
ACCT 420: ML/AI for numbers and
text

Dr. Richard M. Crowley

https://rmc.link/
rcrowley@smu.edu.sg

mailto:rcrowley@smu.edu.sg

Front Matter

Learning objectives
Theory:

Neural Networks (broad overview)
Vector space methods

Application:
Neural networks for understanding
textual data
Annual report sentiment
Building our own mini ChatGPT

Methodology:
Vector methods
Neural networks

Languages for ML/AI

R for ML/AI
Older methods

{e1071}

Best-in-class
: LASSO and elastic nets
: XGBoost

{Prophet}: ML for time series
forecasting

: Plugs into python’s Keras
{H2O4GPU}: Plugs into python’s H2O

: Plugs into python’s SpaCy
{mlverse/torch}: Plugs in to Torch

caret
randomForest
nnet

glmnet
xgboost

keras

spacyr

https://github.com/topepo/caret/
https://www.stat.berkeley.edu/~breiman/RandomForests/
http://www.stats.ox.ac.uk/pub/MASS4/
https://glmnet.stanford.edu/
https://github.com/dmlc/xgboost
https://tensorflow.rstudio.com/
https://spacyr.quanteda.io/

Python for ML/AI
Older methods

Sci-kit learn – one stop shop for most
older libraries
RPy2
scipy + numpy + pandas +
statsmodels

Add in for GPU compute

Best-in-class
 (Google) – Can do

everything, but o�en cumbersome
 – python specific Torch port

that is currently very popular
 – “Topic modelling for

humans”
 (H2O)
 (Berkley)

 (Facebook)
 – Fast NLP processing

 – through various wrappers
to the Java library

Theano

TensorFlow

pytorch

gensim

H2O
caffe
caffe2
SpaCy
CoreNLP

http://deeplearning.net/software/theano/
https://www.tensorflow.org/
https://pytorch.org/
https://radimrehurek.com/gensim/
https://www.h2o.ai/
http://caffe.berkeleyvision.org/
https://caffe2.ai/
https://spacy.io/
https://stanfordnlp.github.io/CoreNLP/other-languages.html

Others for ML/AI
C/C++: Also a first class language for TensorFlow!

Really fast – precompiled
Much more difficult to code in

Swi�: Strong TensorFlow support
Javascript: Improving support from TensorFlow and others

Why focus on TensorFlow?
It can run almost ANY ML/AI/NN algorithm
It has good community support:

 – Premade algorithms for text,
image, and video

 – Premade code examples
The folder contains an amazing set
of resources
 – AI research models from Google Brain

TensorFlow Hub

tensorflow/models
research

trax

Note: Google appears to be sunsetting this, but many older algorithms are based on it. They are shi�ing
toward and PyTorch JAX

https://tfhub.dev/
https://github.com/tensorflow/models
https://github.com/tensorflow/models/tree/master/research
https://github.com/google/trax
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://magenta.tensorflow.org/
https://magenta.tensorflow.org/
https://tfhub.dev/
https://tfhub.dev/
https://pytorch.org/
https://github.com/google/jax

About PyTorch
Based on (for Lua)
All the companies on the right are on
the governing board
Underpins models by , , and

Easier to use than Tensorflow
Most new off-the-shelf models use it

Has a variety of pretrained models
available
A bit easier to work with than
TensorFlow Hub

Torch

fast.ai ELF
AllenNLP

Pytorch Hub

http://torch.ch/
linkhttps://www.fast.ai/
https://github.com/pytorch/elf
linkhttps://allennlp.org/
https://pytorch.org/hub/

Other notable frameworks

Python, C/C++, Matlab
Good for image processing

C++ and Python
Still largely image oriented

Python, C++
Scales well, good for NLP

Python based
Integration with R, Scala…

Caffe

Caffe2

Microso� Cognitive Toolkit

H2O

http://caffe.berkeleyvision.org/
https://caffe2.ai/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.h2o.ai/
https://caffe2.ai/
https://caffe2.ai/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.h2o.ai/
https://www.h2o.ai/

Neural Networks

What are neural networks?
The phrase neural network is thrown around almost like a buzz word
Neural networks are actually a specific type class algorithms

There are many implementations with different primary uses

What are neural networks?
Originally, the goal was to construct an algorithm that behaves like a human brain

Thus the name
Current methods don’t quite reflect human brains, however:
1. We don’t fully understand how our brains work, which makes replication rather

difficult
2. Most neural networks are constructed for specialized tasks (not general tasks)
3. Some (but not all) neural networks use tools our brain may not have

I.e., backpropogation is , but it is not pinned down
how such a function occurs (if it does occur)

potentially possible in brains

https://www.frontiersin.org/articles/10.3389/fncom.2016.00094/full

What are neural networks?
Neural networks are a method by which a computer can learn from observational data
In practice:

They were not computationally worthwhile until the mid 2000s
They have been known since the 1950s (perceptrons)
They can be used to construct algorithms that, at times, perform better than humans
themselves

But these algorithms are o�en quite computationally intense, complex, and
difficult to understand

Much work has been and is being done to make them more accessible

Types of neural networks
There are a lot of neural network types

See The
Some of the more interesting ones which we will see or have seen:

RNN: Recurrent Neural Network
LSTM: Long/Short Term Memory
CNN: Convolutional Neural Network
DAN: Deep Averaging Network
GAN: Generative Adversarial Network

Others worth noting
VAE (Variational Autoencoder): Generating new data from datasets

Not in the Zoo, but of note:
: Networks with “attention”

From

“Neural Network Zoo”

Transformer
Attention is All You Need

http://www.asimovinstitute.org/neural-network-zoo/
http://jalammar.github.io/illustrated-transformer/
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

CNN: Convolutional NN
Networks that excel at object detection (in images)
Can be applied to other data as well
Ex.: Inception-v3

https://ai.googleblog.com/2016/03/train-your-own-image-classifier-with.html

DAN: Deep Averaging Network
DANs are simple networks that simply average their inputs
Averaged inputs are then processed a few times
These networks have found a home in NLP

Ex.: Universal Sentence Encoder

https://tfhub.dev/google/universal-sentence-encoder/4

RNN: Recurrent NN
Recurrent neural networks embed a history of information in the network

The previous computation affects the next one
Leads to a short term memory

Used for speech recognition, image captioning, anomaly detection, and many others
Also the foundation of LSTM

)SketchRNN (live demo

https://ai.googleblog.com/2017/04/teaching-machines-to-draw.html
file:///M:/Dropbox/Teaching/Data_Analytics/2023_Fall/Slides/Session_10/Session_10-pre.html?print-pdf=
https://magenta.tensorflow.org/assets/sketch_rnn_demo/index.html

LSTM: Long Short Term Memory
LSTM improves the long term memory of the network while explicitly modeling a short
term memory
Used wherever RNNs are used, and then some

Ex.: (machine translation)Seq2seq

https://google.github.io/seq2seq/

Transformer
Shares some similarities with RNN and LSTM: Focuses on attention
Currently being applied to solve many types of problems
Examples: BERT, GPT-3, XLNEt, , ChatGPTRoBERTa

https://app.inferkit.com/demo

Vector space models

Motivating examples

https://research.google.com/semantris/
https://research.google.com/semantris/
https://books.google.com/talktobooks/
https://books.google.com/talktobooks/

What are “vector space models”
Different ways of converting some abstract information into numeric information

Focus on maintaining some of the underlying structure of the abstract information
Examples (in chronological order):

Word vectors:

Sentence vectors:

Word2vec
GloVe

Universal Sentence Encoder

https://www.tensorflow.org/tutorials/representation/word2vec
https://nlp.stanford.edu/projects/glove/
https://tfhub.dev/google/universal-sentence-encoder-large/5

Word vectors
Instead of coding individual words, encode word meaning
The idea:

Our old way (encode words as IDs from 1 to N) doesn’t understand relationships such
as:

Spatial
Categorical
Grammatical (weakly when using stemming)
Social
etc.

Word vectors try to encapsulate all of the above
They do this by encoding words as a vector of different features

Word vectors: Simple example
words f_animal f_people f_location
dog 0.5 0.3 -0.3
cat 0.5 0.1 -0.3
Bill 0.1 0.9 -0.4
turkey 0.5 -0.2 -0.3
Turkey -0.5 0.1 0.7
Singapore -0.5 0.1 0.8

The above is an idealized example
Notice how we can tell apart different animals based on their relationship with people
Notice how we can distinguish turkey (the animal) from Turkey (the country) as well

What it retains: word2vec

Relations are retained as vectors between points (distance + direction)

https://www.tensorflow.org/tutorials/representation/word2vec#visualizing_the_learned_embeddings

What it retains: GloVe

https://nlp.stanford.edu/projects/glove/

How to build word vectors
Two ways:
1. Word co-occurrence (like how LDA worked)

Global Vectors (GloVe) works this way
Available from the package

2. Word order (using an NN)
word2vec works this way

Available from the {rword2vec} package
Uses a 2 layer neural network

text2vec

http://text2vec.org/

How does word order work?
Infer a word’s meaning from the words around it

Refered to as CBOW (continuous bag of words)

How else can word order work?
Infer a word’s meaning by generating words around it

Refered to as the Skip-gram model

When are vector embeddings useful?
1. You care about the words used, by not stylistic choices
2. You want to crunch down a bunch of words into a smaller number of dimensions

without running any bigger models (like LDA) on the text.

Demo: rmc.link/colab_w2v

https://rmc.link/colab_w2v

Understanding phrases (or larger)

Document vectors
Document vectors work very similarly to word vectors

1 added twist: a document/paragraph/sentence level factor variable
This is used to learn a vector representation of each text chunk
Generally learned simultaneously with the word vectors

This is quite related to what we learned with LDA as well!
Both can tell us the topics discussed

Universal Sentence Encoder (USE)
We saw this briefly last week

This is the algorithm with less bias
Focused on representing sentence-length chunks of text

A fun example of with USE
Predict Shakespeare with Cloud TPUs and Keras

https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/shakespeare_with_tpu_and_keras.ipynb

Cavaet on using USE
One big caveat: USE only knows what it’s trained on

Ex.: Feeding the same USE algorithm WSJ text

Samsung Electronics Co., suffering a handset sales slide, revealed a foldable-
screen smartphone that folds like a book and opens up to tablet size. Ah,
horror? I play Thee to her alone;
And when we have withdrom him, good all.
Come, go with no less through.

Enter Don Pedres. A flourish and my money. I will tarry. Well, you do!

LADY CAPULET.
Farewell; and you are

How does USE work?
USE is based on DAN and Transformer

Learns the meaning of sentences via words’ meanings (which it also learns)
Learn more: and
In practice, it works quite well

Original paper TensorFlow page

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46808.pdf
https://tfhub.dev/google/universal-sentence-encoder-large/5

Try it out!
Run on

Python code
Just click the cells in order, and click run
Colab provides free servers to run the code on

It still takes a few minutes to run though

Google Colab

Look for the comment # Add your own messages here. You can add
custom messages to customize the figure and learn what USE understands

https://rmc.link/colab_use

Bringing this into accounting

Crowley and Wong (2023), “Understanding Sentiment through Context”
Data: Annual report MD&A sections
Premise: Understand whether positive and negative discussion are reacted to
differently by markets conditional on what is being discussed
Why USE?: We use it to abstract away from word choice and cluster text by its meaning

Understanding how markets react to sentiment-language laden discussion in
annual reports

Result: Yes – positive discussion is not always positive, and negative
discussion is not always negative

Other Transformer models
Various GPT models (OpenAI)

Such as and
 – This one is open source

The model underlying Google’s BARD chat AI

Now used for Google Search in at least 70 languages

ChatGPT GPT-4
LLAMA 2 (Facebook)
PaLM 2 (Google)

Claude v1 (Anthropic)
BERT (Google)

https://openai.com/blog/chatgpt
https://openai.com/research/gpt-4
https://about.fb.com/news/2023/07/llama-2/
https://ai.google/discover/palm2/
https://www.anthropic.com/index/introducing-claude
https://blog.google/products/search/search-language-understanding-bert/

What is a GPT model?

Large: many parameters in the model (usually >1 billion)
Language: the models are trained by seeing a large amount of written text

They infer everything from language
Model: It’s just an algorithm like everything else

Generative: It provides answers by generating an answer based on some latent space,
as opposed to selecting answers it has previously seen
Pre-trained: It’s seen a lot of data already. That does not preclude it from seeing more.
Transformer: It’s based on a transformer neural network

A GPT model is a type of Large Language Model (LLM)

What does GPT mean? Generative Pre-trained Transformers

What can ____-GPT do?
What can they do

Classify data based on a small
number of examples

“Few shot learning”
Provide answers in flexible/trainable
formats
Encode and decode language
Pattern matching
Images as language

What can they not do
Unless you train it yourself, it won’t
have much domain-specific
knowledge
Beat single-purpose SOTA algorithms
on most tasks

How do different GPT models vary?

GPT-2: 2,048 tokens
~2 single-spaced pages each for a question and response

GPT-3: 4,096 tokens
GPT-3.5: 4,096
Chat-GPT: 4,096 tokens
GPT-4: 8,096 or 32,384 tokens

The larger model can handle ~30 pages single spaced, each, for a question and
response

Context length – the amount of text it can handle at once

Let’s build one!

This is a simple GPT
12,656 parameters
2 possible tokens
A context length of 3

As a comparison, GPT-2 has:
1.5 billion parameters
50,257 possible tokens
a context length of 2,048

The arrows show transition from a set of 3 characters (0 or 1) to the next. In this process, the le�-most character is dropped, the remaining two characters shi� le�, and a
new character is added to the right side.

Look for the following:
1. That it encodes simple patterns in the data well
2. That answers are effectively probabilistic
3. Why hallucination occurs

To build it, go to: rmc.link/colab_gpt2

How to interpret the network

https://rmc.link/colab_gpt2

End Matter

Discussion

Brainstorm with your group and try to come up with 1 good use for some technique
discussed today
Each group will be asked to share 1 use

What creative uses for the techniques discussed today do you expect to see
become reality in accounting in the next 3-5 years?

Recap
Today, we:

Learned formally what neural networks (NNs) are
Discussed a variety of NN-based algorithms
Saw uses for word and sentence vectors in a financial context

Wrap up
For next week:

Work on the group project!
Definitely try to get a submission in on Kaggle

We’ll keep talking about neural networks
A bit more theory
A lot more examples
Some real neural networks coded in R

Survey on the class session at this QR code:

Packages used for these slides
DT
downlit
kableExtra
knitr
plotly
quarto
revealjs
tidyverse

https://github.com/rstudio/DT
https://downlit.r-lib.org/
http://haozhu233.github.io/kableExtra/
https://yihui.org/knitr/
https://plotly-r.com/
https://github.com/quarto-dev/quarto-r
https://github.com/rstudio/revealjs
https://tidyverse.tidyverse.org/

Generating Shakespeare
seed_txt = 'Looks it not like the king? Verily, we must go! ' # Original code
seed_txt = 'SCENE I. Elsinore. A platform before the Castle.\n\n Enter Francisco and Barnardo, two sentinel
seed_txt = 'Samsung Electronics Co., suffering a handset sales slide, revealed a foldable-screen smartphone
From: https://www.wsj.com/articles/samsung-unveils-foldable-screen-smartphone-1541632221

