sec.gov/litigation/litreleases/lr17024.htm
https://www.sec.gov/litigation/admin/2007/33-8815.pdf
https://www.sec.gov/litigation/litreleases/lr16732.htm
https://www.straitstimes.com/singapore/courts-crime/keppel-club-duo-convicted-for-37m-membership-scam

What will we look at today?

Misstatements: Errors that affect firms’ accounting statements or disclosures which were

done seemingly intentionally by management or other employees at the firm.

3 . 6

How do misstatements come to light?

1. The company/management admits to it publicly

2. A government entity forces the company to disclose

▪ In more egregious cases, government agencies may disclose the fraud publicly as well

3. Investors sue the firm, forcing disclosure

3 . 7

Where are these disclosed? (US)

1. : Accounting and Auditing Enforcement Releases

▪ Highlight larger/more important cases, written by the SEC

▪ Example: The Summary section of

2. 10-K/A filings (“10-K” annual report, “/A” amendment)

▪ Note: not all 10-K/A filings are caused by fraud!

▪ Benign corrections or adjustments can also be filed as a 10-K/A

▪ Note:

3. By the US government through a 13(b) action

4. In a note inside a 10-K filing

▪ These are sometimes referred to as “little r” restatements

5. In a press release, which is later filed with the US SEC as an 8-K

▪ 8-Ks are filed for many other reasons too though

US SEC AAERs

this AAER against Sanofi

Audit Analytics’ write-up on this for 2017

3 . 8

https://www.sec.gov/divisions/enforce/friactions.shtml
https://www.sec.gov/litigation/admin/2018/34-84017.pdf
https://www.auditanalytics.com/blog/reasons-for-an-amended-10-k-2017/

Where are we at?

▪ All of them are important to capture

▪ All of them affect accounting numbers differently

▪ None of the individual methods are frequent…

▪ We need to be careful here (or check multiple sources)

Fraud happens in many ways, for many reasons

It is disclosed in many places. All have subtly different meanings and implications

This is a hard problem!

3 . 9

AAERs

▪ Today we will examine these AAERs

▪ Using a proprietary data set of >1,000 such releases

▪ To get a sense of the data we’re working with, read the Summary section (starting on page 2) of this AAER

against Sanofi

▪ rmc.link/420class6

Why did the SEC release this AAER regarding Sanofi?

3 . 10

https://www.sec.gov/litigation/admin/2018/34-84017.pdf

Predicting Fraud

4 . 1

Main question

▪ This is a pure forensic analytics question

▪ “Major instance of misreporting” will be implemented using AAERs

How can we detect if a firm is involved in a major instance of missreporting?

4 . 2

Approaches

▪ In these slides, I’ll walk through the primary detection methods since the 1990s, up to currently used

methods

▪ 1990s: Financials and financial ratios

▪ Follow up in 2011

▪ Late 2000s/early 2010s: Characteristics of firm’s disclosures

▪ mid 2010s: More holistic text-based measures of disclosures

▪ This will tie to next lesson where we will explore how to work with text

All of these are discussed in a – I will refer to the

paper as BCE for short

Brown, Crowley and Elliott (2020 JAR)

4 . 3

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2803733

The data

▪ I have provided some preprocessed data, sanitized of AAER data (which is partially public, partially

proprietary)

▪ It contains 401 variables

▪ From Compustat, CRSP, and the SEC (which I personally collected)

▪ Many precalculated measures including:

▪ Firm characteristics, such as auditor type (bigNaudit, midNaudit)

▪ Financial measures, such as total accruals (rsst_acc)

▪ Financial ratios, such as ROA (ni_at)

▪ Annual report characteristics, such as the mean sentence length (sentlen_u)

▪ Machine learning based content analysis (everything with Topic_ prepended)

Pulled from BCE’s working files

4 . 4

Training and Testing

▪ Already has testing and training set up in variable Test

▪ Training is annual reports released in 1999 through 2003

▪ Testing is annual reports released in 2004

What potential issues are there with our usual training and testing strategy?

4 . 5

Censoring

▪ Censoring training data helps to emulate historical situations

▪ Build an algorithm using only the data that was available at the time a decision would need to have been

made

▪ Do not censor the testing data

▪ Testing emulates where we want to make an optimal choice in real life

▪ We want to find frauds regardless of how well hidden they are!

4 . 6

Event frequency

▪ Very low event frequencies can make things tricky

year total_AAERS total_observations

1999 46 2195

2000 50 2041

2001 43 2021

2002 50 2391

2003 57 2936

2004 49 2843

df %>%

 group_by(year) %>%

 mutate(total_AAERS = sum(AAER==1), total_observations=n()) %>%

 slice(1) %>%

 ungroup() %>%

 select(year, total_AAERS, total_observations) %>%

 html_df

246 AAERs in the training data, 401 total variables…

4 . 7

Dealing with infrequent events

▪ A few ways to handle this

1. Very careful model selection (keep it sufficiently simple)

2. Sophisticated degenerate variable identification criterion + simulation to implement complex models

that are just barely simple enough

▪ The main method in BCE

3. Automated methodologies for pairing down models

▪ We’ll discuss using LASSO for this at the end of class

▪ Also implemented in BCE

4 . 8

1990s approach

5 . 1

▪ EBIT

▪ Earnings / revenue

▪ ROA

▪ Log of liabilities

▪ liabilities / equity

▪ liabilities / assets

▪ quick ratio

▪ Working capital / assets

▪ Inventory / revenue

▪ inventory / assets

▪ earnings / PP&E

▪ A/R / revenue

▪ Change in revenue

▪ Change in A/R + 1

▪ change in A/R

▪ Change in gross profit + 1

▪ change in gross profit

▪ Gross profit / assets

▪ Revenue minus gross profit

▪ Cash / assets

▪ Log of assets

▪ PP&E / assets

▪ Working capital

The 1990s model

▪ Many financial measures and ratios can help to predict fraud

5 . 2

Approach

fit_1990s <- glm(AAER ~ ebit + ni_revt + ni_at + log_lt + ltl_at + lt_seq +

 lt_at + act_lct + aq_lct + wcap_at + invt_revt + invt_at +

 ni_ppent + rect_revt + revt_at + d_revt + b_rect + b_rect +

 r_gp + b_gp + gp_at + revt_m_gp + ch_at + log_at +

 ppent_at + wcap,

 data=df[df$Test==0,],

 family=binomial)

summary(fit_1990s)

Call:
glm(formula = AAER ~ ebit + ni_revt + ni_at + log_lt + ltl_at +
lt_seq + lt_at + act_lct + aq_lct + wcap_at + invt_revt +
invt_at + ni_ppent + rect_revt + revt_at + d_revt + b_rect +
b_rect + r_gp + b_gp + gp_at + revt_m_gp + ch_at + log_at +
ppent_at + wcap, family = binomial, data = df[df$Test ==
0,])

Deviance Residuals:
Min 1Q Median 3Q Max
-1.1391 -0.2275 -0.1661 -0.1190 3.6236

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.660e+00 8.336e-01 -5.591 2.26e-08 ***
ebit -3.564e-04 1.094e-04 -3.257 0.00112 **
ni_revt 3.664e-02 3.058e-02 1.198 0.23084
ni_at -3.196e-01 2.325e-01 -1.374 0.16932
log_lt 1.494e-01 3.409e-01 0.438 0.66118
ltl_at -2.306e-01 7.072e-01 -0.326 0.74438

5 . 3

ROC

In sample AUC Out of sample AUC
0.7483132 0.7292981

5 . 4

The 2011 follow up

6 . 1

▪ Log of assets

▪ Total accruals

▪ % change in A/R

▪ % change in inventory

▪ % so� assets

▪ % change in sales from cash

▪ % change in ROA

▪ Indicator for stock/bond issuance

▪ Indicator for operating leases

▪ BV equity / MV equity

▪ Lag of stock return minus value weighted

market return

▪ Below are BCE’s additions

▪ Indicator for mergers

▪ Indicator for Big N auditor

▪ Indicator for medium size auditor

▪ Total financing raised

▪ Net amount of new capital raised

▪ Indicator for restructuring

The 2011 model

Based on Dechow, Ge, Larson and Sloan (2011)

6 . 2

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1911-3846.2010.01041.x

The model

fit_2011 <- glm(AAER ~ logtotasset + rsst_acc + chg_recv + chg_inv +

 soft_assets + pct_chg_cashsales + chg_roa + issuance +

 oplease_dum + book_mkt + lag_sdvol + merger + bigNaudit +

 midNaudit + cffin + exfin + restruct,

 data=df[df$Test==0,],

 family=binomial)

summary(fit_2011)

Call:
glm(formula = AAER ~ logtotasset + rsst_acc + chg_recv + chg_inv +
soft_assets + pct_chg_cashsales + chg_roa + issuance + oplease_dum +
book_mkt + lag_sdvol + merger + bigNaudit + midNaudit + cffin +
exfin + restruct, family = binomial, data = df[df$Test ==
0,])

Deviance Residuals:
Min 1Q Median 3Q Max
-0.8434 -0.2291 -0.1658 -0.1196 3.2614

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.1474558 0.5337491 -13.391 < 2e-16 ***
logtotasset 0.3214322 0.0355467 9.043 < 2e-16 ***
rsst_acc -0.2190095 0.3009287 -0.728 0.4667
chg_recv 1.1020740 1.0590837 1.041 0.2981
chg_inv 0.0389504 1.2507142 0.031 0.9752
soft_assets 2.3094551 0.3325731 6.944 3.81e-12 ***
pct_chg_cashsales -0.0006912 0.0108771 -0.064 0.9493

6 . 3

ROC

In sample AUC Out of sample AUC
0.7445378 0.6849225

6 . 4

Late 2000s/early 2010s approach

7 . 1

▪ Log of # of bullet points + 1

▪ # of characters in file header

▪ # of excess newlines

▪ Amount of html tags

▪ Length of cleaned file, characters

▪ Mean sentence length, words

▪ S.D. of word length

▪ S.D. of paragraph length (sentences)

▪ Word choice variation

▪ Readability

▪ Coleman Liau Index

▪ Fog Index

▪ % active voice sentences

▪ % passive voice sentences

▪ # of all cap words

▪ # of !

▪ # of ?

The late 2000s/early 2010s model

From a variety of papers

7 . 2

Theory

▪ Generally pulled from the communications literature

▪ Sometimes ad hoc

▪ The main idea:

▪ Companies that are misreporting probably write their annual report differently

7 . 3

The late 2000s/early 2010s model

fit_2000s <- glm(AAER ~ bullets + headerlen + newlines + alltags +

 processedsize + sentlen_u + wordlen_s + paralen_s +

 repetitious_p + sentlen_s + typetoken + clindex + fog +

 active_p + passive_p + lm_negative_p + lm_positive_p +

 allcaps + exclamationpoints + questionmarks,

 data=df[df$Test==0,],

 family=binomial)

summary(fit_2000s)

Call:
glm(formula = AAER ~ bullets + headerlen + newlines + alltags +
processedsize + sentlen_u + wordlen_s + paralen_s + repetitious_p +
sentlen_s + typetoken + clindex + fog + active_p + passive_p +
lm_negative_p + lm_positive_p + allcaps + exclamationpoints +
questionmarks, family = binomial, data = df[df$Test == 0,
])

Deviance Residuals:
Min 1Q Median 3Q Max
-0.9604 -0.2244 -0.1984 -0.1749 3.2318

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.662e+00 3.143e+00 -1.801 0.07165 .
bullets -2.635e-05 2.625e-05 -1.004 0.31558
headerlen -2.943e-04 3.477e-04 -0.846 0.39733
newlines -4.821e-05 1.220e-04 -0.395 0.69271
alltags 5.060e-08 2.567e-07 0.197 0.84376
processedsize 5.709e-06 1.287e-06 4.435 9.19e-06 ***

7 . 4

ROC

In sample AUC Out of sample AUC
0.6377783 0.6295414

7 . 5

Combining the 2000s and 2011 models

▪ 2011 model: Parsimonious financial model

▪ 2000s model: Textual characteristics

Why is it appropriate to combine the 2011 model with the 2000s model?

7 . 6

The model

fit_2000f <- glm(AAER ~ logtotasset + rsst_acc + chg_recv + chg_inv +

 soft_assets + pct_chg_cashsales + chg_roa + issuance +

 oplease_dum + book_mkt + lag_sdvol + merger + bigNaudit +

 midNaudit + cffin + exfin + restruct + bullets + headerlen +

 newlines + alltags + processedsize + sentlen_u + wordlen_s +

 paralen_s + repetitious_p + sentlen_s + typetoken +

 clindex + fog + active_p + passive_p + lm_negative_p +

 lm_positive_p + allcaps + exclamationpoints + questionmarks,

 data=df[df$Test==0,],

 family=binomial)

summary(fit_2000f)

Call:
glm(formula = AAER ~ logtotasset + rsst_acc + chg_recv + chg_inv +
soft_assets + pct_chg_cashsales + chg_roa + issuance + oplease_dum +
book_mkt + lag_sdvol + merger + bigNaudit + midNaudit + cffin +
exfin + restruct + bullets + headerlen + newlines + alltags +
processedsize + sentlen_u + wordlen_s + paralen_s + repetitious_p +
sentlen_s + typetoken + clindex + fog + active_p + passive_p +
lm_negative_p + lm_positive_p + allcaps + exclamationpoints +
questionmarks, family = binomial, data = df[df$Test == 0,
])

Deviance Residuals:
Min 1Q Median 3Q Max
-0.9514 -0.2237 -0.1596 -0.1110 3.3882

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.634e+00 3.415e+00 -0.479 0.63223
logtotasset 3.437e-01 3.921e-02 8.766 < 2e-16 ***
rsst_acc -2.123e-01 2.995e-01 -0.709 0.47844

7 . 7

ROC

In sample AUC Out of sample AUC
0.7664115 0.7147021

7 . 8

The BCE model

8 . 1

The BCE approach

▪ Retain the variables from the other regressions

▪ Add in a machine-learning based measure quantifying how much documents talked about different topics

common across all filings

▪ Learned on just the 1999-2003 filings

8 . 2

What the topics look like

8 . 3

Theory behind the BCE model

Why use document content?

8 . 4

The model

BCE_eq = as.formula(paste("AAER ~ logtotasset + rsst_acc + chg_recv + chg_inv +

 soft_assets + pct_chg_cashsales + chg_roa + issuance +

 oplease_dum + book_mkt + lag_sdvol + merger + bigNaudit +

 midNaudit + cffin + exfin + restruct + bullets + headerlen +

 newlines + alltags + processedsize + sentlen_u + wordlen_s +

 paralen_s + repetitious_p + sentlen_s + typetoken +

 clindex + fog + active_p + passive_p + lm_negative_p +

 lm_positive_p + allcaps + exclamationpoints + questionmarks + ",

 paste(paste0("Topic_",1:30,"_n_oI"), collapse=" + "), collapse=""))

fit_BCE <- glm(BCE_eq,

 data=df[df$Test==0,],

 family=binomial)

summary(fit_BCE)

Call:
glm(formula = BCE_eq, family = binomial, data = df[df$Test ==
0,])

Deviance Residuals:
Min 1Q Median 3Q Max
-1.0887 -0.2212 -0.1478 -0.0940 3.5401

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.032e+00 3.872e+00 -2.074 0.03806 *
logtotasset 3.879e-01 4.554e-02 8.519 < 2e-16 ***
rsst_acc -1.938e-01 3.055e-01 -0.634 0.52593
chg_recv 8.581e-01 1.071e+00 0.801 0.42296
chg_inv -2.607e-01 1.223e+00 -0.213 0.83119
soft_assets 2.555e+00 3.796e-01 6.730 1.7e-11 ***
pct_chg_cashsales -1.976e-03 6.997e-03 -0.282 0.77767
chg_roa -2.532e-01 2.786e-01 -0.909 0.36354
issuance 9.692e-02 3.269e-01 0.296 0.76687
oplease_dum -3.451e-01 2.097e-01 -1.645 0.09989 .

8 . 5

ROC

In sample AUC Out of sample AUC
0.7941841 0.7599594

8 . 6

Comparison across all models

1990s 2011 2000s 2000s + 2011 BCE
0.7292981 0.6849225 0.6295414 0.7147021 0.7599594

8 . 7

Simplifying models with LASSO

9 . 1

What is LASSO?

▪ Least Absolute Shrinkage and Selection Operator

▪ Least absolute: uses an error term like

▪ Shrinkage: it will make coefficients smaller

▪ Less sensitive → less overfitting issues

▪ Selection: it will completely remove some variables

▪ Less variables → less overfitting issues

▪ Sometimes called regularization

▪ means 1 dimensional distance, i.e.,

▪ This is how we can, in theory, put more variables in our model than data points

Great if you have way too many inputs in your model

9 . 2

▪ Add an additional penalty term that is

increasing in the absolute value of each

▪ Incentivizes lower s, shrinking them

▪ The selection is part is explainable

geometrically

How does it work?

9 . 3

Why use it?

1. We have a preference for simpler models

2. Some problems are naturally very complex

▪ Many linkages between different theoretical constructs

3. We don’t have a good judgment on what theories are better than others for the problem

LASSO lets us implement all of our ideas, and then it econometrically kicks out the

ineffective ideas (model selection)

9 . 4

Package for LASSO

▪

1. For all regression commands, they expect a y vector and an x matrix instead of our usual y ~ x formula

▪ R has a helper function to convert a formula to a matrix:

▪ Supply it the right hand side of the equation, starting with ~, and your data

▪ It outputs the matrix x

▪ Alternatively, use as.matrix() on a data frame of your input variables

2. It’s family argument should be specified in quotes, i.e., "binomial" instead of binomial

glmnet

model.matrix()

9 . 5

https://cran.r-project.org/web/packages/glmnet/index.html
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/model.matrix

Ridge regression

▪ Similar to LASSO, but with an penalty

(Euclidean norm)

Elastic net regression

▪ Hybrid of LASSO and Ridge

▪ Below image by

What else can the package do?

Jared Lander

9 . 6

https://jaredlander.com/content/2015/11/LassoForEveryone.html

How to run a LASSO

▪ To run a simple LASSO model, use glmnet()

▪ Let’s LASSO the BCE model

▪ Note: the model selection can be more elegantly done using the package,

library(glmnet)

x <- model.matrix(BCE_eq, data=df[df$Test==0,])[,-1] # [,-1] to remove intercept

y <- model.frame(BCE_eq, data=df[df$Test==0,])[,"AAER"]

fit_LASSO <- glmnet(x=x, y=y,

 family = "binomial",

 alpha = 1 # Specifies LASSO. alpha = 0 is ridge

)

useful see here for an example

9 . 7

https://cran.r-project.org/web/packages/useful/index.html
https://www.jaredlander.com/2018/02/using-coefplot-with-glmnet/

Visualizing Lasso

plot(fit_LASSO)

9 . 8

What’s under the hood?

print(fit_LASSO)

Call: glmnet(x = x, y = y, family = "binomial", alpha = 1)

Df %Dev Lambda
1 0 0.00 0.0143300
2 1 0.81 0.0130500
3 1 1.46 0.0118900
4 1 2.00 0.0108400
5 2 2.47 0.0098740
6 2 3.22 0.0089970
7 2 3.85 0.0081970
8 2 4.37 0.0074690
9 2 4.81 0.0068060
10 3 5.22 0.0062010
11 3 5.59 0.0056500
12 4 5.91 0.0051480
13 4 6.25 0.0046910
14 5 6.57 0.0042740
15 7 6.89 0.0038940
16 8 7.22 0.0035480
17 10 7.52 0.0032330

9 . 9

One of the 100 models

#coef(fit_LASSO, s=0.002031)

coefplot(fit_LASSO, lambda=0.002031, sort='magnitude')

9 . 10

How does this perform?

na.pass has model.matrix retain NA values (so the # of rows is constant)

xp <- model.matrix(BCE_eq, data=df, na.action='na.pass')[,-1]

s= specifies the version of the model to use

df$pred_L1 <- c(predict(fit_LASSO, xp, type="response", s = 0.002031))

In sample AUC Out of sample AUC
0.7593828 0.7239785

9 . 11

Automating model selection

▪ LASSO seems nice, but picking between the 100 models is tough!

▪ It also contains a method of -fold cross validation (default,)

1. Randomly splits the data into groups

2. Runs the algorithm on 90% of the data (groups)

3. Determines the best model

4. Repeat steps 2 and 3 more times

5. Uses the best overall model across all hold out samples

▪ It gives 2 model options:

▪ "lambda.min": The best performing model

▪ "lambda.1se": The simplest model within 1 standard error of "lambda.min"

▪ This is the better choice if you are concerned about overfitting

9 . 12

Running a cross validated model

Cross validation

set.seed(697435) #for reproducibility

cvfit = cv.glmnet(x=x, y=y,family = "binomial", alpha = 1, type.measure="auc")

plot(cvfit) cvfit$lambda.min

[1] 0.001685798

cvfit$lambda.1se

[1] 0.002684268

These are the dashed lines on the plot

9 . 13

lambda.min lambda.1se

Models

9 . 14

CV LASSO performance

s= specifies the version of the model to use

df$pred_L1.min <- c(predict(cvfit, xp, type="response", s = "lambda.min"))

df$pred_L1.1se <- c(predict(cvfit, xp, type="response", s = "lambda.1se"))

In sample, lambda.min Out of sample, lambda.min In sample, lambda.1se
0.7631710 0.7290185 0.7509946
Out of sample, lambda.1se
0.7124231

9 . 15

Drawbacks of LASSO

1. No p-values on coefficients

▪ Simple solution – run the resulting model with

▪ Solution only if using family="gaussian":

▪ Run the lasso use the package

▪ m <- lars(x=x, y=y, type="lasso")

▪ Then test coefficients using the package

▪ covTest(m, x, y)

2. Generally worse in sample performance

3. Sometimes worse out of sample performance (short run)

▪ BUT: predictions will be more stable

glm()

lars

covTest

9 . 16

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm
https://cran.r-project.org/web/packages/lars/index.html
https://cran.r-project.org/src/contrib/Archive/covTest/

Wrap up

10 . 1

Predicting fraud

▪ What is the reason that this event or data would be useful for prediction?

▪ I.e., how does it fit into your mental model?

▪ What if we were…

▪ Auditors?

▪ Internal auditors?

▪ Regulators?

▪ Investors?

What other data could we use to predict corporate fraud?

10 . 2

End matter

11 . 1

For next week

▪ Next week:

▪ Third assignment

▪ On binary prediction

▪ Finish in three weeks

▪ Can be done in pairs

▪ Submit on eLearn

▪ Datacamp

▪ Practice a bit more to keep up to date

▪ Using R more will make it more natural

11 . 2

Homework 3

▪ Another question that has both forecasting and forensic flair to it

▪ Forensic: O�en these companies were doing something wrong for a while in the past

▪ Forecasting: Predicting the actions of the firms’ investors

▪ Methods

▪ A simple logistic model from 1994

▪ A better logistic model from 2012

▪ A LASSO model including firms’ disclosure text

▪ [Optional] eXtreme Gradient Boosting (XGBoost)

Predicting class action lawsuits

11 . 3

Packages used for these slides

▪

▪

▪

▪

▪

▪

▪

▪

coefplot

glmnet

kableExtra

knitr

magrittr

revealjs

tidyverse

yardstick

11 . 4

https://github.com/jaredlander/coefplot
https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_html.html
https://yihui.name/knitr/
https://magrittr.tidyverse.org/
https://github.com/rstudio/revealjs
https://www.tidyverse.org/
https://github.com/tidymodels/yardstick

Appendix on with LASSOparsnip

12 . 1

https://tidymodels.github.io/parsnip/

LASSO using tidymodels

▪ There are many convenience packages in R to simplify workflows

▪ tidymodels is a collection of such packages

▪ helps run models on many different backends

▪ helps process and prep data

▪ for cross validation

▪ to tie it all together

▪ Jared Lander gave a good talk on using tidy models, , at DSSG

parsnip

recipes

rsample

workflows

We will use tidymodels to run a LASSO and an XGBoost model for misreporting

detection

Many ways To Lasso

12 . 2

https://tidymodels.github.io/parsnip/
https://tidymodels.github.io/recipes/
https://tidymodels.github.io/rsample/
https://github.com/tidymodels/workflows
https://jaredlander.com/content/2018/11/ManyWaysToLasso2.html

Data prep with recipes

library(recipes)

library(parsnip)

df <- read_csv("../../Data/Session_6.csv")

BCEformula <- BCE_eq

train <- df %>% filter(Test == 0)

test <- df %>% filter(Test == 1)

rec <- recipe(BCEformula, data = train) %>%

 step_zv(all_predictors()) %>% # Drop any variables with zero variance

 step_center(all_predictors()) %>% # Center all prediction variables

 step_scale(all_predictors()) %>% # Scale all prediction variables

 step_intercept() %>% # Add an intercept to the model

 step_num2factor(all_outcomes(), ordered = T, levels=c("0","1"),

 transform = function(x) x + 1) # Convert DV to factor

prepped <- rec %>% prep(training=train)

12 . 3

https://tidymodels.github.io/recipes/

Running a model with parsnip

"bake" your recipe to get data ready

train_baked <- bake(prepped, new_data = train)

test_baked <- bake(prepped, new_data = test)

Run the model with parsnip

train_model <- logistic_reg(mixture=1, penalty=1) %>% # mixture = 1 sets LASSO

 set_engine('glmnet') %>%

 fit(BCEformula, data = train_baked)

12 . 4

https://tidymodels.github.io/parsnip/

Visualizing ’s outputparsnip

train_model$fit is the same as fit_LASSO earlier in the slides

coefplot(train_model$fit, lambda=0.002031, sort='magnitude')

12 . 5

https://tidymodels.github.io/parsnip/

Plugging in to cross validation

▪ can plug into cross validation through , usingthrough vfold_cv()

▪ Easy to do surface level analysis with it

▪ Difficult to do anything more in depth still

▪ We can out our data and just use

parsnip rsample

juice() cv.glmnet()

rec <- recipe(BCEformula, data = train) %>%

 step_zv(all_predictors()) %>% # Drop any variables with zero variance

 step_center(all_predictors()) %>% # Center all prediction variables

 step_scale(all_predictors()) %>% # Scale all prediction variables

 step_intercept() # Add an intercept to the model

prepped <- rec %>% prep(training=train)

test_prepped <- rec %>% prep(training=test)

"Juice" your recipe to get data for other packages

train_x <- juice(prepped, all_predictors(), composition = "dgCMatrix")

train_y <- juice(prepped, all_outcomes(), composition = "matrix")

test_x <- juice(test_prepped, all_predictors(), composition = "dgCMatrix")

test_y <- juice(test_prepped, all_outcomes(), composition = "matrix")

12 . 6

https://tidymodels.github.io/parsnip/
https://tidymodels.github.io/rsample/
https://www.rdocumentation.org/packages/recipes/versions/0.1.7/topics/juice
https://www.rdocumentation.org/packages/glmnet/versions/2.0-18/topics/cv.glmnet

Running a cross validated model

Cross validation

set.seed(75347) #for reproducibility

cvfit = cv.glmnet(x=train_x, y=train_y, family = "binomial", alpha = 1,

 type.measure="auc")

plot(cvfit) cvfit$lambda.min

[1] 0.00139958

cvfit$lambda.1se

[1] 0.003548444

12 . 7

lambda.min lambda.1se

Models

12 . 8

CV LASSO performance

In sample, lambda.min Out of sample, lambda.min In sample, lambda.1se
0.7665463 0.7364834 0.7417082
Out of sample, lambda.1se
0.7028034

12 . 9

Packages used for these slides

▪

▪

▪

▪

glmnet

parsnip

recipes

yardstick

12 . 10

https://cran.r-project.org/web/packages/glmnet/index.html
https://tidymodels.github.io/parsnip/
https://tidymodels.github.io/recipes/
https://github.com/tidymodels/yardstick

If you really want to use for CV LASSOparsnip

13 . 1

https://tidymodels.github.io/parsnip/

Data prep with (Same as before)recipes

library(tidyr)

library(tidymodels)

Warning: package 'infer' was built under R version 4.1.1

library(tidyverse)

df <- read_csv("../../Data/Session_6.csv")

BCEformula <- BCE_eq

train <- df %>% filter(Test == 0)

test <- df %>% filter(Test == 1)

LASSO_rec <- recipe(BCEformula, data = train) %>%

 step_zv(all_predictors()) %>% # Drop any variables with zero variance

 step_center(all_predictors()) %>% # Center all prediction variables

 step_scale(all_predictors()) %>% # Scale all prediction variables

 step_intercept() %>% # Add an intercept to the model

 step_num2factor(all_outcomes(), ordered = T, levels=c("0","1"),

 transform = function(x) x + 1) # Convert DV to factor

13 . 2

https://tidymodels.github.io/recipes/

Define a tuning with and

▪ tune() replaces any parameters you would like to tune over

▪ Unlike with , we’ll need to specify the range to tune over

▪ The expand_grid() function from makes this easy

▪ The exp(seq()) part is to emulate ’s tuning behavior

tune tidyr

LASSO_mod <- logistic_reg(penalty=tune(), mixture=1) %>% # mixture = 1 sets LASSO

 set_engine('glmnet')

Define a grid to tune over

grid <- expand_grid(penalty = exp(seq(-11,-4, length.out=100)))

cv.glmnet()

tidyr

cv.glmnet()

13 . 3

https://github.com/tidymodels/tune
https://github.com/tidyverse/tidyr
https://www.rdocumentation.org/packages/glmnet/versions/2.0-18/topics/cv.glmnet
https://github.com/tidyverse/tidyr
https://www.rdocumentation.org/packages/glmnet/versions/2.0-18/topics/cv.glmnet

Define a workflow with workflows

LASSO_wfl <- workflow() %>%

 add_model(LASSO_mod) %>%

 add_recipe(LASSO_rec)

A workflow tells the various fitting and tuning functions in how to handle the data.

In other words, this will combine our model and recipe into 1 object.

tune

13 . 4

https://github.com/tidymodels/workflows
https://github.com/tidymodels/tune

Run the model using , , and rsample tune yardstick

set.seed(354351)

folds <- vfold_cv(train, v=10) # from rsample

metrics = metric_set(roc_auc) # from yardstick

LASSO_fit_tuned <- tune_grid(LASSO_wfl,

 grid = grid,

 resamples = folds,

 metrics=metrics)

13 . 5

https://tidymodels.github.io/rsample/
https://github.com/tidymodels/tune
https://github.com/tidymodels/yardstick

Take a look at the output

LASSO_fit_tuned %>%

 collect_metrics()

A tibble: 100 x 7
penalty .metric .estimator mean n std_err .config
<dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
1 0.0000167 roc_auc binary 0.727 10 0.0257 Preprocessor1_Model001
2 0.0000179 roc_auc binary 0.727 10 0.0257 Preprocessor1_Model002
3 0.0000192 roc_auc binary 0.727 10 0.0257 Preprocessor1_Model003
4 0.0000206 roc_auc binary 0.727 10 0.0257 Preprocessor1_Model004
5 0.0000222 roc_auc binary 0.727 10 0.0257 Preprocessor1_Model005
6 0.0000238 roc_auc binary 0.727 10 0.0257 Preprocessor1_Model006
7 0.0000255 roc_auc binary 0.727 10 0.0257 Preprocessor1_Model007
8 0.0000274 roc_auc binary 0.727 10 0.0256 Preprocessor1_Model008
9 0.0000294 roc_auc binary 0.727 10 0.0256 Preprocessor1_Model009
10 0.0000316 roc_auc binary 0.727 10 0.0256 Preprocessor1_Model010
... with 90 more rows

13 . 6

Plotting it out

lambda.min <- LASSO_fit_tuned %>%

 collect_metrics() %>%

 arrange(-mean) %>%

 slice(1) %>%

 pull(penalty) %>%

 log()

LASSO_fit_tuned %>%

 collect_metrics() %>%

 ggplot(aes(x=log(penalty), y=mean)) +

 geom_point() +

 xlab("Log(lambda)") +

 geom_vline(xintercept = lambda.min)

13 . 7

Packages used for these slides

▪

▪

▪

▪

▪

▪

▪

▪

glmnet

parsnip

recipes

rsample

tidyr

tune

workflows

yardstick

13 . 8

https://cran.r-project.org/web/packages/glmnet/index.html
https://tidymodels.github.io/parsnip/
https://tidymodels.github.io/recipes/
https://tidymodels.github.io/rsample/
https://github.com/tidyverse/tidyr
https://github.com/tidymodels/tune
https://github.com/tidymodels/workflows
https://github.com/tidymodels/yardstick

Appendix on XGBoost

14 . 1

What is XGBoost

▪ eXtreme Gradient Boosting

▪ A simple explanation:

1. Start with 1 or more decision trees & check error

2. Make more decision trees & check error

3. Use the difference in error to guess a another model

4. Repeat #2 and #3 until the model’s error is stable

14 . 2

Data prep with recipes

library(recipes)

library(parsnip)

df <- read_csv("../../Data/Session_6.csv")

BCEformula <- BCE_eq

train <- df %>% filter(Test == 0)

test <- df %>% filter(Test == 1)

rec <- recipe(BCEformula, data = train) %>%

 step_zv(all_predictors()) %>% # Drop any variables with zero variance

 step_center(all_predictors()) %>% # Center all prediction variables

 step_scale(all_predictors()) %>% # Scale all prediction variables

 step_intercept() # Add an intercept to the model

Juice our data

prepped <- rec %>% prep(training=train)

train_x <- juice(prepped, all_predictors(), composition = "dgCMatrix")

train_y <- juice(prepped, all_outcomes(), composition = "matrix")

test_prepped <- rec %>% prep(training=test)

test_x <- juice(test_prepped, all_predictors(), composition = "dgCMatrix")

test_y <- juice(test_prepped, all_outcomes(), composition = "matrix")

14 . 3

https://tidymodels.github.io/recipes/

Running a cross validated model

Cross validation

set.seed(482342) #for reproducibility

library(xgboost)

model setup

params <- list(max_depth=10,

 eta=0.2,

 gamma=10,

 min_child_weight = 5,

 objective =

 "binary:logistic")

run the model

xgbCV <- xgb.cv(params=params,

 data=train_x,

 label=train_y,

 nrounds=100,

 eval_metric="auc",

 nfold=10,

 stratified=TRUE)

[1] train-auc:0.552507+0.080499 test-auc:0.538707+0.06
[2] train-auc:0.586947+0.087237 test-auc:0.563604+0.06
[3] train-auc:0.603035+0.084511 test-auc:0.583011+0.07
[4] train-auc:0.663903+0.057212 test-auc:0.631184+0.05
[5] train-auc:0.677173+0.064281 test-auc:0.639249+0.05
[6] train-auc:0.707156+0.026578 test-auc:0.663628+0.03
[7] train-auc:0.716727+0.025892 test-auc:0.666075+0.03
[8] train-auc:0.728506+0.026368 test-auc:0.671749+0.04
[9] train-auc:0.768085+0.025756 test-auc:0.682083+0.04
[10] train-auc:0.783654+0.030705 test-auc:0.687617+0.04
[11] train-auc:0.796643+0.027157 test-auc:0.701862+0.04

numTrees <- min(

 which(

 xgbCV$evaluation_log$test_auc_mean ==

 max(xgbCV$evaluation_log$test_auc_mean)

)

)

fit4 <- xgboost(params=params,

 data = train_x,

 label = train_y,

 nrounds = numTrees,

 eval_metric="auc")

[1] train-auc:0.500000
[2] train-auc:0.663489
[3] train-auc:0.663489
[4] train-auc:0.703386
[5] train-auc:0.703386
[6] train-auc:0.704123
[7] train-auc:0.727506
[8] train-auc:0.727506
[9] train-auc:0.727506
[10] train-auc:0.784639
[11] train-auc:0.818359
[12] train-auc:0.816647
[13] train-auc:0.851022
[14] train-auc:0.864434
[15] train-auc:0.877787
[16] train-auc:0.883615
[17] train-auc:0.885182
[18] train-auc:0.899875
[19] train-auc:0.902216 14 . 4

Model explanation

xgb.train.data = xgb.DMatrix(train_x, label = train_y, missing = NA)

col_names = attr(xgb.train.data, ".Dimnames")[[2]]

imp = xgb.importance(col_names, fit4)

Variable importance

xgb.plot.importance(imp)

14 . 5

Model comparison: Out of sample

1990s 2000s 2000s + 2011 2011
0.7292981 0.6295414 0.7147021 0.6849225
BC LASSO, lambda.1se LASSO, lambda.min XGBoost
0.7599594 0.7124231 0.7290185 0.8083503

14 . 6

Packages used for these slides

▪

▪

▪

▪

parsnip

recipes

xgboost

yardstick

14 . 7

https://tidymodels.github.io/parsnip/
https://tidymodels.github.io/recipes/
https://github.com/dmlc/xgboost
https://github.com/tidymodels/yardstick

