
ACCT 420: ML/AI for visual data
Dr. Richard M. Crowley

https://rmc.link/
rcrowley@smu.edu.sg

mailto:rcrowley@smu.edu.sg

Front Matter

Learning objectives
Theory:

Neural Networks for…
Images
Audio
Video

Application:
Handwriting recognition
Identifying financial information in
images

Methodology:
Neural networks

CNNs
Transformers

Group project
Next class you will have an opportunity to present your work

~12-15 minutes per group
You will also need to submit your report & code

Please submit as a zip file
Be sure to include your report AND code AND slides

Code should cover your final model
Covering more is fine though

Do not include the data!
Competitions close Monday at 12 noon!

Image data

Thinking about images as data
Images are data, but they are very unstructured

No instructions to say what is in them
No common grammar across images
Many, many possible subjects, objects, styles, etc.

From a computer’s perspective, images are just 3-dimensional matrices
Rows (pixels)
Columns (pixels)
Color channels (usually Red, Green, and Blue)

Using images as data
We can definitely use numeric matrices as data

We did this plenty with XGBoost, for instance
However, images have a lot of different numbers tied to each observation (image).

Source: Twitter

798 rows
1200 columns
3 color channels
798 1,200 3 2,872,800

The number of ‘variables’ per
image like this!

× × =

Using images in practice
There are a number of strategies to shrink images’ dimensionality
1. Downsample the image to a smaller resolution like 256x256x3
2. Convert to grayscale
3. Cut the image up and use sections of the image as variables instead of individual

numbers in the matrix
O�en done with convolutions in neural networks

4. Drop variables that aren’t needed, like LASSO

Images in R using Keras

R interface to Keras

Install with: devtools::install_github("rstudio/keras")
Finish the install in one of two ways:

For those using
CPU Based, works on any computer

Nvidia GPU based
Install the
first

Using your own python setup
Follow Google’s

Install keras from a terminal with pip
install keras
R Studio’s keras package will
automatically find it

May require a reboot to work on
Windows

By R Studio: details here

Conda

()
()

library keras
install_keras

So�ware requirements

()
(tensorflow = "gpu")

library keras
install_keras

install instructions for
Tensorflow

https://keras.rstudio.com/index.html
https://docs.conda.io/en/latest/
https://rdrr.io/r/base/library.html
https://tensorflow.rstudio.com/
https://rdrr.io/pkg/keras/man/install_keras.html
https://www.tensorflow.org/install/gpu
https://rdrr.io/r/base/library.html
https://tensorflow.rstudio.com/
https://rdrr.io/pkg/keras/man/install_keras.html
https://www.tensorflow.org/install
https://www.tensorflow.org/install

The “hello world” of neural networks
A “Hello world” is the standard first program one writes in a language
In R, that could be:

For neural networks, the “Hello world” is writing a handwriting classification script
We will use the MNIST database, which contains many writing samples and the
answers
Keras provides this for us :)

("Hello world!")print
[1] "Hello world!"

()
mnist <- ()
library keras

dataset_mnist

https://rdrr.io/r/base/print.html
https://rdrr.io/r/base/library.html
https://tensorflow.rstudio.com/
https://rdrr.io/pkg/keras/man/dataset_mnist.html

Set up and pre-processing
We still do training and testing samples

It is just as important here as before!

Shape and scale the data into a big matrix with every value between 0 and 1

x_train <- mnist$train$x
y_train <- mnist$train$y
x_test <- mnist$test$x
y_test <- mnist$test$y

784 × 1

reshape
x_train <- (x_train, ((x_train), 784))
x_test <- (x_test, ((x_test), 784))
rescale
x_train <- x_train / 255
x_test <- x_test / 255

array_reshape c nrow
array_reshape c nrow

https://rstudio.github.io/reticulate/reference/array_reshape.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/nrow.html
https://rstudio.github.io/reticulate/reference/array_reshape.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/nrow.html

Building a Neural Network

Relu is the same as a call option payoff:
So�max approximates the function

Which input was highest?
Note that the units = 10 maps to the number of categories in the data

model <- () # Open an interface to tensorflow
Set up the neural network
model
 (units = 256, activation = 'relu', input_shape = (784))
 (rate = 0.4)
 (units = 128, activation = 'relu')
 (rate = 0.3)
 (units = 10, activation = 'softmax')

keras_model_sequential

%>%
layer_dense c %>%
layer_dropout %>%
layer_dense %>%
layer_dropout %>%
layer_dense

That’s it. Keras makes it easy.

max(x, 0)

argmax

https://rdrr.io/pkg/keras/man/keras_model_sequential.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/keras/man/layer_dense.html
https://rdrr.io/r/base/c.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/keras/man/layer_dropout.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/keras/man/layer_dense.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/keras/man/layer_dropout.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/keras/man/layer_dense.html

The model
We can just call on the model to see what we builtsummary()

(model)summary
Model: "sequential_1"
__
 Layer (type) Output Shape Param #
==
 dense (Dense) (None, 256) 200960
 dropout (Dropout) (None, 256) 0
 dense_1 (Dense) (None, 128) 32896
 dropout_1 (Dropout) (None, 128) 0
 dense_2 (Dense) (None, 10) 1290
==
Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0
__

https://rdrr.io/r/base/summary.html
https://rdrr.io/r/base/summary.html

Compile the model
Tensorflow doesn’t compute anything until you tell it to
A�er we have set up the instructions for the model, we compile it to build our actual
model

model (
 loss = 'sparse_categorical_crossentropy',
 optimizer = (),
 metrics = ('accuracy')
)

%>% compile

optimizer_rmsprop
c

https://magrittr.tidyverse.org/reference/pipe.html
https://generics.r-lib.org/reference/compile.html
https://rdrr.io/pkg/keras/man/optimizer_rmsprop.html
https://rdrr.io/r/base/c.html

Running the model
It takes about 1 minute to run on an Nvidia GTX 1080

history <- model (
 x_train, y_train,
 epochs = 30, batch_size = 128,
 validation_split = 0.2
)

%>% fit (history)plot

https://magrittr.tidyverse.org/reference/pipe.html
https://generics.r-lib.org/reference/fit.html
https://rdrr.io/r/graphics/plot.default.html

Out of sample testing
eval <- model (x_test, y_test)
eval

%>% evaluate

$loss
[1] 0.1117176

$accuracy
[1] 0.9812

98% accurate! Random chance would only be 10%

https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/tensorflow/man/evaluate.html

Saving the model
Saving:

Loading an already trained model:

model ("../../Data/Session_11-mnist_model.h5")%>% save_model_hdf5

model <- ("../../Data/Session_11-mnist_model.h5")load_model_hdf5

https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/keras/man/save_model_hdf5.html
https://rdrr.io/pkg/keras/man/save_model_hdf5.html

More advanced image techniques

How CNNs work
CNNs use repeated convolution, usually looking at slightly bigger chunks of data each
iteration
But what is convolution? It is illustrated by the following graphs (from):Wikipedia

Further reading

https://en.wikipedia.org/wiki/Convolution
http://colah.github.io/posts/2014-07-Understanding-Convolutions/

CNN example: Alexnet
Example output of AlexNet The first (of 5) layers learned

Recent attempts at explaining CNNs
Google & Stanford’s “Automated Concept-based Explanation”

https://venturebeat.com/2019/10/14/googles-ai-explains-how-image-classifiers-made-their-decisions/
https://venturebeat.com/2019/10/14/googles-ai-explains-how-image-classifiers-made-their-decisions/

Try out a CNN in your browser!

: A dataset of clothing pictures
Keras: An easier API for TensorFlow
TPU: A “Tensor Processing Unit” – A custom processor built by Google
Python code

Fashion MNIST with Keras and TPUs
Fashion MNIST

https://colab.research.google.com/drive/1U_GYz2NP1yVDKkqTTXa_GQN7OvY8CpnJ?usp=sharing
https://github.com/zalandoresearch/fashion-mnist

Detecting financial content with a CNN

The data
5,000 images that should not contain financial information
2,777 images that should contain financial information
500 of each type are held aside for testing

Goal: Build a classifier based on the images’ content

Examples: Financial

Examples: Non-financial

The CNN
(model)summary

Model: "sequential"
__
 Layer (type) Output Shape Param # Trainable
==
 conv2d (Conv2D) (None, 254, 254, 32) 896 Y
 re_lu (ReLU) (None, 254, 254, 32) 0 Y
 conv2d_1 (Conv2D) (None, 252, 252, 16) 4624 Y
 leaky_re_lu (LeakyReLU) (None, 252, 252, 16) 0 Y
 batch_normalization (BatchNor (None, 252, 252, 16) 64 Y
 malization)
 max_pooling2d (MaxPooling2D) (None, 126, 126, 16) 0 Y
 dropout (Dropout) (None, 126, 126, 16) 0 Y
 flatten (Flatten) (None, 254016) 0 Y
 dense (Dense) (None, 20) 5080340 Y
 activation (Activation) (None, 20) 0 Y
dropout 1 (Dropout) (None 20) 0 Y

https://rdrr.io/r/base/summary.html

Running the model
It takes about 10 minutes to run on an Nvidia GTX 1080

history <- model (
 img_train, # training data
 epochs = 10, # epoch
 steps_per_epoch =
 (train_samples/batch_size),
 # print progress
 verbose = 2,
)

%>% fit_generator

as.integer

(history)plot

https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/keras/man/fit_generator.html
https://rdrr.io/r/base/integer.html
https://rdrr.io/r/graphics/plot.default.html

Out of sample testing
eval <- model
 (img_test,
 steps = (test_samples / batch_size),
 workers = 4)
eval

%>%
evaluate_generator

as.integer

$loss
[1] 0.7535837

$accuracy
[1] 0.6572581

https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/keras/man/evaluate_generator.html
https://rdrr.io/r/base/integer.html

Optimizing the CNN
The model we saw was run for 10 epochs (iterations)
Why not more? Why not less?

history <- ('../../Data/Session_11-tweet_history-30epoch.rds')
(history)

readRDS
plot

https://rdrr.io/r/base/readRDS.html
https://rdrr.io/r/graphics/plot.default.html

Video data

Working with video
Video data is challenging – very storage intensive

Ex.: Uber’s self driving cars would generate >100GB of data per hour per car
Video data is very promising

Think of how many task involve vision!
Driving
Photography
Warehouse auditing…

At the end of the day though, video is just a sequence of images

One method for video
YOLOv3

You
Only

Once

You Only Look Once: Because the algorithm only does one pass (looks once)
to classify any and all objects

Video link

https://www.youtube.com/watch?v=MPU2HistivI

What does YOLO do?
It spots objects in videos and labels them

It also figures out a bounding box – a box containing the object inside the video frame
It can spot overlapping objects
It can spot multiple of the same or different object types
The baseline model (using the COCO dataset) can detect 80 different object types

There are other datasets with more objects

How does Yolo do it? Map of Tiny YOLO

Yolo model and graphing tool from lutzroeder/netron

https://github.com/lutzroeder/netron

How does Yolo do it?

Diagram from by Ayoosh KathuriaWhat’s new in YOLO v3

https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b

Final word on object detection
An algorithm like YOLO v3 is somewhat tricky to run
Preparing the algorithm takes a long time

The final output, though, can run on much cheaper hardware
These algorithms just recently became feasible so their impact has yet to be felt so
strongly

Think about how facial recognition showed up everywhere for images over
the past few years

Where to get video data
One extensive source is

6.1M videos, 3-10 minutes each
Each video has >1,000 views
350,000 hours of video
237,000 labeled 5 second segments
1.3B video features that are machine labeled
1.3B audio features that are machine labeled

Youtube-8M

https://research.google.com/youtube8m/

A word on ethics of object detection

From Redmon and Farhadi (2018) [The YOLO v3 paper]

Combining images and text in 1 model

Large language models + Images
Multiple impactful models were released since 2021 that merge text and image
processing into a single model

CLIP: Contrastive Language-Image Pre-training
Pairs images with captions

Stable Diffusion
Image generation from text

These work by embedding images and text into the same embedding space

CLIP
Code for this is available at: rmc.link/colab_clip

https://rmc.link/colab_clip

Stable diffusion: Content
Code to implement as a Telegram bot:

“A photo of the Singapore skyline
including Marina Bay Sands”

“Singapore Management University”

rmcrowley2000/StableDiffBot

https://github.com/rmcrowley2000/StableDiffBot

Stable diffusion: Style
“Lithograph of a camel eating a pear” “A cartoon icon of a dog getting a hair

cut.”

Stable diffusion: Problems
“Sustainability data” “A cavapoo enjoying a nice warm cup of

tea”

Stable diffusion: Complexity
“Tiny cute isometric living room in a cutaway box, so� smooth lighting, so� colors, purple
and blue color scheme, so� colors, 100mm lens, 3d blender render”

End Matter

Recap
Today, we:

Learned about using images as data
Constructed a simple handwriting recognition system
Learned about more advanced image methods
Applied CNNs to detect financial information in images on Twitter
Learned about object detection in videos
Learned about methods combining images and text

Wrap up
For next week:

Finish the group project!
1. Kaggle submission closes Monday!
2. Turn in your code, presentation, and report through eLearn’s dropbox
3. Prepare a short (~12-15 minute) presentation for class

Survey on the class session at this QR code:

More fun examples
Interactive:

Others:

Performance RNN
TensorFlow.js examples

Google’s deepdream
Open NSynth Super

https://magenta.tensorflow.org/demos/performance_rnn/index.html#2%7C2,0,1,0,1,1,0,1,0,1,0,1%7C1,1,1,1,1,1,1,1,1,1,1,1%7C1,1,1,1,1,1,1,1,1,1,1,1%7Cfalse
https://js.tensorflow.org/
https://github.com/google/deepdream
https://github.com/googlecreativelab/open-nsynth-super

Bonus: Neural networks in interactive media

Trained on 180 years of play

Trained on 200 years of play

Super Mario using MarI/O
Mario Kart using an RNN for controller prediction
Open AI’s Five tops Dota 2

Google Deepmind’s Alphastar AI on StarCra� II

file:///M:/Dropbox/Teaching/Data_Analytics/2023_Fall/Slides/Session_11/Session_11-pre.html?print-pdf=
https://www.twitch.tv/sethbling/clip/FrigidBillowingBasenjiCopyThis?filter=clips&range=all&sort=time
https://openai.com/five/
https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement-learning

Packages used for these slides
DT
downlit
kableExtra
keras
knitr
plotly
quarto
revealjs
tidyverse

https://github.com/rstudio/DT
https://downlit.r-lib.org/
http://haozhu233.github.io/kableExtra/
https://tensorflow.rstudio.com/
https://yihui.org/knitr/
https://plotly-r.com/
https://github.com/quarto-dev/quarto-r
https://github.com/rstudio/revealjs
https://tidyverse.tidyverse.org/

