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Front matter
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▪ Theory:

▪ Economics

▪ Psychology

▪ Application:

▪ Predicting fraud contained in annual reports

▪ Methodology:

▪ Logistic regression

▪ LASSO

Learning objectives
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Datacamp

▪ Explore on your own

▪ No specific required class this week
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Corporate/Securities Fraud
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Traditional accounting fraud

1. A company is underperforming

2. Management cooks up some scheme to increase earnings

▪ Worldcom (1999-2001)

▪ Fake revenue entries

▪ Capitalizing line costs (should be expensed)

▪ Olympus (late 1980s-2011): Hide losses in a separate entity

▪ “Tobashi scheme”

▪ Wells Fargo (2011-2018?)

▪ Fake/duplicate customers and transactions

3. Create accounting statements using the fake information
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Reversing it

1. A company is overperforming

2. Management cooks up a scheme to “save up” excess performance for a rainy day

▪

▪ Cookie jar reserve, from secret payments by Intel, made up to 76% of quarterly income

▪

3. Recognize revenue/earnings when needed in the future to hit earnings targets

Dell (2002-2007)

Brystol-Myers Squibb (2000-2001)
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Other accounting fraud types

▪ Options backdating: 

▪ Using an auditor that isn’t registered: 

▪ Releasing financial statements that were not reviewed by an auditor: 

▪ Related party transactions (transferring funds to family members): 

▪ Insufficient internal controls:  via Banamex and 

▪ Round-tripping: Transactions to inflate revenue that have no substance: 

▪ Bribery: , $55M USD in bribes to Brazilian officials for contracts

▪ Fake the whole company: 

▪ Getting funding from insurance fraud, the�, credit card fraud, and fake contracts; faking a real project to

get a clean audit to take the company public

▪ Ponzi scheme: 

▪ Material omissions and misstatements: 

▪ Failed to file annual and quarterly reports: 

▪ Aiding another company’s fraud (Take Two, by parking 2 video games): 

▪ Misleading statements on Twitter: 

Apple (2001)

Commerce Group Corp (2003)

Cardiff International (2017)

China North East Petroleum Holdings

Limited

Citigroup (2008-2014) Asia Pacific Breweries

Suprema Specialties (1998-2001)

Keppel O&M (2001-2014)

ZZZZ Best (1982-1987)

Bernard Madoff

Imaging Diagnostic Systems (2013)

Applied Wellness Corporation (2008)

Capitol Distributing LLC

Tesla (2018)
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https://www.sec.gov/news/press/2007/2007-70.htm
https://dart.deloitte.com/USDART/resource/b44c3afb-3f7f-11e6-95db-51a9f8be3f47
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https://www.sec.gov/litigation/admin/2008/34-57303.pdf
https://www.sec.gov/news/press-release/2018-219


Some of the more interesting cases

▪

▪ Claimed it was developing processor microcode independently, when it actually provided Intel’s

microcode to it’s engineers

▪

▪ Sham sale-leaseback of a bar to a corporate officer

▪

▪ Not using mark-to-market accounting to fair value stuffed animal inventories

▪

▪ Gold reserves were actually… dirt.

▪

▪ Employees created 1,280 fake memberships, sold them, and retained all profits ($37.5M)

AMD (1992-1993)

Am-Pac International (1997)

CVS (2000)

Countryland Wellness Resorts, Inc. (1997-2000)

Keppel Club (2014)
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https://www.sec.gov/litigation/admin/3437730.txt
https://www.sec.gov/litigation/litreleases/lr17024.htm
https://www.sec.gov/litigation/admin/2007/33-8815.pdf
https://www.sec.gov/litigation/litreleases/lr16732.htm
https://www.straitstimes.com/singapore/courts-crime/keppel-club-duo-convicted-for-37m-membership-scam


What will we look at today?

Misstatements: Errors that affect firms’ accounting statements or disclosures which were

done seemingly intentionally by management or other employees at the firm.
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How do misstatements come to light?

1. The company/management admits to it publicly

2. A government entity forces the company to disclose

▪ In more egregious cases, government agencies may disclose the fraud publicly as well

3. Investors sue the firm, forcing disclosure
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Where are these disclosed? (US)

1. : Accounting and Auditing Enforcement Releases

▪ Highlight larger/more important cases, written by the SEC

▪ Example: The Summary section of 

2. 10-K/A filings (“10-K”  annual report, “/A”  amendment)

▪ Note: not all 10-K/A filings are caused by fraud!

▪ Benign corrections or adjustments can also be filed as a 10-K/A

▪ Note: 

3. By the US government through a 13(b) action

4. In a note inside a 10-K filing

▪ These are sometimes referred to as “little r” restatements

5. In a press release, which is later filed with the US SEC as an 8-K

▪ 8-Ks are filed for many other reasons too though

US SEC AAERs

this AAER against Sanofi

Audit Analytics’ write-up on this for 2017
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https://www.sec.gov/divisions/enforce/friactions.shtml
https://www.sec.gov/litigation/admin/2018/34-84017.pdf
https://www.auditanalytics.com/blog/reasons-for-an-amended-10-k-2017/


Where are we at?

▪ All of them are important to capture

▪ All of them affect accounting numbers differently

▪ None of the individual methods are frequent…

▪ We need to be careful here (or check multiple sources)

Fraud happens in many ways, for many reasons

It is disclosed in many places. All have subtly different meanings and implications

This is a hard problem!
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AAERs

▪ Today we will examine these AAERs

▪ Using a proprietary data set of >1,000 such releases

▪ To get a sense of the data we’re working with, read the Summary section (starting on page 2) of this AAER

against Sanofi

▪ rmc.link/420class6

Why did the SEC release this AAER regarding Sanofi?
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Predicting Fraud
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Main question

▪ This is a pure forensic analytics question

▪ “Major instance of misreporting” will be implemented using AAERs

How can we detect if a firm is involved in a major instance of missreporting?
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Approaches

▪ In these slides, I’ll walk through the primary detection methods since the 1990s, up to currently used

methods

▪ 1990s: Financials and financial ratios

▪ Follow up in 2011

▪ Late 2000s/early 2010s: Characteristics of firm’s disclosures

▪ mid 2010s: More holistic text-based measures of disclosures

▪ This will tie to next lesson where we will explore how to work with text

All of these are discussed in a  – I will refer to the

paper as BCE for short

Brown, Crowley and Elliott (2020 JAR)

4 . 3
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The data

▪ I have provided some preprocessed data, sanitized of AAER data (which is partially public, partially

proprietary)

▪ It contains 401 variables

▪ From Compustat, CRSP, and the SEC (which I personally collected)

▪ Many precalculated measures including:

▪ Firm characteristics, such as auditor type (bigNaudit, midNaudit)

▪ Financial measures, such as total accruals (rsst_acc)

▪ Financial ratios, such as ROA (ni_at)

▪ Annual report characteristics, such as the mean sentence length (sentlen_u)

▪ Machine learning based content analysis (everything with Topic_ prepended)

Pulled from BCE’s working files
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Training and Testing

▪ Already has testing and training set up in variable Test

▪ Training is annual reports released in 1999 through 2003

▪ Testing is annual reports released in 2004

What potential issues are there with our usual training and testing strategy?
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Censoring

▪ Censoring training data helps to emulate historical situations

▪ Build an algorithm using only the data that was available at the time a decision would need to have been

made

▪ Do not censor the testing data

▪ Testing emulates where we want to make an optimal choice in real life

▪ We want to find frauds regardless of how well hidden they are!
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Event frequency

▪ Very low event frequencies can make things tricky

year total_AAERS total_observations

1999 46 2195

2000 50 2041

2001 43 2021

2002 50 2391

2003 57 2936

2004 49 2843

df %>% 

  group_by(year) %>% 

  mutate(total_AAERS = sum(AAER==1), total_observations=n()) %>% 

  slice(1) %>% 

  ungroup() %>% 

  select(year, total_AAERS, total_observations) %>% 

  html_df

246 AAERs in the training data, 401 total variables…
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Dealing with infrequent events

▪ A few ways to handle this

1. Very careful model selection (keep it sufficiently simple)

2. Sophisticated degenerate variable identification criterion + simulation to implement complex models

that are just barely simple enough

▪ The main method in BCE

3. Automated methodologies for pairing down models

▪ We’ll discuss using LASSO for this at the end of class

▪ Also implemented in BCE
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1990s approach
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▪ EBIT

▪ Earnings / revenue

▪ ROA

▪ Log of liabilities

▪ liabilities / equity

▪ liabilities / assets

▪ quick ratio

▪ Working capital / assets

▪ Inventory / revenue

▪ inventory / assets

▪ earnings / PP&E

▪ A/R / revenue

▪ Change in revenue

▪ Change in A/R + 1

▪  change in A/R

▪ Change in gross profit + 1

▪  change in gross profit

▪ Gross profit / assets

▪ Revenue minus gross profit

▪ Cash / assets

▪ Log of assets

▪ PP&E / assets

▪ Working capital

The 1990s model

▪ Many financial measures and ratios can help to predict fraud
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Approach

fit_1990s <- glm(AAER ~ ebit + ni_revt + ni_at + log_lt + ltl_at + lt_seq + 

                   lt_at + act_lct + aq_lct + wcap_at + invt_revt + invt_at + 

                   ni_ppent + rect_revt + revt_at + d_revt + b_rect + b_rect + 

                   r_gp + b_gp + gp_at + revt_m_gp + ch_at + log_at + 

                   ppent_at + wcap, 

                 data=df[df$Test==0,], 

                 family=binomial) 

summary(fit_1990s)

##  
## Call: 
## glm(formula = AAER ~ ebit + ni_revt + ni_at + log_lt + ltl_at +  
##     lt_seq + lt_at + act_lct + aq_lct + wcap_at + invt_revt +  
##     invt_at + ni_ppent + rect_revt + revt_at + d_revt + b_rect +  
##     b_rect + r_gp + b_gp + gp_at + revt_m_gp + ch_at + log_at +  
##     ppent_at + wcap, family = binomial, data = df[df$Test ==  
##     0, ]) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -1.1391  -0.2275  -0.1661  -0.1190   3.6236   
##  
## Coefficients: 
##               Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -4.660e+00  8.336e-01  -5.591 2.26e-08 *** 
## ebit        -3.564e-04  1.094e-04  -3.257  0.00112 **  
## ni_revt      3.664e-02  3.058e-02   1.198  0.23084     
## ni_at       -3.196e-01  2.325e-01  -1.374  0.16932     
## log_lt       1.494e-01  3.409e-01   0.438  0.66118     
## ltl_at      -2.306e-01  7.072e-01  -0.326  0.74438     
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ROC

##     In sample AUC Out of sample AUC  
##         0.7483132         0.7292981
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The 2011 follow up
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▪ Log of assets

▪ Total accruals

▪ % change in A/R

▪ % change in inventory

▪ % so� assets

▪ % change in sales from cash

▪ % change in ROA

▪ Indicator for stock/bond issuance

▪ Indicator for operating leases

▪ BV equity / MV equity

▪ Lag of stock return minus value weighted

market return

▪ Below are BCE’s additions

▪ Indicator for mergers

▪ Indicator for Big N auditor

▪ Indicator for medium size auditor

▪ Total financing raised

▪ Net amount of new capital raised

▪ Indicator for restructuring

The 2011 model

Based on Dechow, Ge, Larson and Sloan (2011)
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The model

fit_2011 <- glm(AAER ~ logtotasset + rsst_acc + chg_recv + chg_inv + 

                  soft_assets + pct_chg_cashsales + chg_roa + issuance + 

                  oplease_dum + book_mkt + lag_sdvol + merger + bigNaudit + 

                  midNaudit + cffin + exfin + restruct, 

                 data=df[df$Test==0,], 

                 family=binomial) 

summary(fit_2011)

##  
## Call: 
## glm(formula = AAER ~ logtotasset + rsst_acc + chg_recv + chg_inv +  
##     soft_assets + pct_chg_cashsales + chg_roa + issuance + oplease_dum +  
##     book_mkt + lag_sdvol + merger + bigNaudit + midNaudit + cffin +  
##     exfin + restruct, family = binomial, data = df[df$Test ==  
##     0, ]) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -0.8434  -0.2291  -0.1658  -0.1196   3.2614   
##  
## Coefficients: 
##                     Estimate Std. Error z value Pr(>|z|)     
## (Intercept)       -7.1474558  0.5337491 -13.391  < 2e-16 *** 
## logtotasset        0.3214322  0.0355467   9.043  < 2e-16 *** 
## rsst_acc          -0.2190095  0.3009287  -0.728   0.4667     
## chg_recv           1.1020740  1.0590837   1.041   0.2981     
## chg_inv            0.0389504  1.2507142   0.031   0.9752     
## soft_assets        2.3094551  0.3325731   6.944 3.81e-12 *** 
## pct_chg_cashsales -0.0006912  0.0108771  -0.064   0.9493     
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ROC

##     In sample AUC Out of sample AUC  
##         0.7445378         0.6849225
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Late 2000s/early 2010s approach
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▪ Log of # of bullet points + 1

▪ # of characters in file header

▪ # of excess newlines

▪ Amount of html tags

▪ Length of cleaned file, characters

▪ Mean sentence length, words

▪ S.D. of word length

▪ S.D. of paragraph length (sentences)

▪ Word choice variation

▪ Readability

▪ Coleman Liau Index

▪ Fog Index

▪ % active voice sentences

▪ % passive voice sentences

▪ # of all cap words

▪ # of !

▪ # of ?

The late 2000s/early 2010s model

From a variety of papers
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Theory

▪ Generally pulled from the communications literature

▪ Sometimes ad hoc

▪ The main idea:

▪ Companies that are misreporting probably write their annual report differently
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The late 2000s/early 2010s model

fit_2000s <- glm(AAER ~ bullets + headerlen + newlines + alltags + 

                   processedsize + sentlen_u + wordlen_s + paralen_s + 

                   repetitious_p + sentlen_s + typetoken + clindex + fog + 

                   active_p + passive_p + lm_negative_p + lm_positive_p + 

                   allcaps + exclamationpoints + questionmarks, 

                 data=df[df$Test==0,], 

                 family=binomial) 

summary(fit_2000s)

##  
## Call: 
## glm(formula = AAER ~ bullets + headerlen + newlines + alltags +  
##     processedsize + sentlen_u + wordlen_s + paralen_s + repetitious_p +  
##     sentlen_s + typetoken + clindex + fog + active_p + passive_p +  
##     lm_negative_p + lm_positive_p + allcaps + exclamationpoints +  
##     questionmarks, family = binomial, data = df[df$Test == 0,  
##     ]) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -0.9604  -0.2244  -0.1984  -0.1749   3.2318   
##  
## Coefficients: 
##                     Estimate Std. Error z value Pr(>|z|)     
## (Intercept)       -5.662e+00  3.143e+00  -1.801  0.07165 .   
## bullets           -2.635e-05  2.625e-05  -1.004  0.31558     
## headerlen         -2.943e-04  3.477e-04  -0.846  0.39733     
## newlines          -4.821e-05  1.220e-04  -0.395  0.69271     
## alltags            5.060e-08  2.567e-07   0.197  0.84376     
## processedsize      5.709e-06  1.287e-06   4.435 9.19e-06 *** 
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ROC

##     In sample AUC Out of sample AUC  
##         0.6377783         0.6295414

7 . 5



Combining the 2000s and 2011 models

▪ 2011 model: Parsimonious financial model

▪ 2000s model: Textual characteristics

Why is it appropriate to combine the 2011 model with the 2000s model?

7 . 6



The model

fit_2000f <- glm(AAER ~ logtotasset + rsst_acc + chg_recv + chg_inv + 

                   soft_assets + pct_chg_cashsales + chg_roa + issuance + 

                   oplease_dum + book_mkt + lag_sdvol + merger + bigNaudit + 

                   midNaudit + cffin + exfin + restruct + bullets + headerlen + 

                   newlines + alltags + processedsize + sentlen_u + wordlen_s + 

                   paralen_s + repetitious_p + sentlen_s + typetoken + 

                   clindex + fog + active_p + passive_p + lm_negative_p + 

                   lm_positive_p + allcaps + exclamationpoints + questionmarks, 

                 data=df[df$Test==0,], 

                 family=binomial) 

summary(fit_2000f)

##  
## Call: 
## glm(formula = AAER ~ logtotasset + rsst_acc + chg_recv + chg_inv +  
##     soft_assets + pct_chg_cashsales + chg_roa + issuance + oplease_dum +  
##     book_mkt + lag_sdvol + merger + bigNaudit + midNaudit + cffin +  
##     exfin + restruct + bullets + headerlen + newlines + alltags +  
##     processedsize + sentlen_u + wordlen_s + paralen_s + repetitious_p +  
##     sentlen_s + typetoken + clindex + fog + active_p + passive_p +  
##     lm_negative_p + lm_positive_p + allcaps + exclamationpoints +  
##     questionmarks, family = binomial, data = df[df$Test == 0,  
##     ]) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -0.9514  -0.2237  -0.1596  -0.1110   3.3882   
##  
## Coefficients: 
##                     Estimate Std. Error z value Pr(>|z|)     
## (Intercept)       -1.634e+00  3.415e+00  -0.479  0.63223     
## logtotasset        3.437e-01  3.921e-02   8.766  < 2e-16 *** 
## rsst_acc          -2.123e-01  2.995e-01  -0.709  0.47844     
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ROC

##     In sample AUC Out of sample AUC  
##         0.7664115         0.7147021
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The BCE model
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The BCE approach

▪ Retain the variables from the other regressions

▪ Add in a machine-learning based measure quantifying how much documents talked about different topics

common across all filings

▪ Learned on just the 1999-2003 filings
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What the topics look like
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Theory behind the BCE model

Why use document content?
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The model

BCE_eq = as.formula(paste("AAER ~ logtotasset + rsst_acc + chg_recv + chg_inv + 

  soft_assets + pct_chg_cashsales + chg_roa + issuance + 

  oplease_dum + book_mkt + lag_sdvol + merger + bigNaudit + 

  midNaudit + cffin + exfin + restruct + bullets + headerlen + 

  newlines + alltags + processedsize + sentlen_u + wordlen_s + 

  paralen_s + repetitious_p + sentlen_s + typetoken + 

  clindex + fog + active_p + passive_p + lm_negative_p + 

  lm_positive_p + allcaps + exclamationpoints + questionmarks + ", 

  paste(paste0("Topic_",1:30,"_n_oI"), collapse=" + "), collapse="")) 

fit_BCE <- glm(BCE_eq, 

               data=df[df$Test==0,], 

               family=binomial) 

summary(fit_BCE)

##  
## Call: 
## glm(formula = BCE_eq, family = binomial, data = df[df$Test ==  
##     0, ]) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -1.0887  -0.2212  -0.1478  -0.0940   3.5401   
##  
## Coefficients: 
##                     Estimate Std. Error z value Pr(>|z|)     
## (Intercept)       -8.032e+00  3.872e+00  -2.074  0.03806 *   
## logtotasset        3.879e-01  4.554e-02   8.519  < 2e-16 *** 
## rsst_acc          -1.938e-01  3.055e-01  -0.634  0.52593     
## chg_recv           8.581e-01  1.071e+00   0.801  0.42296     
## chg_inv           -2.607e-01  1.223e+00  -0.213  0.83119     
## soft_assets        2.555e+00  3.796e-01   6.730  1.7e-11 *** 
## pct_chg_cashsales -1.976e-03  6.997e-03  -0.282  0.77767     
## chg_roa           -2.532e-01  2.786e-01  -0.909  0.36354     
## issuance           9.692e-02  3.269e-01   0.296  0.76687     
## oplease_dum       -3.451e-01  2.097e-01  -1.645  0.09989 .   
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ROC

##     In sample AUC Out of sample AUC  
##         0.7941841         0.7599594
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Comparison across all models

##        1990s         2011        2000s 2000s + 2011          BCE  
##    0.7292981    0.6849225    0.6295414    0.7147021    0.7599594
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Simplifying models with LASSO
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What is LASSO?

▪ Least Absolute Shrinkage and Selection Operator

▪ Least absolute: uses an error term like 

▪ Shrinkage: it will make coefficients smaller

▪ Less sensitive → less overfitting issues

▪ Selection: it will completely remove some variables

▪ Less variables → less overfitting issues

▪ Sometimes called  regularization

▪  means 1 dimensional distance, i.e., 

▪ This is how we can, in theory, put more variables in our model than data points

Great if you have way too many inputs in your model

9 . 2



▪ Add an additional penalty term that is

increasing in the absolute value of each 

▪ Incentivizes lower s, shrinking them

▪ The selection is part is explainable

geometrically

How does it work?
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Why use it?

1. We have a preference for simpler models

2. Some problems are naturally very complex

▪ Many linkages between different theoretical constructs

3. We don’t have a good judgment on what theories are better than others for the problem

LASSO lets us implement all of our ideas, and then it econometrically kicks out the

ineffective ideas (model selection)
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Package for LASSO

▪

1. For all regression commands, they expect a y vector and an x matrix instead of our usual y ~ x formula

▪ R has a helper function to convert a formula to a matrix: 

▪ Supply it the right hand side of the equation, starting with ~, and your data

▪ It outputs the matrix x

▪ Alternatively, use as.matrix() on a data frame of your input variables

2. It’s family argument should be specified in quotes, i.e., "binomial" instead of binomial

glmnet

model.matrix()

9 . 5

https://cran.r-project.org/web/packages/glmnet/index.html
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/model.matrix


Ridge regression

▪ Similar to LASSO, but with an  penalty

(Euclidean norm)

Elastic net regression

▪ Hybrid of LASSO and Ridge

▪ Below image by 

What else can the package do?

Jared Lander

9 . 6

https://jaredlander.com/content/2015/11/LassoForEveryone.html


How to run a LASSO

▪ To run a simple LASSO model, use glmnet()

▪ Let’s LASSO the BCE model

▪ Note: the model selection can be more elegantly done using the  package, 

library(glmnet) 

x <- model.matrix(BCE_eq, data=df[df$Test==0,])[,-1]  # [,-1] to remove intercept 

y <- model.frame(BCE_eq, data=df[df$Test==0,])[,"AAER"] 

fit_LASSO <- glmnet(x=x, y=y, 

                    family = "binomial", 

                    alpha = 1  # Specifies LASSO.  alpha = 0 is ridge 

                    )

useful see here for an example
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Visualizing Lasso

plot(fit_LASSO)
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What’s under the hood?

print(fit_LASSO)

##  
## Call:  glmnet(x = x, y = y, family = "binomial", alpha = 1)  
##  
##    Df  %Dev    Lambda 
## 1   0  0.00 0.0143300 
## 2   1  0.81 0.0130500 
## 3   1  1.46 0.0118900 
## 4   1  2.00 0.0108400 
## 5   2  2.47 0.0098740 
## 6   2  3.22 0.0089970 
## 7   2  3.85 0.0081970 
## 8   2  4.37 0.0074690 
## 9   2  4.81 0.0068060 
## 10  3  5.22 0.0062010 
## 11  3  5.59 0.0056500 
## 12  4  5.91 0.0051480 
## 13  4  6.25 0.0046910 
## 14  5  6.57 0.0042740 
## 15  7  6.89 0.0038940 
## 16  8  7.22 0.0035480 
## 17 10  7.52 0.0032330 
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One of the 100 models

#coef(fit_LASSO, s=0.002031) 

coefplot(fit_LASSO, lambda=0.002031, sort='magnitude')
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How does this perform?

# na.pass has model.matrix retain NA values (so the # of rows is constant) 

xp <- model.matrix(BCE_eq, data=df, na.action='na.pass')[,-1] 

# s= specifies the version of the model to use 

df$pred_L1 <- c(predict(fit_LASSO, xp, type="response", s = 0.002031))

##     In sample AUC Out of sample AUC  
##         0.7593828         0.7239785
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Automating model selection

▪ LASSO seems nice, but picking between the 100 models is tough!

▪ It also contains a method of -fold cross validation (default, )

1. Randomly splits the data into  groups

2. Runs the algorithm on 90% of the data (  groups)

3. Determines the best model

4. Repeat steps 2 and 3  more times

5. Uses the best overall model across all  hold out samples

▪ It gives 2 model options:

▪ "lambda.min": The best performing model

▪ "lambda.1se": The simplest model within 1 standard error of "lambda.min"

▪ This is the better choice if you are concerned about overfitting
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Running a cross validated model

# Cross validation 

set.seed(697435)  #for reproducibility 

cvfit = cv.glmnet(x=x, y=y,family = "binomial", alpha = 1, type.measure="auc")

plot(cvfit) cvfit$lambda.min

## [1] 0.001685798

cvfit$lambda.1se

## [1] 0.002684268

These are the dashed lines on the plot
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lambda.min lambda.1se 

Models
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CV LASSO performance

# s= specifies the version of the model to use 

df$pred_L1.min <- c(predict(cvfit, xp, type="response", s = "lambda.min")) 

df$pred_L1.1se <- c(predict(cvfit, xp, type="response", s = "lambda.1se"))

##     In sample, lambda.min Out of sample, lambda.min     In sample, lambda.1se  
##                 0.7631710                 0.7290185                 0.7509946  
## Out of sample, lambda.1se  
##                 0.7124231
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Drawbacks of LASSO

1. No p-values on coefficients

▪ Simple solution – run the resulting model with 

▪ Solution only if using family="gaussian":

▪ Run the lasso use the  package

▪ m <- lars(x=x, y=y, type="lasso")

▪ Then test coefficients using the  package

▪ covTest(m, x, y)

2. Generally worse in sample performance

3. Sometimes worse out of sample performance (short run)

▪ BUT: predictions will be more stable

glm()

lars

covTest
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Wrap up
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Predicting fraud

▪ What is the reason that this event or data would be useful for prediction?

▪ I.e., how does it fit into your mental model?

▪ What if we were…

▪ Auditors?

▪ Internal auditors?

▪ Regulators?

▪ Investors?

What other data could we use to predict corporate fraud?
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End matter
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For next week

▪ Next week:

▪ Third assignment

▪ On binary prediction

▪ Finish in three weeks

▪ Can be done in pairs

▪ Submit on eLearn

▪ Datacamp

▪ Practice a bit more to keep up to date

▪ Using R more will make it more natural
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Homework 3

▪ Another question that has both forecasting and forensic flair to it

▪ Forensic: O�en these companies were doing something wrong for a while in the past

▪ Forecasting: Predicting the actions of the firms’ investors

▪ Methods

▪ A simple logistic model from 1994

▪ A better logistic model from 2012

▪ A LASSO model including firms’ disclosure text

▪ [Optional] eXtreme Gradient Boosting (XGBoost)

Predicting class action lawsuits
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Packages used for these slides

▪

▪

▪

▪

▪

▪

▪

▪

coefplot

glmnet

kableExtra

knitr

magrittr

revealjs

tidyverse

yardstick
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https://yihui.name/knitr/
https://magrittr.tidyverse.org/
https://github.com/rstudio/revealjs
https://www.tidyverse.org/
https://github.com/tidymodels/yardstick


Appendix on  with LASSOparsnip
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LASSO using tidymodels

▪ There are many convenience packages in R to simplify workflows

▪ tidymodels is a collection of such packages

▪  helps run models on many different backends

▪  helps process and prep data

▪  for cross validation

▪  to tie it all together

▪ Jared Lander gave a good talk on using tidy models, , at DSSG

parsnip

recipes

rsample

workflows

We will use tidymodels to run a LASSO and an XGBoost model for misreporting

detection

Many ways To Lasso
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Data prep with recipes

library(recipes) 

library(parsnip) 

 
df <- read_csv("../../Data/Session_6.csv") 

BCEformula <- BCE_eq 

 
train <- df %>% filter(Test == 0) 

test <- df %>% filter(Test == 1) 

 
rec <- recipe(BCEformula, data = train) %>% 

  step_zv(all_predictors()) %>%  # Drop any variables with zero variance 

  step_center(all_predictors()) %>%  # Center all prediction variables 

  step_scale(all_predictors()) %>%  # Scale all prediction variables 

  step_intercept() %>%  # Add an intercept to the model 

  step_num2factor(all_outcomes(), ordered = T, levels=c("0","1"), 

                  transform = function(x) x + 1)  # Convert DV to factor 

 
prepped <- rec %>% prep(training=train)
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Running a model with parsnip

# "bake" your recipe to get data ready 

train_baked  <- bake(prepped, new_data = train) 

test_baked  <- bake(prepped, new_data = test) 

 
# Run the model with parsnip 

train_model <- logistic_reg(mixture=1, penalty=1) %>%  # mixture = 1 sets LASSO 

  set_engine('glmnet') %>% 

  fit(BCEformula, data = train_baked)
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Visualizing ’s outputparsnip

# train_model$fit is the same as fit_LASSO earlier in the slides 

coefplot(train_model$fit, lambda=0.002031, sort='magnitude')
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Plugging in to cross validation

▪  can plug into cross validation through , usingthrough vfold_cv()

▪ Easy to do surface level analysis with it

▪ Difficult to do anything more in depth still

▪ We can  out our data and just use 

parsnip rsample

juice() cv.glmnet()

rec <- recipe(BCEformula, data = train) %>% 

  step_zv(all_predictors()) %>%  # Drop any variables with zero variance 

  step_center(all_predictors()) %>%  # Center all prediction variables 

  step_scale(all_predictors()) %>%  # Scale all prediction variables 

  step_intercept()  # Add an intercept to the model 

 
prepped <- rec %>% prep(training=train) 

test_prepped <- rec %>% prep(training=test) 

 
# "Juice" your recipe to get data for other packages 

train_x <- juice(prepped, all_predictors(), composition = "dgCMatrix") 

train_y <- juice(prepped, all_outcomes(), composition = "matrix") 

test_x <- juice(test_prepped, all_predictors(), composition = "dgCMatrix") 

test_y <- juice(test_prepped, all_outcomes(), composition = "matrix")
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Running a cross validated model

# Cross validation 

set.seed(75347)  #for reproducibility 

cvfit = cv.glmnet(x=train_x, y=train_y, family = "binomial", alpha = 1, 

                  type.measure="auc")

plot(cvfit) cvfit$lambda.min

## [1] 0.00139958

cvfit$lambda.1se

## [1] 0.003548444
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lambda.min lambda.1se 

Models
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CV LASSO performance

##     In sample, lambda.min Out of sample, lambda.min     In sample, lambda.1se  
##                 0.7665463                 0.7364834                 0.7417082  
## Out of sample, lambda.1se  
##                 0.7028034
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Packages used for these slides

▪

▪

▪

▪

glmnet

parsnip

recipes

yardstick
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https://cran.r-project.org/web/packages/glmnet/index.html
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If you really want to use  for CV LASSOparsnip
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Data prep with  (Same as before)recipes

library(tidyr) 

library(tidymodels)

## Warning: package 'infer' was built under R version 4.1.1

library(tidyverse) 

 
df <- read_csv("../../Data/Session_6.csv") 

BCEformula <- BCE_eq 

 
train <- df %>% filter(Test == 0) 

test <- df %>% filter(Test == 1) 

 
LASSO_rec <- recipe(BCEformula, data = train) %>% 

  step_zv(all_predictors()) %>%  # Drop any variables with zero variance 

  step_center(all_predictors()) %>%  # Center all prediction variables 

  step_scale(all_predictors()) %>%  # Scale all prediction variables 

  step_intercept() %>%  # Add an intercept to the model 

  step_num2factor(all_outcomes(), ordered = T, levels=c("0","1"), 

                  transform = function(x) x + 1)  # Convert DV to factor
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Define a tuning with  and 

▪ tune() replaces any parameters you would like to tune over

▪ Unlike with , we’ll need to specify the range to tune over

▪ The expand_grid() function from  makes this easy

▪ The exp(seq()) part is to emulate ’s tuning behavior

tune tidyr

LASSO_mod <- logistic_reg(penalty=tune(), mixture=1) %>%  # mixture = 1 sets LASSO 

  set_engine('glmnet') 

 
# Define a grid to tune over 

grid <- expand_grid(penalty = exp(seq(-11,-4, length.out=100)))

cv.glmnet()

tidyr

cv.glmnet()

13 . 3

https://github.com/tidymodels/tune
https://github.com/tidyverse/tidyr
https://www.rdocumentation.org/packages/glmnet/versions/2.0-18/topics/cv.glmnet
https://github.com/tidyverse/tidyr
https://www.rdocumentation.org/packages/glmnet/versions/2.0-18/topics/cv.glmnet


Define a workflow with workflows

LASSO_wfl <- workflow() %>% 

  add_model(LASSO_mod) %>% 

  add_recipe(LASSO_rec)

A workflow tells the various fitting and tuning functions in  how to handle the data.

In other words, this will combine our model and recipe into 1 object.

tune
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Run the model using , , and rsample tune yardstick

set.seed(354351) 

folds <- vfold_cv(train, v=10)  # from rsample 

metrics = metric_set(roc_auc)  # from yardstick 

 
LASSO_fit_tuned <- tune_grid(LASSO_wfl, 

                             grid = grid, 

                             resamples = folds, 

                             metrics=metrics)
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Take a look at the output

LASSO_fit_tuned %>% 

  collect_metrics()

## # A tibble: 100 x 7 
##      penalty .metric .estimator  mean     n std_err .config                
##        <dbl> <chr>   <chr>      <dbl> <int>   <dbl> <chr>                  
##  1 0.0000167 roc_auc binary     0.727    10  0.0257 Preprocessor1_Model001 
##  2 0.0000179 roc_auc binary     0.727    10  0.0257 Preprocessor1_Model002 
##  3 0.0000192 roc_auc binary     0.727    10  0.0257 Preprocessor1_Model003 
##  4 0.0000206 roc_auc binary     0.727    10  0.0257 Preprocessor1_Model004 
##  5 0.0000222 roc_auc binary     0.727    10  0.0257 Preprocessor1_Model005 
##  6 0.0000238 roc_auc binary     0.727    10  0.0257 Preprocessor1_Model006 
##  7 0.0000255 roc_auc binary     0.727    10  0.0257 Preprocessor1_Model007 
##  8 0.0000274 roc_auc binary     0.727    10  0.0256 Preprocessor1_Model008 
##  9 0.0000294 roc_auc binary     0.727    10  0.0256 Preprocessor1_Model009 
## 10 0.0000316 roc_auc binary     0.727    10  0.0256 Preprocessor1_Model010 
## # ... with 90 more rows
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Plotting it out

lambda.min <- LASSO_fit_tuned %>% 

  collect_metrics() %>% 

  arrange(-mean) %>% 

  slice(1) %>% 

  pull(penalty) %>% 

  log() 

 
LASSO_fit_tuned %>% 

  collect_metrics() %>% 

  ggplot(aes(x=log(penalty), y=mean)) + 

  geom_point() + 

  xlab("Log(lambda)") +  

  geom_vline(xintercept = lambda.min)
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Packages used for these slides

▪

▪

▪

▪

▪

▪

▪

▪

glmnet

parsnip

recipes

rsample

tidyr

tune

workflows

yardstick

13 . 8

https://cran.r-project.org/web/packages/glmnet/index.html
https://tidymodels.github.io/parsnip/
https://tidymodels.github.io/recipes/
https://tidymodels.github.io/rsample/
https://github.com/tidyverse/tidyr
https://github.com/tidymodels/tune
https://github.com/tidymodels/workflows
https://github.com/tidymodels/yardstick


Appendix on XGBoost
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What is XGBoost

▪ eXtreme Gradient Boosting

▪ A simple explanation:

1. Start with 1 or more decision trees & check error

2. Make more decision trees & check error

3. Use the difference in error to guess a another model

4. Repeat #2 and #3 until the model’s error is stable
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Data prep with recipes

library(recipes) 

library(parsnip) 

 
df <- read_csv("../../Data/Session_6.csv") 

BCEformula <- BCE_eq 

 
train <- df %>% filter(Test == 0) 

test <- df %>% filter(Test == 1) 

 
rec <- recipe(BCEformula, data = train) %>% 

  step_zv(all_predictors()) %>%  # Drop any variables with zero variance 

  step_center(all_predictors()) %>%  # Center all prediction variables 

  step_scale(all_predictors()) %>%  # Scale all prediction variables 

  step_intercept()  # Add an intercept to the model

# Juice our data 

prepped <- rec %>% prep(training=train) 

train_x <- juice(prepped, all_predictors(), composition = "dgCMatrix") 

train_y <- juice(prepped, all_outcomes(), composition = "matrix") 

test_prepped <- rec %>% prep(training=test) 

test_x <- juice(test_prepped, all_predictors(), composition = "dgCMatrix") 

test_y <- juice(test_prepped, all_outcomes(), composition = "matrix")
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Running a cross validated model

# Cross validation 

set.seed(482342)  #for reproducibility 

library(xgboost) 

 
# model setup 

params <- list(max_depth=10, 

               eta=0.2, 

               gamma=10, 

               min_child_weight = 5, 

               objective = 

                 "binary:logistic") 

 
# run the model 

xgbCV <- xgb.cv(params=params, 

                data=train_x, 

                label=train_y, 

                nrounds=100, 

                eval_metric="auc", 

                nfold=10, 

                stratified=TRUE)

## [1]  train-auc:0.552507+0.080499 test-auc:0.538707+0.06
## [2]  train-auc:0.586947+0.087237 test-auc:0.563604+0.06
## [3]  train-auc:0.603035+0.084511 test-auc:0.583011+0.07
## [4]  train-auc:0.663903+0.057212 test-auc:0.631184+0.05
## [5]  train-auc:0.677173+0.064281 test-auc:0.639249+0.05
## [6]  train-auc:0.707156+0.026578 test-auc:0.663628+0.03
## [7]  train-auc:0.716727+0.025892 test-auc:0.666075+0.03
## [8]  train-auc:0.728506+0.026368 test-auc:0.671749+0.04
## [9]  train-auc:0.768085+0.025756 test-auc:0.682083+0.04
## [10] train-auc:0.783654+0.030705 test-auc:0.687617+0.04
## [11] train-auc:0.796643+0.027157 test-auc:0.701862+0.04

numTrees <- min( 

 which( 

  xgbCV$evaluation_log$test_auc_mean ==  

  max(xgbCV$evaluation_log$test_auc_mean) 

 ) 

) 

 
fit4 <- xgboost(params=params, 

                data = train_x, 

                label = train_y, 

                nrounds = numTrees, 

                eval_metric="auc")

## [1]  train-auc:0.500000  
## [2]  train-auc:0.663489  
## [3]  train-auc:0.663489  
## [4]  train-auc:0.703386  
## [5]  train-auc:0.703386  
## [6]  train-auc:0.704123  
## [7]  train-auc:0.727506  
## [8]  train-auc:0.727506  
## [9]  train-auc:0.727506  
## [10] train-auc:0.784639  
## [11] train-auc:0.818359  
## [12] train-auc:0.816647  
## [13] train-auc:0.851022  
## [14] train-auc:0.864434  
## [15] train-auc:0.877787  
## [16] train-auc:0.883615  
## [17] train-auc:0.885182  
## [18] train-auc:0.899875  
## [19] train-auc:0.902216  14 . 4



Model explanation

xgb.train.data = xgb.DMatrix(train_x, label = train_y, missing = NA) 

col_names = attr(xgb.train.data, ".Dimnames")[[2]] 

imp = xgb.importance(col_names, fit4) 

# Variable importance 

xgb.plot.importance(imp)
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Model comparison: Out of sample

##             1990s             2000s      2000s + 2011              2011  
##         0.7292981         0.6295414         0.7147021         0.6849225  
##                BC LASSO, lambda.1se LASSO, lambda.min           XGBoost  
##         0.7599594         0.7124231         0.7290185         0.8083503
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Packages used for these slides

▪

▪

▪

▪

parsnip

recipes

xgboost

yardstick
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