
ML for SS: Bias

Session 10

Dr. Richard M. Crowley

 rcrowley@smu.edu.sg

http://rmc.link/

1

mailto:rcrowley@smu.edu.sg
http://rmc.link/

Overview

2 . 1

Papers

▪ Wich, Bauer and Groh (2020)

▪ A paper using SHAP to understand an impact of political bias

▪ Lundberg et al. (2018)

▪ A practical use of SHAP for model explainability

▪ The team behind this paper contains the team from the original SHAP paper (Lundberg and Lee (2017))

2 . 2

Python

▪ Use the library

▪ By the original author team

▪ Great visualization support

▪ Decent documentation

▪ Has some bugs

▪ Sometimes you need to use older packages

with it

R

▪ For XGBoost, you can use

▪ For accessing the python package in R, use

shapper

▪ For native SHAP, use , but it is missing a

lot of features

Technical Discussion

Focus on the SHAP method

shap SHAPforxgboost

shapr

Python’s support is a lot better here unless your model is an XGBoost

2 . 3

https://shap.readthedocs.io/en/latest/index.html
https://github.com/liuyanguu/SHAPforxgboost
https://cran.r-project.org/web/packages/shapr/index.html

SHAP

3 . 1

What exactly is SHAP?

▪ Game theoretic and theory driven

▪ Unifies six other methods that tried to address this problem

▪ It is a model itself: a model to explain models

▪ Provides a simple to understand output

▪ Based on Shapley, 1953, “A value for n-person games.”

▪ SHAP itself is from Lundberg and Lee (2017)

Aims to provide an explanation of the importance of model inputs in explaining model

output

SHAP: SHapley Additive exPlanations

3 . 2

Principles of SHAP

1. Local accuracy

▪ The simple model is able to accurately predict a model output on small subsets of the data

2. Missingness

▪ SHAP only uses data the original model had access to

▪ If data was missing from the original model, SHAP won’t use it

3. Consistency

▪ Akin to transitivity conditions in utility theory (Savage Axioms)

▪ But instead of “utility,” we have “simplified model’s input’s contribution”

3 . 3

SHAP in more detail

AFAM’s have a linear function of binary variables where where is a number of simplified input

features and , , and when .

▪ 6 other methods in the literature also fit in the class

▪ LIME, DeepLIFT, Layer-Wise Relevance Propagation, Shapley regression values, Shapleu sampling values,

Quantitative input influence

▪ These methods were approximating SHAP

SHAP is, per Lundberg and Lee (2017), the unique solution that maintains local accuracy

and consistent from a class of methods called additive feature attribution methods

(AFAM)

3 . 4

SHAP: Local accuracy

▪ is the explanation model of where and

Not all other methods have this

3 . 5

SHAP: Missingness

▪ “Features missing in the original input [have] no impact”

All AFAM models have this

3 . 6

SHAP: Consistency

Let and denote setting . For any two models and :

▪ Recall that is measuring feature importance of

▪ If removing drops the prediction more under than under , then it has more feature importance under

 than under

Not all other methods have this

3 . 7

SHAP: The solution

▪ Where:

▪ is the number of non-zero entries in

▪ is the set of all s.t. the non-zero entries are a subset of the non-zero entries in

▪ Then approximate it all

Combinatoric weighting to the difference element adds to

SHAP sets ; is the set of non-zero indees in

3 . 8

Intuition of SHAP

▪ SHAP is defined by a series of [conditional] expectation of the impact of an input

▪ For linear models, order of selecting inputs has no effect

▪ For nonlinear models, SHAP averages inputs’ conditional expected impact over all possible orderings

▪ This is computationally intensive on high-dimensional data

3 . 9

Prepping SHAP

4 . 1

An example of quantifying bias

▪ Data: City of Chicago salaries

▪ 33,586 employees

▪ Trained using a simple XGBoost model

▪ Features:

▪ Job title

▪ Department

▪ Full time / part time

▪ Salaried or hourly

▪ Female

Is there gender bias in annual compensation?

4 . 2

The data

vars = ['Job.Titles', 'Department', 'Full.Time', 'Salaried', 'Female']

df[vars]

Job.Titles Department Full.Time \
0 SERGEANT POLICE 1
1 POLICE OFFICER (ASSIGNED AS DETECTIVE) POLICE 1
2 Other GENERAL SERVICES 1
3 Other WATER MGMNT 1
4 Other TRANSPORTN 1
...
33581 POLICE OFFICER POLICE 1
33582 POLICE OFFICER POLICE 1
33583 POLICE OFFICER POLICE 1
33584 POLICE OFFICER POLICE 1
33585 Other Other 1

Salaried Female
0 1 0.0
1 1 1.0
2 1 1.0
3 1 0.0
4 0 0.0
...
33581 1 1.0

4 . 3

One hot encoding categorical data

▪ Pandas has a function for this,

▪ prefix= lets us name the columns of the output

▪ As outputs a new data frame only containing the new columns, we need to join them

back

▪ makes this quick and easy

pd.get_dummies()

pd.get_dummies()

df.join()

one_hot1 = pd.get_dummies(df['Job.Titles'], prefix='Job.Titles')

one_hot2 = pd.get_dummies(df['Department'], prefix='Department')

df = df.join(one_hot1)

df = df.join(one_hot2)

4 . 4

https://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html
https://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.join.html

Prepping XGBoost

We did this in Session 3

vars = one_hot1.columns.tolist() + \

 one_hot2.columns.tolist() + \

 ['Full.Time', 'Salaried', 'Female']

dtrain = xgb.DMatrix(df[vars], label=df['Salary'], feature_names=vars)

param = {

 'booster': 'gbtree', # default -- tree based

 'nthread': 8, # number of threads to use for parallel processing

 'objective': 'reg:squarederror', # RMSE error

 'eval_metric': 'rmse', # maximize ROC AUC

 'eta': 0.3, # shrinkage; [0, 1], default 0.3

 'max_depth': 6, # maximum depth of each tree; default 6

 'gamma': 0, # set above 0 to prune trees, [0, inf], default 0

 'min_child_weight': 1, # higher leads to more pruning of tress, [0, inf], default 1

 'subsample': 1, # Randomly subsample rows if in (0, 1), default 1

}

num_round=30

4 . 5

Building our model and prepping SHAP

▪ We call to fit our XGBoost model

▪ Since XGBoost is a tree-based model, we will use SHAP’s function to analyze the

model

▪ Since we only have in-sample data, we will compute SHAP on the same data the XGBoost model was fit to

▪ We will also prepare a small sample for more CPU-intensive analyses

xgb.train()

model_xgb = xgb.train(param, dtrain, num_round)

shap.TreeExplainer()

explainer = shap.TreeExplainer(model_xgb)

shap_values = explainer(df[vars])

df_small = df.sample(frac=0.01)

shap_values_small = explainer(df[vars])

4 . 6

https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.train
https://shap-lrjball.readthedocs.io/en/docs_update/generated/shap.TreeExplainer.html

Explaining a single observation

shap.plots.waterfall(shap_values[0])

Here we see that having Female=0 was the fourth most influential feature in the model,

and that it led to a higher predicted salary

4 . 7

Explaining a single observation

shap.plots.waterfall(shap_values[2])

Here we see that having Female=1 was the second most influential feature in the model,

and that it led to a lower predicted salary

4 . 8

Charting with SHAP

5 . 1

A more concise point visualization

shap.plots.force(shap_values[1])

5 . 2

Aggregating across the data

N=300

shap.plots.force(explainer.expected_value, shap_values.sample(N).values, feature_names=vars)

5 . 3

Seeing more variables’ impact

▪ A “Decision plot” uses a line chart to show the impact of more measures across the data

shap.decision_plot(

 explainer.expected_value,

 explainer.shap_values(df_small[df_small.Female==1][vars

 feature_names=vars)

shap.decision_plot(

 explainer.expected_value,

 explainer.shap_values(df_small[df_small.Female==0][vars

 feature_names=vars)

5 . 4

Aggregate analysis of an individual variable

▪ If we want to see the full impact of “Female” on outcomes in our data, a scatter plot is useful

shap.plots.scatter(shap_values[:,"Female"], color=shap_values)

Remember that our model is nonparametric! Signs can be different even when the

variable doesn’t change due to interactive effects
5 . 5

Multiple scatterplots at once: Bee swarm

▪ If you want a concise way to present multiple variables, the bee swarm plot can be useful

shap.plots.beeswarm(shap_values)

5 . 6

Importance plot

▪ Lastly, we can replicate XGBoost’s importance plot using

shap.plots.bar(shap_values)

This may not be useful for XGBoost since it already has an importance metric, but many

other models lack it

5 . 7

Addendum: Using R

▪ If you are working explicitly with XGBoost, there is a great package

▪ To interface with the python package, you can use

▪ There is also , though it isn’t as full-featured.

SHAPforxgboost

shap shapper

shapr

5 . 8

https://github.com/liuyanguu/SHAPforxgboost
https://shap.readthedocs.io/en/latest/index.html
https://github.com/ModelOriented/shapper
https://cran.r-project.org/web/packages/shapr/index.html

Conclusion

6 . 1

Wrap-up

▪ For more complex models, this helps to unwrap the “black box” some

SHAP can provide some insight into models at the observation, group, and sample level

SHAP can provide us with [conditional] marginal effects-like analysis for more complex

models

6 . 2

Packages used for these slides

Python

▪ numpy

▪ pandas

▪ shap

▪ xgboost

6 . 3

References

▪ Lundberg, Scott, and Su-In Lee. “A unified approach to interpreting model predictions.” In Proceedings of the

31st Conference on Neural Information Processing Systems. (2017).

▪ Lundberg, Scott M., Bala Nair, Monica S. Vavilala, Mayumi Horibe, Michael J. Eisses, Trevor Adams, David E.

Liston et al. “Explainable machine-learning predictions for the prevention of hypoxaemia during surgery.”

Nature biomedical engineering 2, no. 10 (2018): 749-760.

▪ Wich, Maximilian, Jan Bauer, and Georg Groh. “Impact of politically biased data on hate speech

classification.” In Proceedings of the Fourth Workshop on Online Abuse and Harms, pp. 54-64. 2020.

6 . 4

