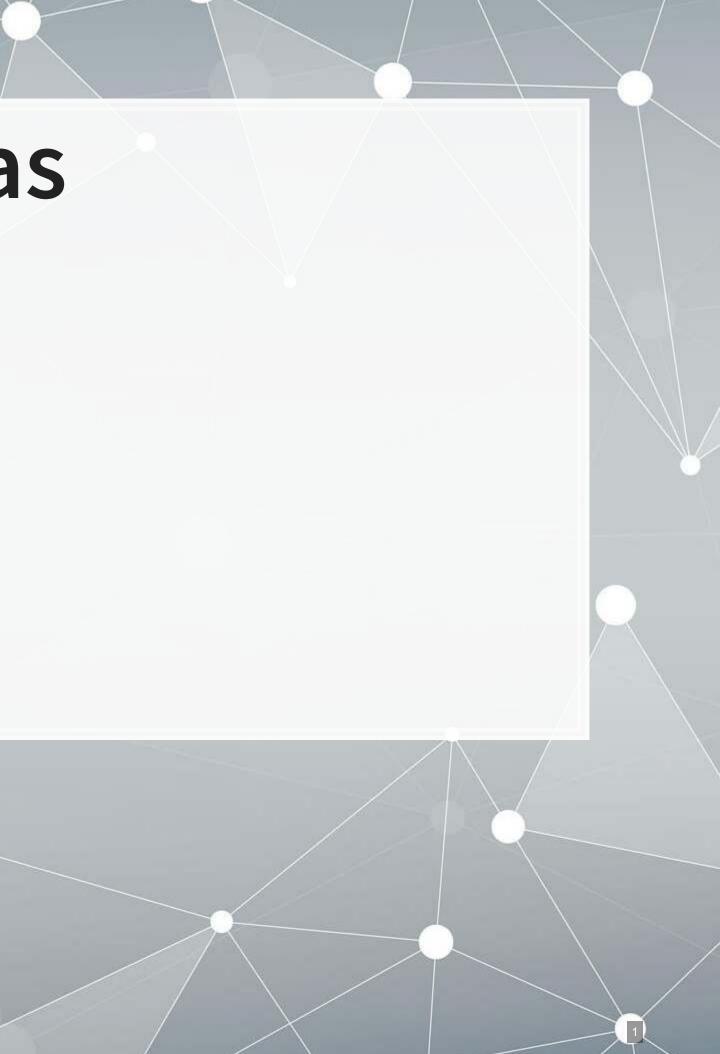
ML for SS: Bias

Session 10

Dr. Richard M. Crowley rcrowley@smu.edu.sg http://rmc.link/



Overview

1

Papers

- Wich, Bauer and Groh (2020)
 - A paper using SHAP to understand an impact of political bias
- Lundberg et al. (2018)
 - A practical use of SHAP for model explainability
 - The team behind this paper contains the team from the original SHAP paper (Lundberg and Lee (2017))

Technical Discussion

Focus on the SHAP method

Python

- Use the shap library
 - By the original author team
 - Great visualization support
 - **Decent documentation**
 - Has some bugs •
 - Sometimes you need to use older packages with it

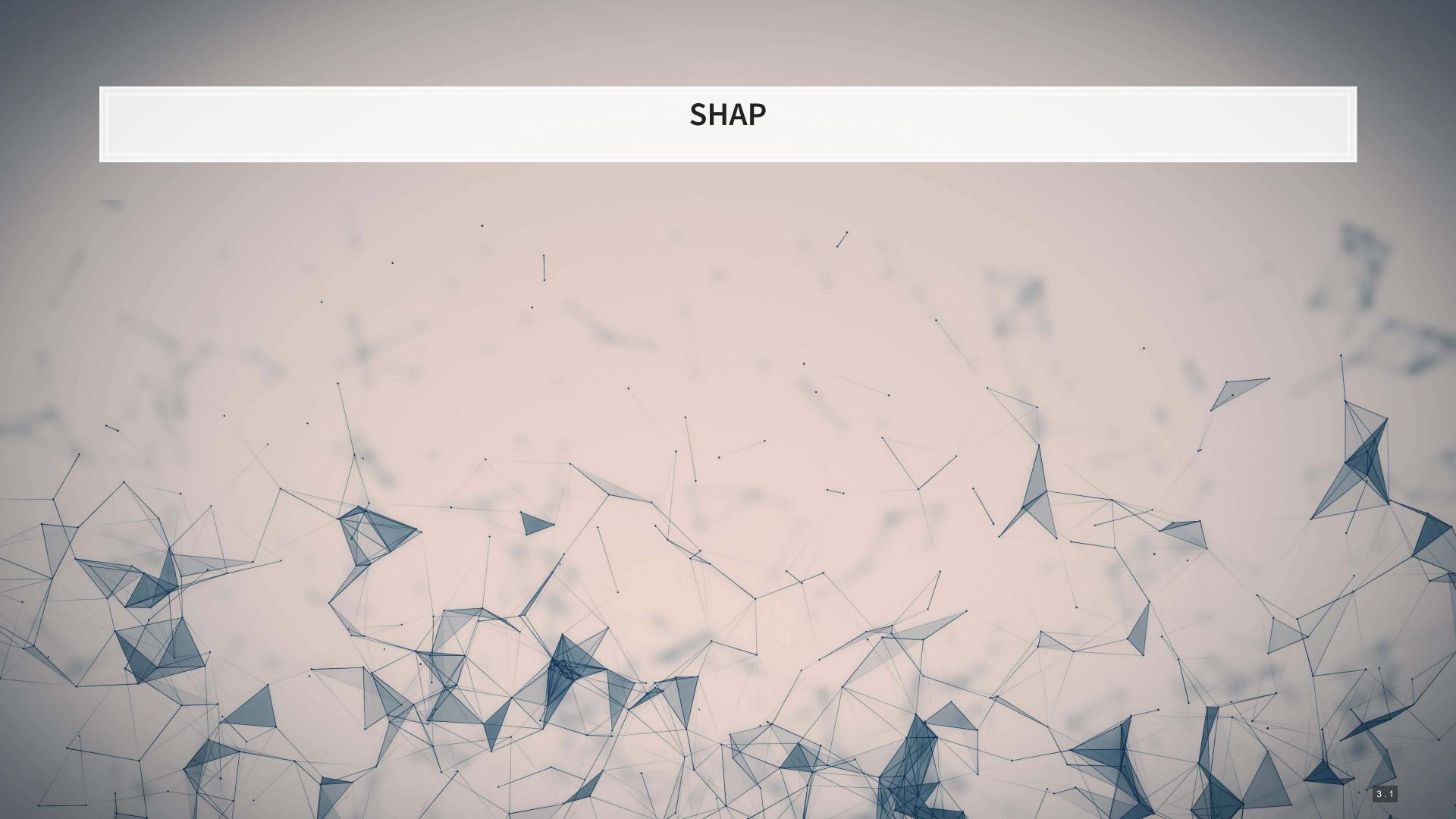
- shapper
- lot of features

Python's support is a lot better here unless your model is an XGBoost

R

For XGBoost, you can use SHAPforxgboost • For accessing the python package in R, use

• For native SHAP, use shapr, but it is missing a



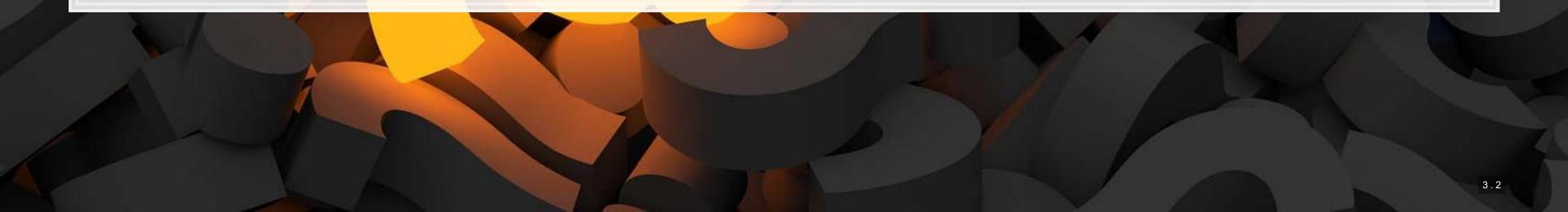
What exactly is SHAP?

Aims to provide an explanation of the importance of model inputs in explaining model output

- Game theoretic and theory driven
- Unifies six other methods that tried to address this problem
- It is a model itself: a model to explain models
- Provides a simple to understand output

SHAP: *SH*apley *A*dditive ex*P*lanations

- Based on Shapley, 1953, "A value for n-person games."
- SHAP itself is from Lundberg and Lee (2017)



Principles of SHAP

1. Local accuracy

- The simple model is able to accurately predict a model output on small subsets of the data
- 2. Missingness
 - SHAP only uses data the original model had access to
 - If data was missing from the original model, SHAP won't use it
- 3. Consistency
 - Akin to transitivity conditions in utility theory (Savage Axioms)
 - But instead of "utility," we have "simplified model's input's contribution"

SHAP in more detail

SHAP is, per Lundberg and Lee (2017), the unique solution that maintains local accuracy and consistent from a class of methods called *additive feature attribution methods* (AFAM)

AFAM's have a linear function of binary variables where $z' \in \{0,1\}^M$ where M is a number of simplified input features and $\phi_i \in \mathbb{R}, x = h_x(x')$, and $g(z') \approx f(h_x(z'))$ when $z' \approx x'$.

$$g(z')=\phi_0+\sum_{i=1}^M \phi_i z'_i$$

6 other methods in the literature also fit in the class

- LIME, DeepLIFT, Layer-Wise Relevance Propagation, Shapley regression values, Shapleu sampling values, Quantitative input influence
- These methods were approximating SHAP

SHAP: Local accuracy

$$f(x)=g(x')=\phi_0+\sum_{i=1}^M \phi_i x_i$$

- g(x') is the explanation model of f(x) where $x=h_x(x')$ and $\phi_0=f(h_x(0))$

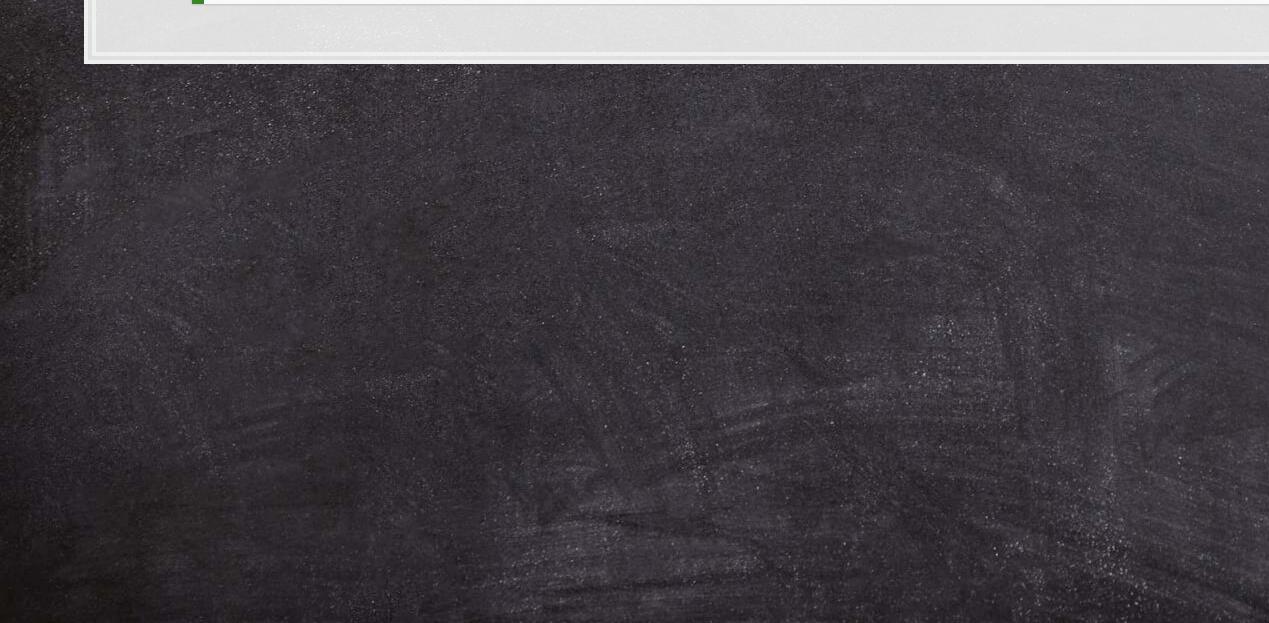
Not all other methods have this

SHAP: Missingness

 $x_i'=0 \Rightarrow \phi_i=0$

• "Features missing in the original input [have] no impact"

All AFAM models have this



SHAP: Consistency

Let $f_x(z') = f(h_x(z'))$ and $z' \setminus i$ denote setting $z'_i = 0$. For any two models f and f':

 $f_x'(z') - f_x'(z' ackslash i) \geq f_x(z') - f_x(z' ackslash i) \quad orall z' \in \{0,1\}^M \Rightarrow \phi_i(f',x) \geq \phi_i(f,x)$

- Recall that ϕ is measuring feature importance of i
- If removing i drops the prediction more under f'_x than under f_x , then it has more feature importance under f_x' than under f_x

Not all other methods have this

SHAP: The solution

$$\phi_i(f,x) = \sum_{z' \subseteq x'} rac{|z'|!(M-|z'|-1)!}{M!} [f_x(z)]$$

• Where:

- |z'| is the number of non-zero entries in z'
- $z'\subseteq x'$ is the set of all z' s.t. the non-zero entries are a subset of the non-zero entries in x'

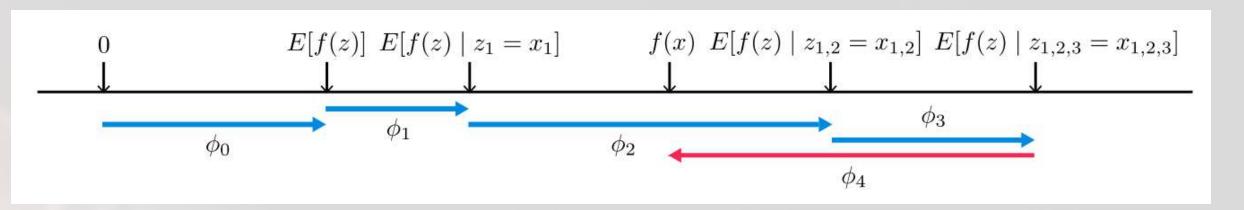
Combinatoric weighting to the difference element i adds to f_x

SHAP sets $f_x(z') = f(h_x(z')) = (E)[f(z)|z_S]; S$ is the set of non-zero indees in z'

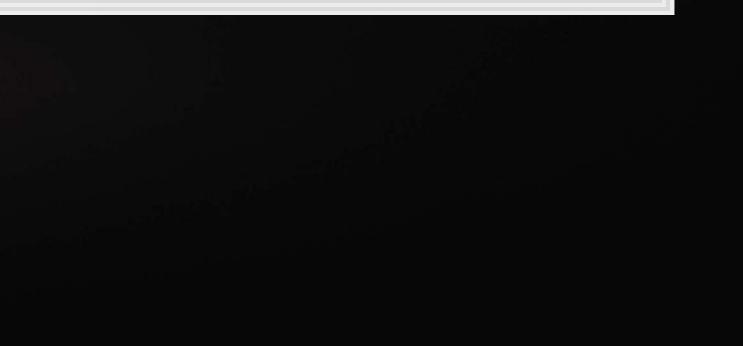
Then approximate it all

 $f_x(z'ackslash i)]$

Intuition of SHAP



- SHAP is defined by a series of [conditional] expectation of the impact of an input
- For linear models, order of selecting inputs has no effect
- For nonlinear models, SHAP averages inputs' conditional expected impact over all possible orderings
 - This is computationally intensive on high-dimensional data



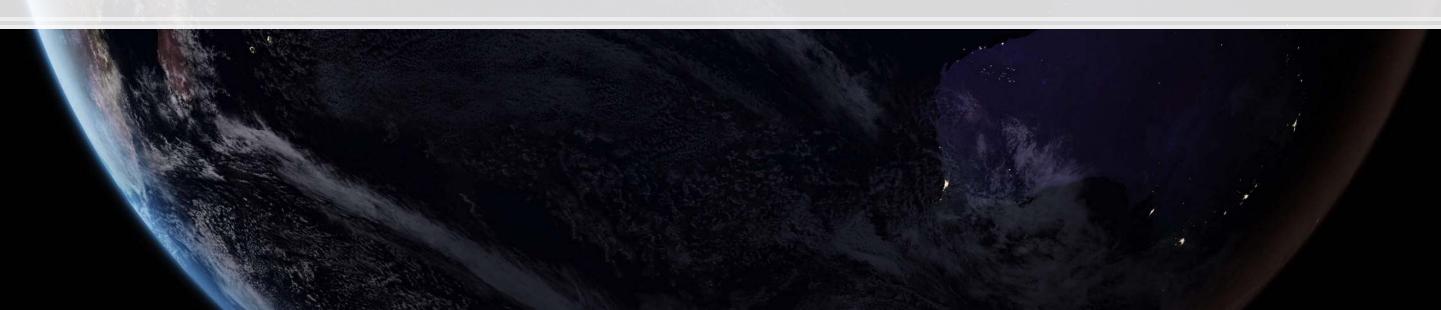
Prepping SHAP

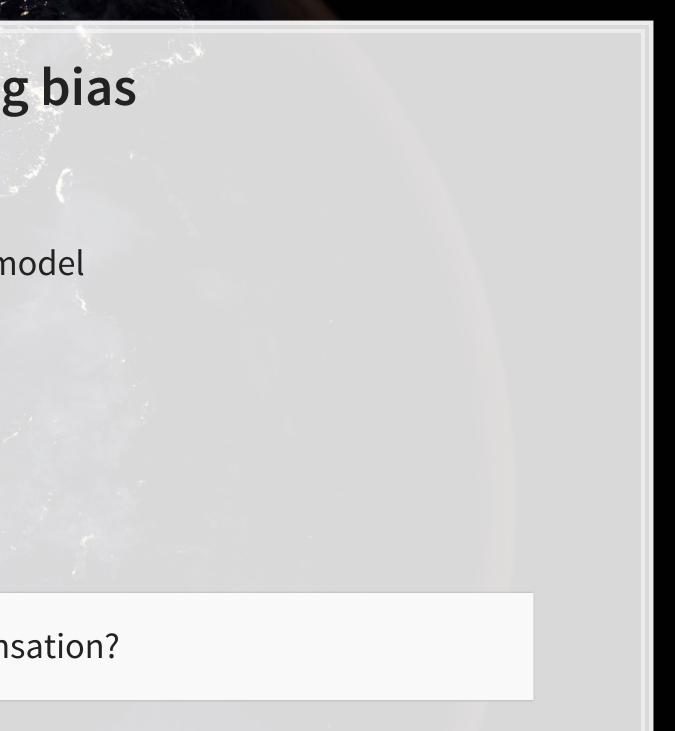
/

An example of quantifying bias

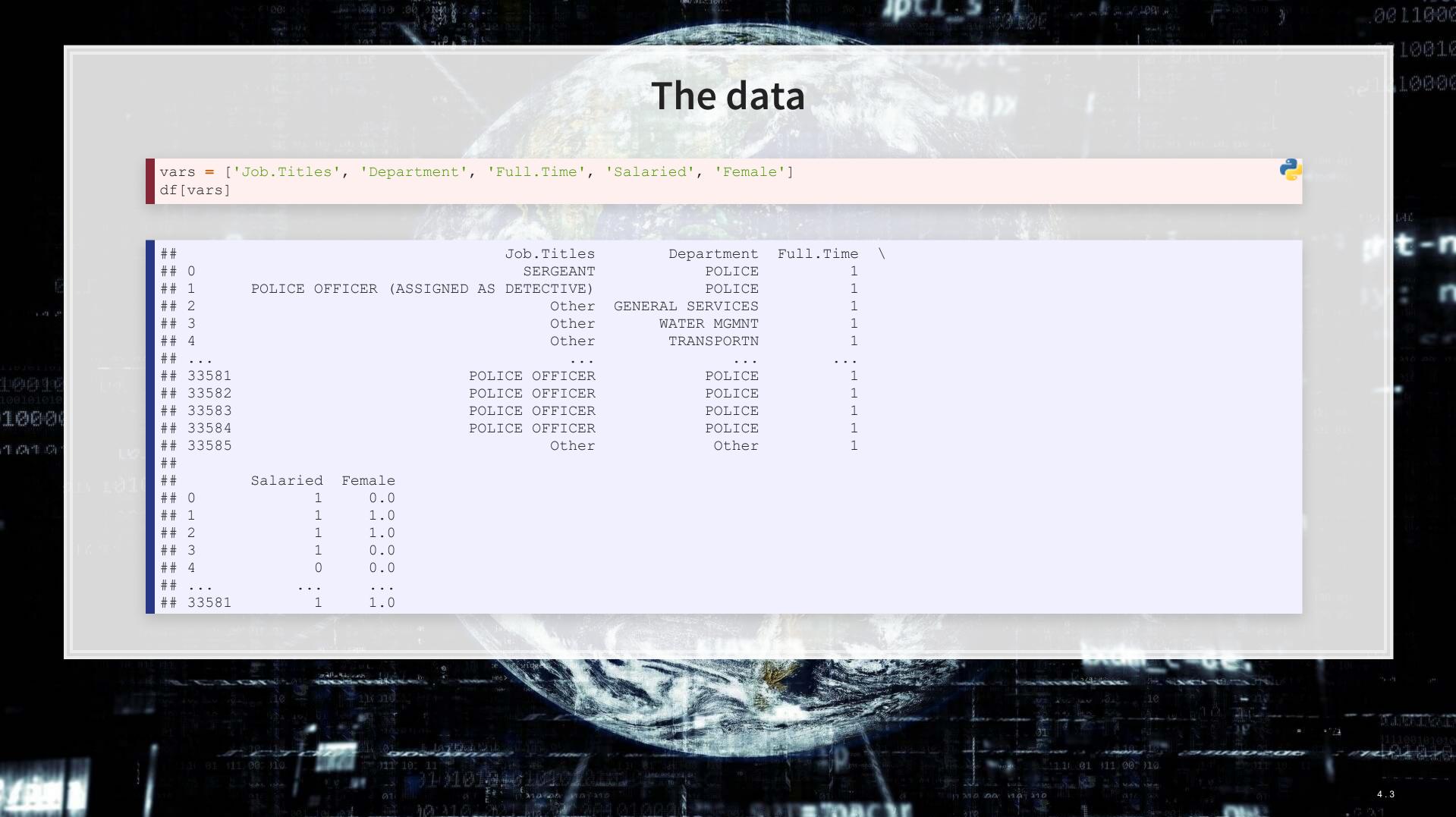
- Data: City of Chicago salaries
 - 33,586 employees
- Trained using a simple XGBoost model
- Features:
 - Job title
 - Department
 - Full time / part time
 - Salaried or hourly
 - Female

Is there gender bias in annual compensation?





##			J	ob.Titles	Department	Full.Time	\setminus
## O				SERGEANT	POLICE	1	
## 1	POLICE OF	FICER	(ASSIGNED AS D	ETECTIVE)	POLICE	1	
## 2				Other	GENERAL SERVICES	1	
## 3				Other	WATER MGMNT	1	
## 4				Other	TRANSPORTN	1	
##				• • •	• • •		
## 33581			POLIC	E OFFICER	POLICE	1	
## 33582			POLIC	E OFFICER	POLICE	1	
## 33583			POLIC	E OFFICER	POLICE	1	
## 33584			POLIC	E OFFICER	POLICE	1	
 ## 33585				Other	Other	1	
# #							
##	Salaried	Femal	е				
## O	1	0.	0				
## 1	1	1.	0				
## 2	1	1.	0				
## 3	1	0.	0				
## 4	0	0.	0				
##	• • •	• •	•				
## 33581	1	1.	0				
					The second s	50 30 7 4 A	ACCESSION AND

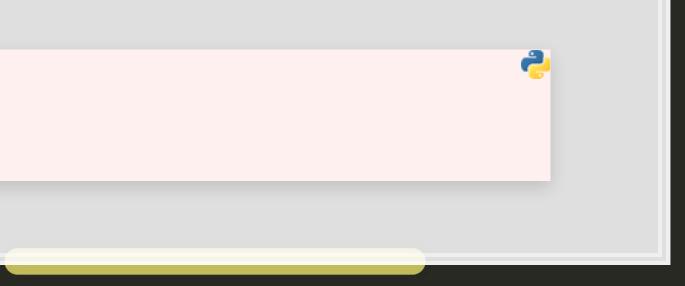


One hot encoding categorical data

- Pandas has a function for this, pd.get dummies()
 - prefix= lets us name the columns of the output
- As pd.get dummies () outputs a new data frame only containing the new columns, we need to join them back
 - df.join() makes this quick and easy

```
one hot1 = pd.get dummies(df['Job.Titles'], prefix='Job.Titles')
one hot2 = pd.get dummies(df['Department'], prefix='Department')
```

```
df = df.join(one hot1)
  = df.join(one hot2)
```



Prepping XGBoost

We did this in Session 3

```
vars = one_hot1.columns.tolist() + \
    one_hot2.columns.tolist() + \
    ['Full.Time', 'Salaried', 'Female']
dtrain = xgb.DMatrix(df[vars], label=df['Salary'], feature_names=vars)
```


Building our model and prepping SHAP

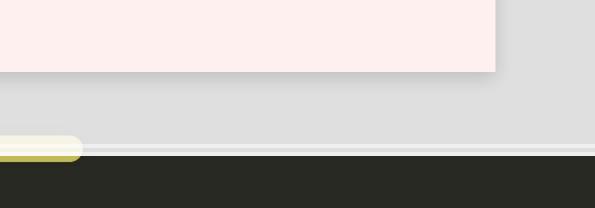
We call xgb.train() to fit our XGBoost model

model_xgb = xgb.train(param, dtrain, num_round)

- Since XGBoost is a tree-based model, we will use SHAP's shap.TreeExplainer() function to analyze the model
- Since we only have in-sample data, we will compute SHAP on the same data the XGBoost model was fit to
- We will also prepare a small sample for more CPU-intensive analyses

```
explainer = shap.TreeExplainer(model xgb)
shap values = explainer(df[vars])
df small = df.sample(frac=0.01)
shap_values_small = explainer(df[vars])
```


۲

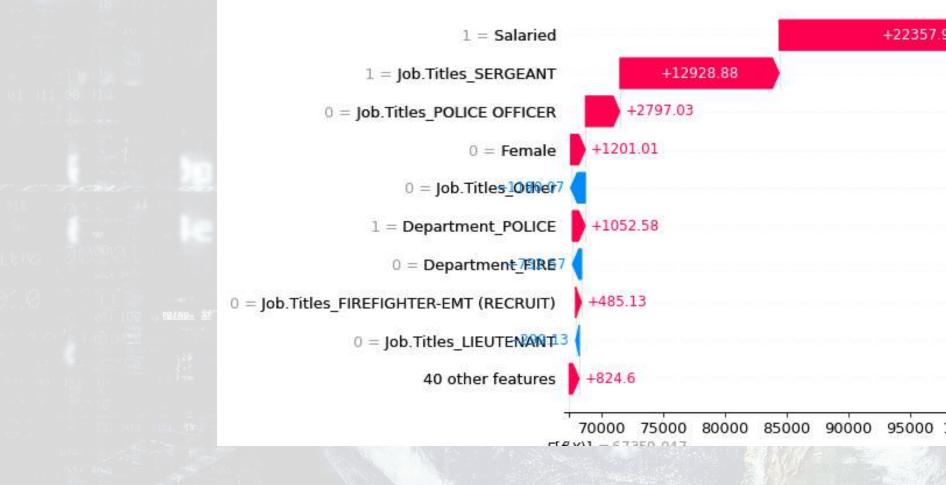


0011000 0010 的创新 Explaining a single observation උ f(x) = 106764.406+22357.9 1 = Salaried 1 = Job.Titles_SERGEANT +12928.88 +2797.03 +1201.01 0 = Female 0 = Job.Titles Other7 1 = Department_POLICE +1052.58 0 = Department_7EIRE7 +485.13 0 = Job.Titles_LIEUTENANT3 40 other features +824.670000 75000 80000 85000 90000 95000 100000 105000 - PV1 _ CTOCO 045

shap.plots.waterfall(shap_values[0])

1008

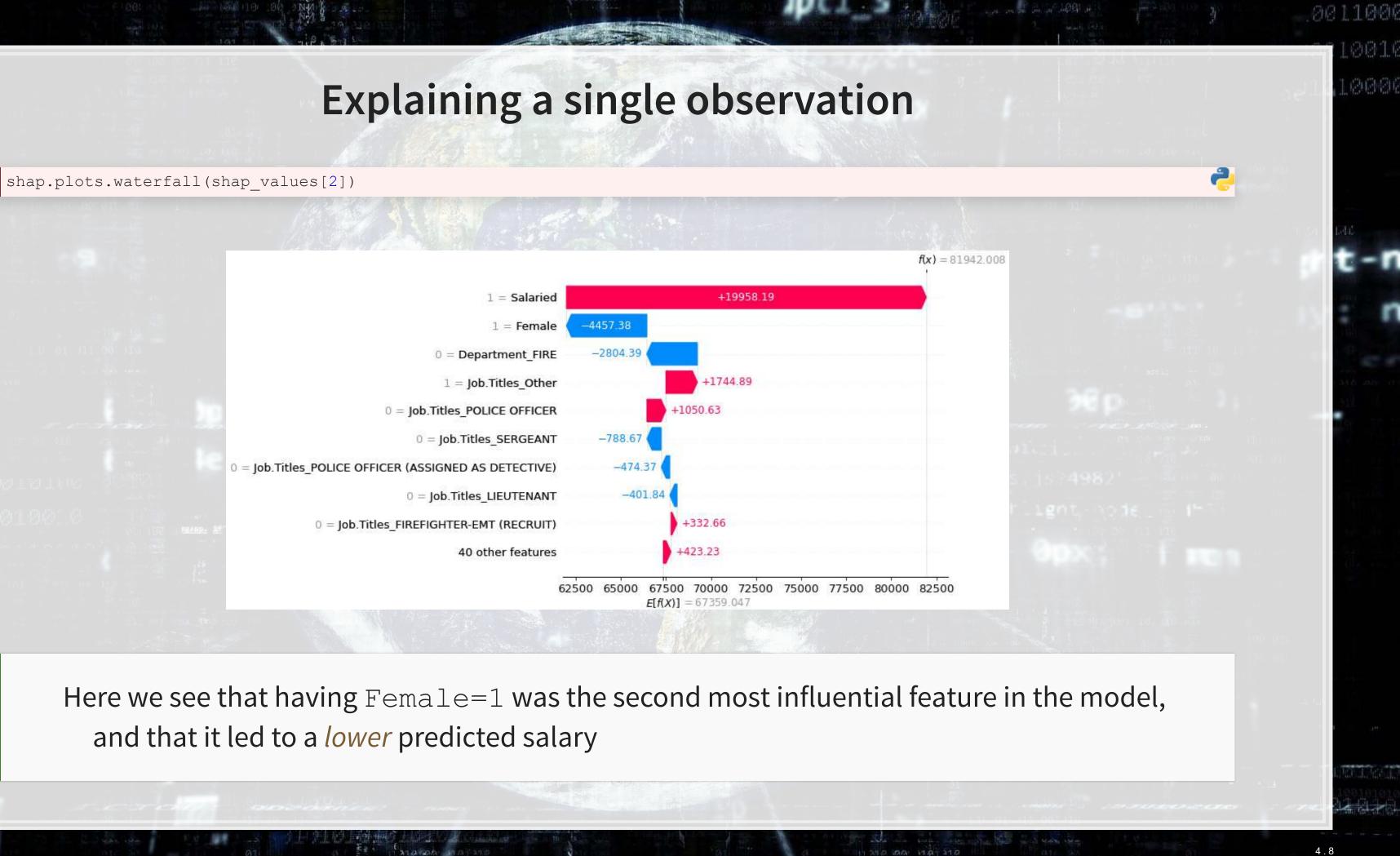
生活生活



Here we see that having Female=0 was the fourth most influential feature in the model, and that it led to a *higher* predicted salary

1008

生活生活

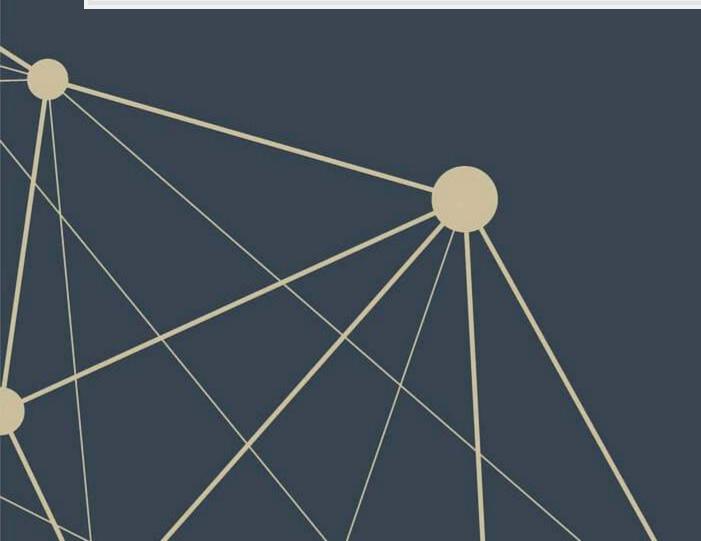


Charting with SHAP

/

A more concise point visual

shap.plots.force(shap_values[1])



iza	ation				
hi e+4	igher ≓ lower ^{f(X)} 97,124.66	1.074e+5	1.174e		
= 1	Female =				

Aggregating across the data

N=300

shap.plots.force(explainer.expected_value, shap_values.sample(N).values, feature_names=vars)

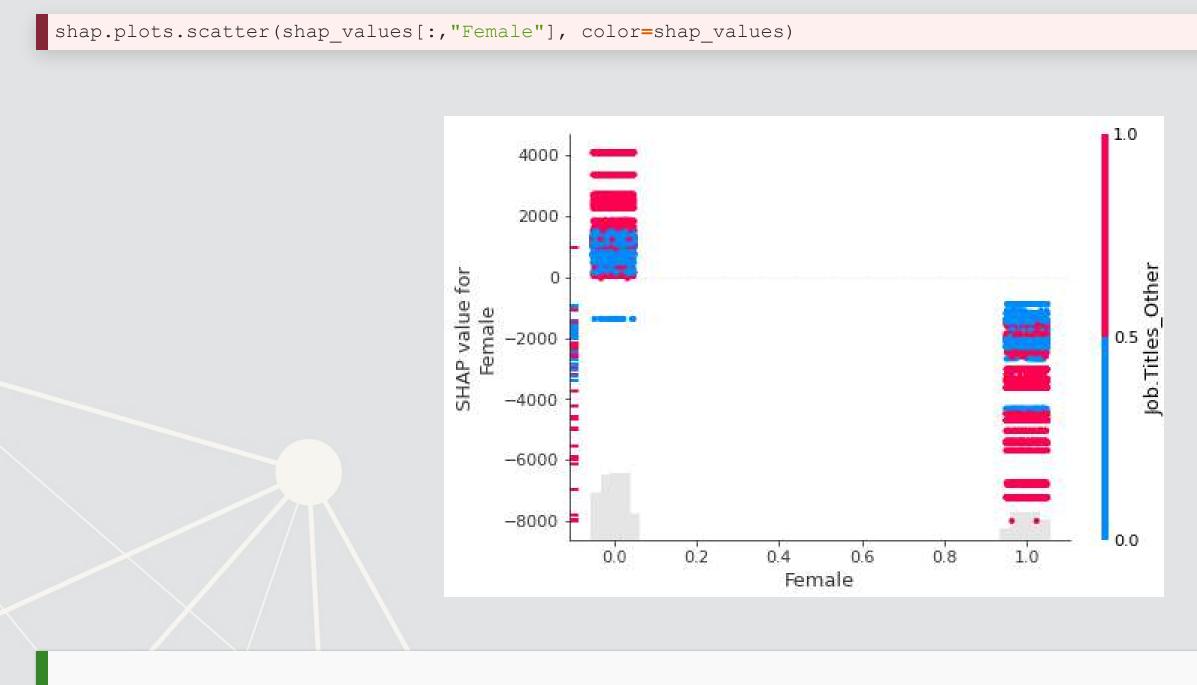
0 220 240 260 280				
0 220 240 260 280				
	0	220	260	

Seeing more variables' impact

• A "Decision plot" uses a line chart to show the impact of more measures across the data

Aggregate analysis of an individual variable

• If we want to see the full impact of "Female" on outcomes in our data, a scatter plot is useful



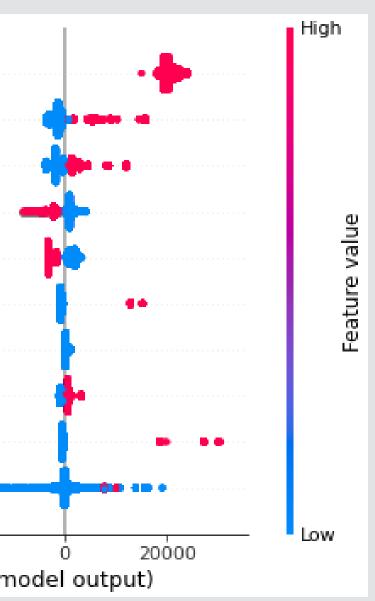
Remember that our model is nonparametric! Signs can be different even when the variable doesn't change due to interactive effects

Multiple scatterplots at once: Bee swarm

• If you want a concise way to present multiple variables, the bee swarm plot can be useful

shap.plots.beeswarm(shap_values)

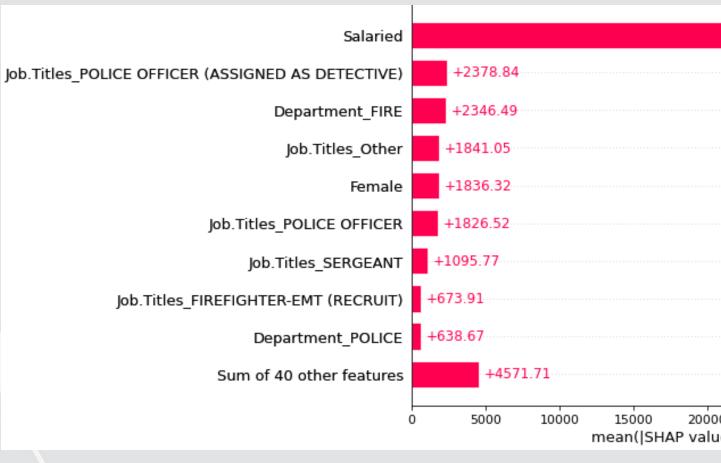
• •	Salaried
	Department_FIRE
	Job.Titles_Other
	Female
	Job.Titles_POLICE OFFICER
	Job.Titles_SERGEANT
	ob.Titles_FIREFIGHTER-EMT (RECRUIT)
	Department_POLICE
	Job.Titles_LIEUTENANT
•	Sum of 40 other features
–80000 –60000 –40000 –20000 SHΔP value (impact on n	



Importance plot

Lastly, we can replicate XGBoost's importance plot using |SHAP|

shap.plots.bar(shap_values)



This may not be useful for XGBoost since it already has an importance metric, but many other models lack it

		+3112	20.19
0 e)	25000	30000	-

Addendum: Using R

- If you are working explicitly with XGBoost, there is a great SHAPforxgboost package
- To interface with the python shap package, you can use shapper
- There is also shapr, though it isn't as full-featured.

SHAPforxgboost <mark>package</mark> happer

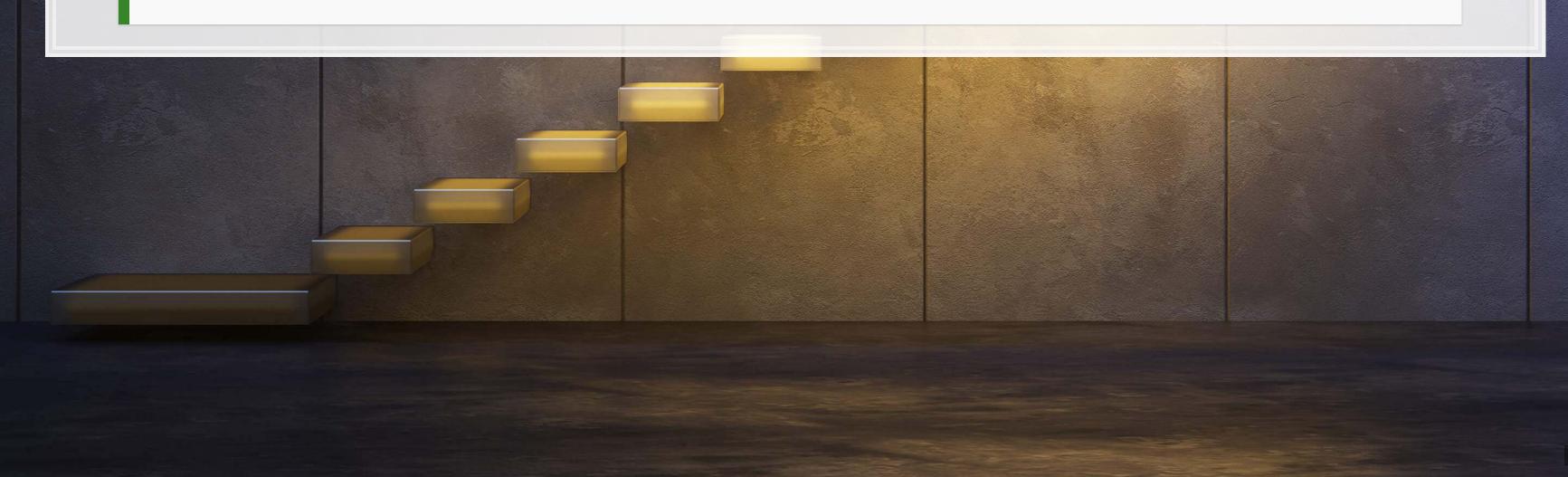
Conclusion

Wrap-up

SHAP can provide some insight into models at the observation, group, and sample level

• For more complex models, this helps to unwrap the "black box" some

SHAP can provide us with [conditional] marginal effects-like analysis for more complex models



Packages used for these slides

Python

- numpy
- pandas
- shap
- xgboost

References

- Lundberg, Scott, and Su-In Lee. "A unified approach to interpreting model predictions." In Proceedings of the 31st Conference on Neural Information Processing Systems. (2017).
- Lundberg, Scott M., Bala Nair, Monica S. Vavilala, Mayumi Horibe, Michael J. Eisses, Trevor Adams, David E. Liston et al. "Explainable machine-learning predictions for the prevention of hypoxaemia during surgery." Nature biomedical engineering 2, no. 10 (2018): 749-760.
- Wich, Maximilian, Jan Bauer, and Georg Groh. "Impact of politically biased data on hate speech classification." In Proceedings of the Fourth Workshop on Online Abuse and Harms, pp. 54-64. 2020.

