
ACCT 420: Textual analysis
Dr. Richard M. Crowley

https://rmc.link/
rcrowley@smu.edu.sg

mailto:rcrowley@smu.edu.sg

Front Matter

Learning objectives
Theory:

Natural Language Processing
Application:

Analyzing a Citigroup annual report
Methodology:

Text analysis
Machine learning

Datacamp

The first chapter is helpful if you find the code in this lesson to be a bit too tricky
You are welcome to do more, of course

I will generally follow the same “tidy text” principles as the Datacamp course does – the
structure keeps things easy to manage

We will sometimes deviate to make use of certain libraries, which, while less tidy,
make our work easier than the corresponding tidy-oriented packages (if they even
exist!)

Sentiment analysis in R the Tidy way

https://www.datacamp.com/courses/sentiment-analysis-in-r-the-tidy-way

Textual data and textual analysis

Review of Session 6
Last session we saw that textual measures can help improve our fraud detection
algorithm
We actually looked at a bunch of textual measures:

Sentiment
Readability
Topic/content

We didn’t see how to make these though…
Instead, we had a nice premade dataset with everything already done

We’ll get started on these today – sentiment and readability

We’ll cover topic modeling next session

Why is textual analysis harder?
Thus far, everything we’ve worked with is what is known as structured data

Structured data is numeric, nicely indexed, and easy to use
Text data is unstructured

If we get an annual report with 200 pages of text…
Where is the information we want?
What do we want?
How do we crunch 200 pages into something that is…
1. Manageable? (Structured)
2. Meaningful?

This is what we will work on today, and we will revist some of this in the
remaining class sessions

Unstructured data
Text

Open responses to question, reports, etc.
What it isn’t:
"JANUARY", "ONE", "FEMALE"
Months, numbers
Anything with clear and concise categories

Images, such as satellite imagery
Audio, such as phone call recordings
Video, such as security camera footage

All of these require us to determine and impose structure

Some ideas of what we can do
1. Text extraction

Find all references to the CEO
Find if the company talked about global warming
Pull all telephone numbers or emails from a document

2. Text characteristics
How varied is the vocabulary?
Is it positive or negative (sentiment)
Is it written in a strong manner?

3. Text summarization or meaning
What is the content of the document?
What is the most important content of the document?
What other documents discuss similar issues?

Where might we encounter text data in business
1. Business contracts
2. Legal documents
3. Any paperwork
4. News
5. Customer reviews or feedback

Including transcription (call centers)
6. Consumer social media posts
7. Chatbots and AI assistants

Natural Language Processing (NLP)
NLP is the subfield of computer science focused on analyzing large amounts of
unstructured textual information

Much of the work builds from computer science, linguistics, and statistics
Unstructured text actually has some structure derived from language itself

Word selection
Grammar
Phrases
Implicit orderings

NLP utilizes this implicit structure to better understand textual data

NLP in everyday life
Autocomplete of the next word in phone keyboards

Demo below from
Voice assistants like Google Assistant, Siri, Cortana, and Alexa
Article suggestions on websites
Search engine queries
Email features like missing attachment detection

Google’s blog

https://www.blog.google/products/search/gboard-now-on-android/

Case: How leveraging NLP helps call centers

Short link:
Natural Language Processing in Call Centers

rmc.link/420class7

What are call centers using NLP for?

How does NLP help call centers with their business?

https://rmc.link/420class7
https://rmc.link/420class7

Consider

We can use it for call centers
We can make products out of it (like and other tech firms)
Where else?

Where an we make use of NLP in business?

Google Duplex

https://youtu.be/D5VN56jQMWM?t=68

Working with 1 text file

Before we begin: Special characters
Some characters in R have special meanings for string functions
\ | () [{ } ^ $ * + ? . !

To type a special character, we need to precede it with a \
Since \ is a special character, we’ll need to put \ before \…

To type $, we would use \\$
Also, some spacing characters have special symbols:
\t is tab
\r is newline (files from Macs)
\r\n is newline (files from Windows)
\n is newline (files from Unix, Linux, etc.)
You’ll need to write \\ to get the backslashes though

Loading in text data from files
Use read_file() from ’s package to read in text data
We’ll use

Note that there is a full text link at the bottom which is a .txt file
I will instead use a cleaner version derived from the linked file

The cleaner version can be made using the same techniques we will discuss today

tidyverse readr
Microso�’s annual report from 2021

Read text from a .txt file using read_file()
doc <- read_file("../../Data/0001564590-21-039151.txt")
str_wrap is from stringr from tidyverse
The first 500 characters of the second paragraph

(str_wrap((doc,1728,2228), 80))cat substring
Microsoft is a technology company whose mission is to empower every person
and every organization on the planet to achieve more. We strive to create
local opportunity, growth, and impact in every country around the world. Our
platforms and tools help drive small business productivity, large business
competitiveness, and public-sector efficiency. They also support new startups,
improve educational and health outcomes, and empower human ingenuity. We bring
technology and products together into ex

https://tidyverse.tidyverse.org/
https://readr.tidyverse.org/
https://www.sec.gov/ix?doc=/Archives/edgar/data/789019/000156459021039151/msft-10k_20210630.htm
https://rdrr.io/r/base/cat.html
https://rdrr.io/r/base/substr.html

Loading from other file types
Ideally you have a .txt file already – such files are generally just the text of the
documents
Other common file types:

HTML files (particularly common from web data)
You can load it as a text file – just note that there are html tags embedded in it

Things like <a>, <table>, , etc.
You can load from a URL using or {RCurl}
In R, you can use or to parse out specific pieces of html files
If you use python, use lxml or BeautifulSoup 4 (bs4) to quickly turn these into
structured documents
In R, you can process JSON data using

httr
XML rvest

jsonlite

https://httr.r-lib.org/
https://www.omegahat.net/RSXML/
https://rvest.tidyverse.org/
https://jeroen.r-universe.dev/jsonlite

Loading from other file types
Ideally you have a .txt file already – such files are generally just the text of the
documents
Other common file types:

PDF files
Use to extract text into a vector of pages of text
Use {tabulizer} to extract tables straight from PDF files!

This is very painful to code by hand without this package
The package itself is a bit difficult to install, requiring Java and , though

pd�ools

rJava

https://docs.ropensci.org/pdftools/
http://www.rforge.net/rJava/

Example using html
()
()

httpResponse <- ('https://coinmarketcap.com/currencies/ethereum/')
html = httr:: (httpResponse, "text")

('...', str_wrap((html, 11305, 11363), 80), '...')

library httr
library XML

GET
content

paste0 substring
[1] "...ntent=\"The live Ethereum price today is $1,590.58 USD with..."

xpath <- '//*[@id="section-coin-overview"]/div[2]/span/text()'
hdoc = (html, asText=TRUE) # from XML
price <- (hdoc, xpath, xmlValue)

(("Ethereum was priced at ", price,
 " when these slides were compiled"))

htmlParse
xpathSApply

print paste0

[1] "Ethereum was priced at $1,590.54 when these slides were compiled"

https://rdrr.io/r/base/library.html
https://httr.r-lib.org/
https://rdrr.io/r/base/library.html
https://www.omegahat.net/RSXML/
https://httr.r-lib.org/reference/GET.html
https://httr.r-lib.org/reference/content.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/substr.html
https://rdrr.io/pkg/XML/man/xmlTreeParse.html
https://rdrr.io/pkg/XML/man/getNodeSet.html
https://rdrr.io/r/base/print.html
https://rdrr.io/r/base/paste.html

Automating crypto pricing in a document
The actual version I use (with caching to avoid repeated lookups) is in the appendix
cryptoMC <- function(name) {
 httpResponse <- (('https://coinmarketcap.com/currencies/',name,'/',sep=''))
 html = httr:: (httpResponse, "text")
 xpath <- '//*[@id="section-coin-overview"]/div[2]/span/text()'
 hdoc = (html, asText=TRUE)
 plain.text <- (hdoc, xpath, xmlValue)
 plain.text
}

GET paste
content

htmlParse
xpathSApply

("Ethereum was priced at", cryptoMC("ethereum"))paste
[1] "Ethereum was priced at $1,590.64"

("Litecoin was priced at", cryptoMC("litecoin"))paste
[1] "Litecoin was priced at $64.70"

https://httr.r-lib.org/reference/GET.html
https://rdrr.io/r/base/paste.html
https://httr.r-lib.org/reference/content.html
https://rdrr.io/pkg/XML/man/xmlTreeParse.html
https://rdrr.io/pkg/XML/man/getNodeSet.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/paste.html

Basic text functions in R
Subsetting text
Transformation

Changing case
Adding or combining text
Replacing text
Breaking text apart

Finding text

Every function in can take a vector of strings for the first argument, which is tidy

We will cover these using as opposed to base R – ’s commands
are much more consistent

stringr stringr

stringr

https://stringr.tidyverse.org/
https://stringr.tidyverse.org/
https://stringr.tidyverse.org/

Subsetting text
Base R: Use or

: use str_sub()
First argument is a vector of strings
Second argument is the starting position (inclusive)
Third argument is that ending position (inclusive)

substr() substring()
stringr

(str_wrap(str_sub(doc, 138177, 138384), 80))cat
In fiscal year 2021, the COVID-19 pandemic continued to impact our business
operations and financial results. Cloud usage and demand benefited as customers
accelerate their digital transformation priorities.

(str_wrap(str_sub(doc, 144162 , 144476), 80))cat
Operating expenses increased $2.0 billion or 4% driven by investments in cloud
engineering and commercial sales, offset in part by savings related to COVID-19
across each of our segments, prior year charges associated with the closing of
our Microsoft Store physical locations, and a reduction in bad debt expense.

https://rdrr.io/r/base/substr.html
https://rdrr.io/r/base/substr.html
https://stringr.tidyverse.org/
https://rdrr.io/r/base/cat.html
https://rdrr.io/r/base/cat.html

Transforming text
Commonly used functions:

 or str_to_lower(): make the text lowercase
 or str_to_upper(): MAKE THE TEXT UPPERCASE

str_to_title(): Make the Text Titlecase
 to combine text

It puts spaces between by default
You can change this with the sep= option

If everything to combine is in 1 vector, use collapse= with the desired separator
 is paste with sep=""

tolower()
toupper()

paste()

paste0()

https://rdrr.io/r/base/chartr.html
https://rdrr.io/r/base/chartr.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/paste.html

Examples: Case

The str_ prefixed functions support non-English languages as well

sentence <- str_sub(doc, 138287, 138384)
str_to_lower(sentence)

[1] "cloud usage and demand benefited as customers accelerate their digital transformation priorities. "
str_to_upper(sentence)

[1] "CLOUD USAGE AND DEMAND BENEFITED AS CUSTOMERS ACCELERATE THEIR DIGITAL TRANSFORMATION PRIORITIES. "
str_to_title(sentence)

[1] "Cloud Usage And Demand Benefited As Customers Accelerate Their Digital Transformation Priorities. "

You can run this in an R terminal! (It doesn't work in Rmarkdown though)
str_to_upper("Cloud usage and demand benefited...", locale='tr') # Turkish

Examples: paste
board is a list of director names
titles is a list of the director's titles

(board, titles, sep=", ")paste
 [1] "Reid Hoffman, Partner, Greylock Partners"
 [2] "Hugh Johnston, Vice Chairman and Chief Financial Officer, PepsiCo"
 [3] "Teri List, Former Executive Vice President and Chief Financial Officer, Gap Inc."
 [4] "Satya Nadella, Chairman and Chief Executive Officer"
 [5] "Sandra E. Peterson, Lead Independent Director"
 [6] "Penny Pritzker, Founder and Chairman, PSP Partners"
 [7] "Carlos Rodriguez, Executive Chair, ADP, Inc."
 [8] "Charles W. Scharf, CEO and President, Wells Fargo & Company"
 [9] "John W. Stanton, Chairman, Trilogy Partnerships"
[10] "John W. Thompson, Partner, Lightspeed Venture Partners"
[11] "Emma Walmsley, CEO, GSK"
[12] "Padmasree Warrior, Founder, President and CEO, Fable Group Inc."

(str_wrap(("Microsoft's board consists of: ",
 (board[1: (board)-1], collapse=", "),
 ", and ", board[(board)], "."), 80))

cat paste0
paste length

length
Microsoft's board consists of: Reid Hoffman, Hugh Johnston, Teri List, Satya
Nadella, Sandra E. Peterson, Penny Pritzker, Carlos Rodriguez, Charles W.
Scharf, John W. Stanton, John W. Thompson, Emma Walmsley, and Padmasree Warrior.

https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/cat.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/length.html
https://rdrr.io/r/base/length.html

Transforming text
Replace text with str_replace_all()

First argument is text data
Second argument is what you want to remove
Third argument is the replacement

If you only want to replace the first occurrence, use str_replace() instead

sentence
[1] "Cloud usage and demand benefited as customers accelerate their digital transformation priorities. "

str_replace_all(sentence, "digital transformation", "data science")
[1] "Cloud usage and demand benefited as customers accelerate their data science priorities. "

Transforming text
Split text using str_split()

This function returns a list of vectors!
This is because it will turn every string passed to it into a vector, and R can’t have a
vector of vectors

[[1]] can extract the first vector
You can also limit the number of splits using n=

A bit more elegant solution is using str_split_fixed() with n=
Returns a character matrix (nicer than a list)

Example: Splitting text
paragraphs <- str_split(doc, '\n')[[1]]

number of paragraphs
(paragraphs)length

[1] 474
First paragraph of the MD&A

(str_wrap(paragraphs[206], 80))cat
The following Management’s Discussion and Analysis of Financial Condition
and Results of Operations (“MD&A”) is intended to help the reader understand
the results of operations and financial condition of Microsoft Corporation.
MD&A is provided as a supplement to, and should be read in conjunction with,
our consolidated financial statements and the accompanying Notes to Financial
Statements (Part II, Item 8 of this Form 10-K). This section generally discusses
the results of our operations for the year ended June 30, 2021 compared to
the year ended June 30, 2020. For a discussion of the year ended June 30, 2020
compared to the year ended June 30, 2019, please refer to Part II, Item 7,
“Management’s Discussion and Analysis of Financial Condition and Results of
Operations” in our Annual Report on Form 10-K for the year ended June 30, 2020.

https://rdrr.io/r/base/length.html
https://rdrr.io/r/base/cat.html

Finding phrases in text
How did I find the previous examples?

str_locate_all(str_to_lower(doc), "net income")
[[1]]
 start end
 [1,] 139992 140001
 [2,] 142476 142485
 [3,] 144664 144673
 [4,] 144834 144843
 [5,] 148712 148721
 [6,] 151464 151473
 [7,] 177859 177868
 [8,] 216135 216144
 [9,] 217104 217113
[10,] 218151 218160
[11,] 219629 219638

Finding phrases in text
4 primary functions:
1. str_detect(): Reports TRUE or FALSE for the presence of a string in the text
2. str_count(): Reports the number of times a string is in the text
3. str_locate(): Reports the first location of a string in the text

str_locate_all(): Reports every location as a list of matrices
4. str_extract(): Reports the matched phrases
All take a character vector as the first argument, and something to match for the
second argument

Example: Finding phrases
How many paragraphs mention net income in any case?

What is the most net income is mentioned in any paragraph

x <- str_detect(str_to_lower(paragraphs), "revenue")
x[51:60]

 [1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE
(x)sum

[1] 86

x <- str_count(str_to_lower(paragraphs), "revenue")
x[51:60]

 [1] 0 0 0 2 2 1 2 0 1 0
(x)max

[1] 5

https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/Extremes.html

Example: Finding phrases
Where is net income first mentioned in the document?

First mention of net income
This function may look useless now, but it’ll be on of the most useful later

str_locate(str_to_lower(doc), "revenue")
 start end
[1,] 31243 31249

str_extract(str_to_lower(doc), "revenue")
[1] "revenue"

R Practice
Text data is already loaded, as if it was loaded using read_file()
Try:

Subsetting the text data
Transforming the text data

To all upper case
Replacing a phrase

Finding specific text in the document
Do exercises 1 through 3 in today’s practice file

Available at: rmc.link/420r7

https://rmc.link/420r7

Pattern matching

Finding patterns in the text (regex)
Regular expressions, aka regex or regexp, are ways of finding patterns in text
This means that instead of looking for a specific phrase, we can match a set of phrases
Most of the functions we discussed accept regexes for matching
str_replace(), str_split(), str_detect(), str_count(), str_locate(),
and str_extract(), plus their variants

This is why str_extract() is so great – we can extract anything from a document
with it!

Regex example
Finding full sentences mentioning COVID

Extract all sentences mentioning COVID from the annual report
str_extract_all(doc, '(?<=^|\\.\\s{1,5})[^.]*?COVID[^.]*?\\.')

[[1]]
 [1] "\nIn March 2020, the World Health Organization declared the outbreak of COVID-19 to be a pandemic."
 [2] "The COVID-19 pandemic continues to have widespread and unpredictable impacts on global society,
economies, financial markets, and business practices, and continues to impact our business operations,
including our employees, customers, partners, and communities."
 [3] "Refer to Management’s Discussion and Analysis of Financial Condition and Results of Operations (Part II,
Item 7 of this Form 10-K) for further discussion regarding the impact of COVID-19 on our fiscal year 2021
financial results."
 [4] "The extent to which the COVID-19 pandemic impacts our business going forward will depend on numerous
evolving factors we cannot reliably predict."
 [5] "\nWith a continued focus on digital transformation, Microsoft is helping to ensure that no one is left
behind, particularly as economies recover from the COVID-19 pandemic."
 [6] "During fiscal year 2021, our Daily Pulse surveys gave us invaluable insights into ways we could support
employees through the COVID-19 pandemic and addressing racial injustice."
 [7] "\nWe took a wide variety of measures to protect the health and well-being of our employees, suppliers,
and customers during the COVID 19 pandemic "

Breaking down the example

(?<=...) is called a positive look-behind assertion
It succeeds whenever the ‘…’ matches the text before what you want to find
^ is the start of the string
\\.\\s{1,5} is a period followed by some whitespace characters (up to 5)

A quirk of look-behinds is you need to specify a maxmimum length for everything
| is an or
Taken together: the look-behind matches if there is a new paragraph or a period followed by whitespace

[^.]*?
[^.] is anything except a period
* means 0 or more of the preceeding pattern
? means keep it as short as possible

COVID is the literal text
\\. is a period

'(?<=^|\\.\\s{1,5})[^.]*?COVID[^.]*?\\.'

Breaking down the example
Let’s examine the output: In fiscal year 2021, the COVID-19 pandemic
continued to impact our business operations and financial results.
Our regex was (?<=^|\\.\\s{1,5})[^.]*?COVID[^.]*?\\.
Matching regex components to output:
(?<=^|\\.\\s{1,5}) start of the paragraph (via ^)
[^.]*? In fiscal year 2021, the
COVID COVID
[^.]*? -19 pandemic continued to impact our business
operations and financial results
\\. .

⇒

⇒

⇒

⇒

⇒

Useful regex components: Content
There’s a

Matching collections of characters
. matches everything
[:alpha:] matches all letters
[:lower:] matches all lowercase letters
[:upper:] matches all UPPERCASE letters
[:digit:] matches all numbers 0 through 9
[:alnum:] matches all letters and numbers
[:punct:] matches all punctuation
[:graph:] matches all letters, numbers, and punctuation
[:space:] or \s match ANY whitespace
\S is the exact opposite

[:blank:] matches whitespace except newlines

nice cheat sheet here
More detailed documentation here

https://github.com/rstudio/cheatsheets/raw/master/strings.pdf
https://cran.r-project.org/web/packages/stringr/vignettes/regular-expressions.html

Example: Regex content

text alpha lower upper digit alnum
abcde TRUE TRUE FALSE FALSE TRUE
ABCDE TRUE FALSE TRUE FALSE TRUE
12345 FALSE FALSE FALSE TRUE TRUE
!?!?. FALSE FALSE FALSE FALSE FALSE
ABC123? TRUE FALSE TRUE TRUE TRUE
With space TRUE TRUE TRUE FALSE TRUE
New line TRUE TRUE TRUE FALSE TRUE

text <- ("abcde", 'ABCDE', '12345', '!?!?.', 'ABC123?', "With space", "New\nline")
html_df((
 text=text,
 alpha=str_detect(text,'[:alpha:]'),
 lower=str_detect(text,'[:lower:]'),
 upper=str_detect(text,'[:upper:]'),
 digit=str_detect(text,'[:digit:]'),
 alnum=str_detect(text,'[:alnum:]')))

c
data.frame

https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/data.frame.html

Example: Regex content

text punct graph space blank period
abcde FALSE TRUE FALSE FALSE TRUE
ABCDE FALSE TRUE FALSE FALSE TRUE
12345 FALSE TRUE FALSE FALSE TRUE
!?!?. TRUE TRUE FALSE FALSE TRUE
ABC123? TRUE TRUE FALSE FALSE TRUE
With space FALSE TRUE TRUE TRUE TRUE
New line FALSE TRUE TRUE FALSE TRUE

text <- ("abcde", 'ABCDE', '12345', '!?!?.', 'ABC123?', "With space", "New\nline")
html_df((
 text=text,
 punct=str_detect(text,'[:punct:]'),
 graph=str_detect(text,'[:graph:]'),
 space=str_detect(text,'[:space:]'),
 blank=str_detect(text,'[:blank:]'),
 period=str_detect(text,'.')))

c
data.frame

https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/data.frame.html

Useful regex components: Form
[] can be used to create a class of characters to look for
[abc] matches anything that is a, b, c

[^] can be used to create a class of everything else
[^abc] matches anything that isn’t a, b, or c

Quantity, where x is some element
x? looks for 0 or 1 of x
x* looks for 0 or more of x
x+ looks for 1 or more of x
x{n} looks for n (a number) of x
x{n, } looks for at least n of x
x{n,m} looks for at least n and at most m of x

Lazy operators
Regexes always prefer the longest match by default
Append ? to any quantity operator to make it prefer the shortest match possible

Useful regex components: Form
Position
^ indicates the start of the string
$ indicates the end of the string

Grouping
() can be used to group components
| can be used within groups as a logical or
Groups can be referenced later using the position of the group within the regex
\\1 refers to the first group
\\2 refers to the second group
…

Example: Regexes on real estate firm names
Real estate firm names with 3 vowels in a row
str_subset(RE_names, '[AEIOU]{3}')

[1] "STADLAUER MALZFABRIK" "ELECT ET EAUX DE MADAGASCAR"
[3] "JOAO FORTES ENGENHARIA SA"

Real estate firm names with no vowels
str_subset(RE_names, '^[^AEIOU]+$')

[1] "FGP LTD" "MBK PCL" "MYP LTD" "R T C L LTD"
Real estate firm names with at least 12 vowels
str_subset(RE_names, '([^AEIOU]*[AEIOU]){11,}')

 [1] "INTERNATIONAL ENTERTAINMENT" "PREMIERE HORIZON ALLIANCE"
 [3] "ELECT ET EAUX DE MADAGASCAR" "HUA YIN INTERNATIONAL HOLDIN"
 [5] "JOAO FORTES ENGENHARIA SA" "TIANJIN TROILA INFORMATION"
 [7] "OVERSEAS CHINESE TOWN (ASIA)" "ASIA-PACIFIC STRATEGIC INVES"
 [9] "FUTURA CONSORCIO INMOBILIARI" "FRANCE TOURISME IMMOBILIER"
[11] "BONEI HATICHON CIVIL ENGINE"

Real estate firm names with a repeated 4 letter pattern
str_subset(RE_names, '([:upper:]{4}).*\\1')

[1] "INTERNATIONAL ENTERTAINMENT" "SHANDONG XINNENG TAISHAN"
[3] "CHONG HONG CONSTRUCTION CO" "DEUTSCHE GEOTHERMISCHE IMMOB"

Why is regex so important?
Regex can be used to match anything in text

Simple things like phone numbers
More complex things like addresses

It can be used to parse through large markup documents
HTML, XML, LaTeX, etc.

Very good for validating the format of text
For birthday in the format YYYYMMDD, you could validate with:

YYYY: [12][90][:digit:][:digit:]
MM: [01][:digit:]
DD: [0123][:digit:]

Cavaet: Regexes are generally slow. If you can code something to avoid them,
that is o�en better. But o�en that may be infeasible.

Some extras
While the str_*() functions use regex by default, they actually have four modes
1. You can specify a regex normally

Or you can use regex() to construct more customized ones, such as regexes that
operate by line in a string

2. You can specify an exact string to match using fixed() – fast but fragile
3. You can specify an exact string to match using coll() – slow but robust; recognizes

characters that are equivalent
Important when dealing with non-English words, since certain characters can be
encoded in multiple ways

4. You can ask for boundaries with boundary() such as words, using
boundary("word")

Expanding usage
Anything covered so far can be used for text in data

Ex.: Firm names or addresses in Compustat

Compustat firm names example
df_RE_names <- df_RE %>%
 group_by(isin) %>%
 slice(1) %>%
 mutate(SG_in_name = str_detect(conm, "(SG|SINGAPORE)"),
 name_length = str_length(conm),
 SG_firm = (fic=="SGP",1,0)) %>%
 ungroup()

df_RE_names %>%
 group_by(SG_firm) %>%
 mutate(pct_SG = (SG_in_name) * 100) %>%
 slice(1) %>%
 ungroup() %>%
 select(SG_firm, pct_SG)

ifelse

mean

A tibble: 2 × 2
 SG_firm pct_SG
 <dbl> <dbl>
1 0 0.746
2 1 4.76

https://rdrr.io/r/base/ifelse.html
https://rdrr.io/r/base/mean.html

Expanding usage
()

df_RE_names
 group_by(fic)
 mutate(avg_name_length = (name_length))
 slice(1)
 ungroup()
 select(fic, avg_name_length)
 arrange(desc(avg_name_length), fic)
 (options = (pageLength = 5))

library DT
%>%

%>%
mean %>%

%>%
%>%

%>%
%>%

datatable list

Show 5 entries Search:

Showing 1 to 5 of 41 entries …

1 PER 28

2 TUR 27

3 ZAF 26

4 CHN 25.2

5 EGY 24.5

fic ▲▼ avg_name_length▲▼

Previous 1 2 3 4 5 9 Next

https://rdrr.io/r/base/library.html
https://github.com/rstudio/DT
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/mean.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/DT/man/datatable.html
https://rdrr.io/r/base/list.html

R Practice 2
This practice explores the previously used practice data using regular expressions for
various purposes
Do exercises 4 and 5 in today’s practice file

Available at: rmc.link/420r7

https://rmc.link/420r7

Readability and Sentiment

Readability
Thanks to the package, readability is very easy to calculate in R

Use the function
There are many readability measures, however

Flesch Kinkaid grade level: A measure of readability developed for the U.S. Navy to
ensure manuals were written at a level any 15 year old should be able to understand
Fog: A grade level index that was commonly used in business and publishing
Coleman-Liau: An index with a unique calculation method, relying only on character
counts

quanteda
textstat_readability()

https://quanteda.io/
https://quanteda.io/reference/textstat_readability.html

Readability: Flesch Kincaid

An approximate grade level required for reading a document
Lower is more readable
A JC or poly graduate should read at a level of 12

New York Times articles are usually around 13
A Bachelor’s degree could be necessary for anything 16 or above

0.39()+ 11.8()− 15.59

words

sentences

syllables

words

()
()

(doc, "Flesch.Kincaid")

library quanteda
library quanteda.textstats
textstat_readability

 document Flesch.Kincaid
1 text1 16.85874

https://rdrr.io/r/base/library.html
https://quanteda.io/
https://rdrr.io/r/base/library.html
https://quanteda.io/
https://quanteda.io/reference/textstat_readability.html

Readability: Fog

An approximate grade level required for reading a document
Lower is more readable

[Mean(Words per sentence)+

(% of words > 3 syllables)] × 0.4

(doc, "FOG")textstat_readability
 document FOG
1 text1 20.88005

https://quanteda.io/reference/textstat_readability.html

Readability: Coleman-Liau

An approximate grade level required for reading a document
Lower is more readable

5.88()− 29.6()− 15.8

letters

words

sentences

words

(doc, "Coleman.Liau.short")textstat_readability
 document Coleman.Liau.short
1 text1 15.48359

https://quanteda.io/reference/textstat_readability.html

Converting text to words
Tidy text is when you have one token per document per row, in a data frame
Token is the unit of text you are interested in

Words: “New”
Phrases: “New York Times”
Sentences: “The New York Times is a publication.”
etc.

The package can handle this conversion for us!
Use the function
Note: it also converts to lowercase. Use the option to_lower=FALSE to avoid this if
needed

tidytext
unnest_tokens()

Example of "tokenizing"
()

df_doc <- (ID= ("0001564590-21-039151"), text= (doc))
 (word, text)
word is the name for the new column
text is the name of the string column in the input data

library tidytext
data.frame c c %>%

unnest_tokens

https://github.com/juliasilge/tidytext
https://rdrr.io/pkg/tidytext/man/unnest_tokens.html
https://rdrr.io/r/base/library.html
https://github.com/juliasilge/tidytext
https://rdrr.io/r/base/data.frame.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/tidytext/man/unnest_tokens.html

The details

ID word
0001564590-21-039151 this
0001564590-21-039151 report
0001564590-21-039151 includes
0001564590-21-039151 estimates
0001564590-21-039151 projections
0001564590-21-039151 statements

html_df((df_doc))head

https://rdrr.io/r/utils/head.html

The details
 uses the package in the backend to do the conversion

You can call that package directly instead if you want to
Available tokenizers include: (specify with token=)

“word”: The default, individual words
“ngram”: Collections of words (default of 2, specify with n=)
A few other less commonly used tokenizers

tidytext tokenizers

https://github.com/juliasilge/tidytext
https://docs.ropensci.org/tokenizers/

Word case
Why convert to lowercase?
How much of a difference is there between “The” and “the”?

“Singapore” and “singapore” – still not much difference
Only words like “new” versus “New” matter

“New York” versus “new yorkshire terrier”
Benefit: We get rid of a bunch of distinct words!

Helps with the curse of dimensionality

The Curse of dimensionality
There are a lot of words
A LOT OF WORDS
At least 171,476 according to
What happens if we make a matrix of words per document?

Oxford Dictionary

For right now, not much

If we have every publicly available government filed press release in the US?
1,479,068 files through July 2018…

~2TB if we include all English words
~45GB if we restrict just to the 3,752 words in the Microso� annual report…

https://en.oxforddictionaries.com/explore/how-many-words-are-there-in-the-english-language/

Stopwords
Stopwords – words we remove because they have little content

the, a, an, and, …
Also helps with our curse a bit – removes the words entirely
We’ll use the stopword package to remove stopwords

get a list of stopwords
stop_en <- stopwords:: ("english") # Snowball English

((stop_en), " words: ", (stop_en[1:5], collapse=", "))
stopwords

paste0 length paste
[1] "175 words: i, me, my, myself, we"

stop_SMART <- stopwords:: (source="smart") # SMART English
((stop_SMART), " words: ", (stop_SMART[1:5], collapse=", "))

stopwords
paste0 length paste

[1] "571 words: a, a's, able, about, above"
stop_fr <- stopwords:: ("french") # Snowball French

((stop_fr), " words: ", (stop_fr[1:5], collapse=", "))
stopwords

paste0 length paste
[1] "164 words: au, aux, avec, ce, ces"

https://rdrr.io/pkg/stopwords/man/stopwords.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/length.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/pkg/stopwords/man/stopwords.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/length.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/pkg/stopwords/man/stopwords.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/length.html
https://rdrr.io/r/base/paste.html

Applying stopwords to a corpus
When we have a tidy set of text, we can just use for this!

’s anti_join() function is like a merge, but where all matches are deleted
dplyr

dplyr

df_doc_stop <- df_doc
 anti_join((word=stop_SMART))

(df_doc)

%>%
data.frame

nrow
[1] 37234

(df_doc_stop)nrow
[1] 21171

https://dplyr.tidyverse.org/
https://dplyr.tidyverse.org/
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/data.frame.html
https://rdrr.io/r/base/nrow.html
https://rdrr.io/r/base/nrow.html

Converting to term frequency
terms <- df_doc_stop
 count(ID, word, sort=TRUE)
 ungroup()
total_terms <- terms
 group_by(ID)
 summarize(total = (n))
tf <- left_join(terms, total_terms) mutate(tf=n/total)
tf

%>%
%>%

%>%
%>%

sum
%>%

 ID word n total tf
1 0001564590-21-039151 services 250 21171 1.180861e-02
2 0001564590-21-039151 products 194 21171 9.163478e-03
3 0001564590-21-039151 financial 166 21171 7.840914e-03
4 0001564590-21-039151 business 144 21171 6.801757e-03
5 0001564590-21-039151 tax 140 21171 6.612819e-03
6 0001564590-21-039151 revenue 137 21171 6.471116e-03
7 0001564590-21-039151 customers 132 21171 6.234944e-03
8 0001564590-21-039151 software 130 21171 6.140475e-03
9 0001564590-21-039151 cloud 124 21171 5.857069e-03
10 0001564590-21-039151 2021 118 21171 5.573662e-03
11 0001564590-21-039151 year 113 21171 5.337490e-03
12 0001564590-21-039151 based 110 21171 5.195787e-03
13 0001564590-21-039151 billion 109 21171 5.148552e-03
14 0001564590-21-039151 microsoft 105 21171 4.959615e-03
15 0001564590 21 039151 income 104 21171 4 912380e 03

https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/sum.html
https://magrittr.tidyverse.org/reference/pipe.html

Sentiment
Sentiment works similarly to stopwords, except we are identifying words with specific,
useful meanings

We can grab off-the-shelf measures using from get_sentiments() tidytext

Need to install the `textdata` package for
("afinn")

 group_by(value)
 slice(1)
 ungroup()

get_sentiments %>%
%>%

%>%

A tibble: 11 × 2
 word value
 <chr> <dbl>
 1 bastard -5
 2 ass -4
 3 abhor -3
 4 abandon -2
 5 absentee -1
 6 some kind 0
 7 aboard 1
 8 abilities 2
 9 admire 3
10 amazing 4
11 breathtaking 5

("bing")
 group_by(sentiment)
 slice(1)
 ungroup()

get_sentiments %>%
%>%

%>%

A tibble: 2 × 2
 word sentiment
 <chr> <chr>
1 2-faces negative
2 abound positive

https://rdrr.io/pkg/tidytext/man/get_sentiments.html
https://github.com/juliasilge/tidytext
https://rdrr.io/pkg/tidytext/man/get_sentiments.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/tidytext/man/get_sentiments.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html

Sentiment
NRC Word-Emotion Loughran & McDonald dictionary –

finance specific, targeted at annual
reports

("nrc")
 group_by(sentiment)
 slice(1)
 ungroup()

get_sentiments %>%
%>%

%>%

A tibble: 10 × 2
 word sentiment
 <chr> <chr>
 1 abandoned anger
 2 abundance anticipation
 3 aberration disgust
 4 abandon fear
 5 absolution joy
 6 abandon negative
 7 abba positive
 8 abandon sadness
 9 abandonment surprise
10 abacus trust

("loughran")
 group_by(sentiment)
 slice(1)
 ungroup()

get_sentiments %>%
%>%

%>%

A tibble: 6 × 2
 word sentiment
 <chr> <chr>
1 abide constraining
2 abovementioned litigious
3 abandon negative
4 able positive
5 aegis superfluous
6 abeyance uncertainty

https://rdrr.io/pkg/tidytext/man/get_sentiments.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/tidytext/man/get_sentiments.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html

Merging in sentiment data
tf_sent <- tf left_join(("loughran"))
tf_sent[1:5,]

%>% get_sentiments

 ID word n total tf sentiment
1 0001564590-21-039151 services 250 21171 0.011808606 <NA>
2 0001564590-21-039151 products 194 21171 0.009163478 <NA>
3 0001564590-21-039151 financial 166 21171 0.007840914 <NA>
4 0001564590-21-039151 business 144 21171 0.006801757 <NA>
5 0001564590-21-039151 tax 140 21171 0.006612819 <NA>

tf_sent[! (tf_sent$sentiment),][1:5,]is.na
 ID word n total tf sentiment
96 0001564590-21-039151 required 34 21171 0.001605970 constraining
102 0001564590-21-039151 risks 33 21171 0.001558736 uncertainty
117 0001564590-21-039151 laws 31 21171 0.001464267 litigious
141 0001564590-21-039151 effective 27 21171 0.001275329 positive
144 0001564590-21-039151 losses 27 21171 0.001275329 negative

https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/tidytext/man/get_sentiments.html
https://rdrr.io/r/base/NA.html

Summarizing document sentiment
tf_sent
 spread(sentiment, tf, fill=0)
 select(constraining, litigious, negative, positive, superfluous, uncertainty)
 ()

%>%
%>%

%>%
colSums

constraining litigious negative positive superfluous uncertainty
1.284776e-02 1.690992e-02 3.226111e-02 1.785461e-02 4.723442e-05 1.218648e-02

https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/colSums.html

Visualizing sentiment
tf_sent (! (sentiment))
 group_by(sentiment)
 arrange(desc(n)) mutate(row = row_number()) (row < 10)
 ungroup() mutate(word = (word, n))
 ggplot(aes(y=n, x=word)) + geom_col() + theme(axis.text.x = element_text(angle=90, hjust=1)) +
 facet_wrap(~sentiment, ncol=3, scales="free_x")

%>% filter is.na %>%
%>%

%>% %>% filter %>%
%>% reorder %>%

https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/stats/filter.html
https://rdrr.io/r/base/NA.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/stats/filter.html
https://magrittr.tidyverse.org/reference/pipe.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/stats/reorder.factor.html
https://magrittr.tidyverse.org/reference/pipe.html

Visualizing a document as a word cloud
 provides

 converts tidy term frequencies to Quanteda
quanteda textplot_wordcloud()
cast_dfm()

(quanteda.textplots)
corp <- (tf, ID, word, n)

((corp), color = RColorBrewer:: (9, "Set1"))

library
cast_dfm

textplot_wordcloud dfm brewer.pal

https://quanteda.io/
https://rdrr.io/pkg/quanteda.textplots/man/textplot_wordcloud.html
https://rdrr.io/pkg/tidytext/man/document_term_casters.html
https://rdrr.io/r/base/library.html
https://rdrr.io/pkg/tidytext/man/document_term_casters.html
https://rdrr.io/pkg/quanteda.textplots/man/textplot_wordcloud.html
https://quanteda.io/reference/dfm.html
https://rdrr.io/pkg/RColorBrewer/man/ColorBrewer.html

Another reason to use stopwords
Without removing stopwords, the word cloud shows almost nothing useful

You can also check out the and packages

corp_no_stop <- (tf_no_stop, ID, word, n)
((corp_no_stop), color = RColorBrewer:: (9, "Set1"))

cast_dfm
textplot_wordcloud dfm brewer.pal

wordcloud wordcloud2

https://rdrr.io/pkg/tidytext/man/document_term_casters.html
https://rdrr.io/pkg/quanteda.textplots/man/textplot_wordcloud.html
https://quanteda.io/reference/dfm.html
https://rdrr.io/pkg/RColorBrewer/man/ColorBrewer.html
http://blog.fellstat.com/?cat=11
https://github.com/lchiffon/wordcloud2

R Practice 3
Using the same data as before, we will explore

Readability
Sentiment
Word clouds

Note: Due to missing packages, you will need to run the code in RStudio, not in the
DataCamp light console
Do exercises 6 through 8 in today’s practice file

Available at: rmc.link/420r7

https://rmc.link/420r7

End Matter

Wrap up
For next session (in 2 weeks):

Finish the third assignment
Submit on eLearn

Datacamp
Check out the recommended chapter on text analysis

Start on the group project
Survey on the class session at this QR code:

Packages used for these slides

{RColorBrewer}

, including

DT
downlit
httr
kableExtra
knitr
plotly
quanteda
quarto

readtext
revealjs
tidytext
tidyverse stringr
XML

https://github.com/rstudio/DT
https://downlit.r-lib.org/
https://httr.r-lib.org/
http://haozhu233.github.io/kableExtra/
https://yihui.org/knitr/
https://plotly-r.com/
https://quanteda.io/
https://github.com/quarto-dev/quarto-r
https://github.com/quanteda/readtext
https://github.com/rstudio/revealjs
https://github.com/juliasilge/tidytext
https://tidyverse.tidyverse.org/
https://stringr.tidyverse.org/
https://www.omegahat.net/RSXML/

Custom code
()
()

html_df <- function(text, cols=NULL, col1=FALSE, full=F) {
 if(! (cols)) {
 cols= (text)
 }
 if(!col1) {
 (text,"html", col.names = cols, align = ("l", ('c', (cols)-1)))
 (bootstrap_options = ("striped","hover"), full_width=full)
 } else {
 (text,"html", col.names = cols, align = ("l", ('c', (cols)-1)))
 (bootstrap_options = ("striped","hover"), full_width=full)
 (1,bold=T)
 }
}

library knitr
library kableExtra

length
colnames

kable c rep length %>%
kable_styling c

kable c rep length %>%
kable_styling c %>%
column_spec

https://rdrr.io/r/base/library.html
https://yihui.org/knitr/
https://rdrr.io/r/base/library.html
http://haozhu233.github.io/kableExtra/
https://rdrr.io/r/base/length.html
https://rdrr.io/r/base/colnames.html
https://rdrr.io/pkg/knitr/man/kable.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/rep.html
https://rdrr.io/r/base/length.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/kableExtra/man/kable_styling.html
https://rdrr.io/r/base/c.html
https://rdrr.io/pkg/knitr/man/kable.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/rep.html
https://rdrr.io/r/base/length.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/kableExtra/man/kable_styling.html
https://rdrr.io/r/base/c.html
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/pkg/kableExtra/man/column_spec.html

