
ML for SS: Neural Networks and

Transfer Learning

Session 11

Dr. Richard M. Crowley

 rcrowley@smu.edu.sg

http://rmc.link/

1

mailto:rcrowley@smu.edu.sg
http://rmc.link/

Overview

2 . 1

Papers

▪ Liu, Lee and Srinivasan (2019)

▪ Examines the impact of user reviews on e-commerce purchasing behavior

▪ Uses a Convolutional Neural Network to accomplish this

▪ Huang, Wang, and Yang (2020)

▪ Proposes a BERT-based model of sentiment for finance and financial accounting usage

▪ Uses transfer learning to accomplish this

2 . 2

Python

▪ Using Keras with Tensorflow for numeric inputs

▪ Using premade models for text analytics

▪ Using premade models for transfer learning

R

▪ You can use Keras from R through RStudio’s

package

Technical Discussion

Focus on Neural Networks for numeric and text data

Python’s support is a lot better here

2 . 3

Frameworks for Neural networks

3 . 1

▪ It can run almost ANY ML/AI/NN algorithm

▪ It has APIs for easier access like Keras

▪ Comparatively easy GPU setup

▪ It can deploy anywhere

▪ Python & C/C++ built in

▪ Swi�, R Haskell, and Rust bindings

▪ TensorFlow light for mobile deployment

▪ TensorFlow.js for web deployment

TensorFlow

3 . 2

https://www.tensorflow.org/lite/
https://js.tensorflow.org/
https://magenta.tensorflow.org/
https://tfhub.dev/

▪ It has strong support from Google and others

▪ – Premade algorithms for

text, image, and video

▪ – Premade code examples

▪ The folder contains an amazing

set of resources

▪ – AI research models from Google Brain

TensorFlow resources

TensorFlow Hub

tensorflow/models

research

trax

3 . 3

https://tfhub.dev/
https://github.com/tensorflow/models
https://github.com/tensorflow/models/tree/master/research
https://github.com/google/trax
https://www.tensorflow.org/lite/
https://js.tensorflow.org/
https://magenta.tensorflow.org/
https://tfhub.dev/

▪

▪ Python, C/C++, Matlab

▪ Good for image processing

▪

▪ C++ and Python

▪ Still largely image oriented

▪

▪ Python, C++

▪ Scales well, good for NLP

▪ and

▪ For Lua and python

▪ , , and

▪

▪ Python based

▪ Integration with R, Scala…

Other notable frameworks

Caffe

Caffe2

Microso� Cognitive Toolkit

Torch Pytorch

fast.ai ELF AllenNLP

H20

3 . 4

http://caffe.berkeleyvision.org/
https://caffe2.ai/
https://www.microsoft.com/en-us/cognitive-toolkit/
http://torch.ch/
https://pytorch.org/
https://www.fast.ai/
https://github.com/pytorch/elf
https://allennlp.org/
https://www.h2o.ai/
https://caffe2.ai/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://pytorch.org/
https://www.h2o.ai/

Neural Networks

4 . 1

What are neural networks?

▪ The phrase neural network is thrown around almost like a buzz word

▪ Neural networks are actually a specific type class algorithms

▪ There are many implementations with different primary uses

4 . 2

What are neural networks?

▪ Originally, the goal was to construct an algorithm that behaves like a human brain

▪ Thus the name

▪ Current methods don’t quite reflect human brains, however:

1. We don’t fully understand how our brains work, which makes replication rather difficult

2. Most neural networks are constructed for specialized tasks (not general tasks)

3. Some (but not all) neural networks use tools our brain may not have

▪ I.e., backpropogation is , but it is not pinned down how such a function

occurs (if it does occur)

potentially possible in brains

4 . 3

https://www.frontiersin.org/articles/10.3389/fncom.2016.00094/full

What are neural networks?

▪ Neural networks are a method by which a computer can learn from observational data

▪ In practice:

▪ They were not computationally worthwhile until the mid 2000s

▪ They have been known since the 1950s (perceptrons)

▪ They can be used to construct algorithms that, at times, perform better than humans themselves

▪ But these algorithms are o�en quite computationally intense, complex, and difficult to understand

▪ Much work has been and is being done to make them more accessible

4 . 4

Types of neural networks

▪ There are a lot of neural network types

▪ See The

▪ Some of the more interesting ones which we will see or have seen:

▪ RNN: Recurrent Neural Network

▪ LSTM: Long/Short Term Memory

▪ CNN: Convolutional Neural Network

▪ DAN: Deep Averaging Network

▪ GAN: Generative Adversarial Network

▪ Others worth noting

▪ VAE (Variational Autoencoder): Generating new data from datasets

▪ Not in the Zoo, but of note:

▪ : Networks with “attention”

▪ From

“Neural Network Zoo”

Transformer

Attention is All You Need

4 . 5

http://www.asimovinstitute.org/neural-network-zoo/
http://jalammar.github.io/illustrated-transformer/
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

RNN: Recurrent NN

▪ Recurrent neural networks embed a history of information in the network

▪ The previous computation affects the next one

▪ Leads to a short term memory

▪ Used for speech recognition, image captioning, anomaly detection, and many others

▪ Also the foundation of LSTM

▪ ()SketchRNN live demo

4 . 6

https://ai.googleblog.com/2017/04/teaching-machines-to-draw.html
https://magenta.tensorflow.org/assets/sketch_rnn_demo/index.html

LSTM: Long Short Term Memory

▪ LSTM improves the long term memory of the network while explicitly modeling a short term memory

▪ Used wherever RNNs are used, and then some

▪ Ex.: (machine translation)Seq2seq

4 . 7

https://google.github.io/seq2seq/

CNN: Convolutional NN

▪ Networks that excel at object detection (in images)

▪ Can be applied to other data as well

▪ Ex.: Inception-v3

4 . 8

https://ai.googleblog.com/2016/03/train-your-own-image-classifier-with.html

DAN: Deep Averaging Network

▪ DANs are simple networks that simply average their inputs

▪ Averaged inputs are then processed a few times

▪ These networks have found a home in NLP

▪ Ex.: Universal Sentence Encoder

4 . 9

https://tfhub.dev/google/universal-sentence-encoder/2

GAN: Generative Adversarial Network

▪ Feature two networks working against each other

▪ Many novel uses

▪ Ex.: Anonymizing clinical trial data by simulating an attack on the dataset

▪ Ex.: Aging images

4 . 10

https://medium.com/syncedreview/face-aging-with-conditional-generative-adversarial-networks-d41076379047

VAE: Variational Autoencoder

▪ An autoencoder (AE) is an algorithm that can recreate input data

▪ Variational means this type of AE can vary other aspects to generate completely new output

▪ Good for creating

▪ Like a simpler, noisier GAN

fake data

4 . 11

https://github.com/yzwxx/vae-celebA

Transformer

▪ Shares some similarities with RNN and LSTM: Focuses on attention

▪ Currently being applied to solve many types of problems

▪ Examples: BERT, GPT-3, XLNEt

4 . 12

A simple example: MNIST

5 . 1

MNIST

▪ MINST is a set of handwritten numbers with annotations

▪ It has prespecified training and testing samples

▪ Ensures comparability

▪ 60,000 for training, 10,000 for testing

▪ It’s available in , so we will import from theretensorflow

(train_X, train_Y), (test_X, test_Y) = keras.datasets.mnist.load_data()

print('Train, X:%s, Y:%s' % (train_X.shape, train_Y.shape))

print('Test, X:%s, Y:%s' % (test_X.shape, test_Y.shape))

Train, X:(60000, 28, 28), Y:(60000,)
Test, X:(10000, 28, 28), Y:(10000,)

5 . 2

https://www.tensorflow.org/

A look at the MNIST data

images = np.random.randint(0, train_X.shape[0], size=25)

for i in range(0, 25):

 # define subplot

 image = images[i]

 plt.subplot(5, 5, i+1)

 # plot raw pixel data

 plt.imshow(train_X[image], cmap=plt.get_cmap('gray'))

 plt.title(train_Y[image])

plt.tight_layout()

5 . 3

Thinking about images as data

▪ Images are data, but they are very unstructured

▪ No instructions to say what is in them

▪ No common grammar across images

▪ Many, many possible subjects, objects, styles, etc.

▪ From a computer’s perspective, images are just 3-dimensional matrices

▪ Rows (pixels)

▪ Columns (pixels)

▪ Color channels (usually Red, Green, and Blue)

▪ We can think of the MNIST data as a set of 28x28x1 3D matrices

▪ If we ignore spacial aspects, we can just think of each image as a 784-dim vector

5 . 4

Simple neural network

▪ We will ignore the 2D nature of the image – instead, we will treat it as a vector of values between 0 and 1

▪ To do this, we need to…

1. Scale by 255 (the max value in the data/

2. Reshape our data into vectors

Scale data

train_X = train_X.astype("float32") / 255

test_X = test_X.astype("float32") / 255

convert to vectors

rows = train_X.shape[0]

dim1 = train_X.shape[1]

dim2 = train_X.shape[2]

train_X = train_X.reshape((rows, dim1 * dim2))

rows = test_X.shape[0]

test_X = test_X.reshape((rows, dim1 * dim2))

print('Train, X:%s, Y:%s' % (train_X.shape, train_Y.shape))

print('Test, X:%s, Y:%s' % (test_X.shape, test_Y.shape))

Train, X:(60000, 784), Y:(60000,)
Test, X:(10000, 784), Y:(10000,)

5 . 5

Dealing with categorical DVs

▪ We need to take special care that the Y values are interpreted as categories

▪ Otherwise, the default behavior would be to treat them as a continuous numeric measure

▪ We can use keras.utils.to_categorical to convert our data into the right format

train_Y = keras.utils.to_categorical(train_Y, 10)

test_Y = keras.utils.to_categorical(test_Y, 10)

print('Train, X:%s, Y:%s' % (train_X.shape, train_Y.shape))

print('Test, X:%s, Y:%s' % (test_X.shape, test_Y.shape))

Train, X:(60000, 784), Y:(60000, 10)
Test, X:(10000, 784), Y:(10000, 10)

Note that Y is now 10-dimensional – it is one hot encoded now

5 . 6

Constructing a simple neural network

▪ This model is a very simplistic algorithm

▪ The data streams in as 784-dim vectors (InputLayer)

▪ The data is compressed by 10 fully-connected neurons all in the same layer (Dense)

▪ Each neuron will take on one category to try to pick up

▪ The highest probability neuron will be the category guess (softmax)

Parameters for the model

num_classes = 10

input_shape = (784)

model_dense = keras.Sequential(

 [

 keras.layers.InputLayer(input_shape=input_shape),

 keras.layers.Dense(num_classes, activation="softmax")

]

)

model_dense.summary()

Model: "sequential_3"

Layer (type) Output Shape Param #
===
dense_4 (Dense) (None, 10) 7850
===
Total params: 7,850
Trainable params: 7,850
Non-trainable params: 0
___ 5 . 7

Run the neural network

▪ There are 2 steps to running a neural network:

1. Compile the model: We previously described the network shape, but didn’t build the network itself

2. Fit the model to our data

▪ The loss function tells the model what to optimize in training

▪ categorical_crossentropy corresponds to multiclass classification accuracy

▪ The optimizer is the function used for training the model – adam is a good default

▪ Metrics are what you want it to track and report back to you

▪ Within the fit command, note that epochs is the number of rounds to train the model

▪ Higher is o�en better, but not always

▪ The model itself runs quickly

batch_size = 128

epochs = 10

model_dense.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

history = model_dense.fit(train_X, train_Y, batch_size=batch_size, epochs=epochs, validation_split=0.1)

5 . 8

Model performance

▪ The model we compiled is 92.45% accurate in-sample, with 93.78% accuracy on validation data

▪ However, what matters most is the accuracy on the testing data

▪ will test this for us

▪ We will also make lists of what it got right and wrong

model.evaluate()

score = model_dense.evaluate(test_X, test_Y, verbose=0)

print("Test loss:", score[0])

print("Test accuracy:", score[1])

Test loss: 0.26733914017677307
Test accuracy: 0.9259999990463257

correct = np.where(np.argmax(model_dense.predict(test_X), axis=-1) == np.argmax(test_Y, axis=-1))[0]

incorrect = np.where(np.argmax(model_dense.predict(test_X), axis=-1) != np.argmax(test_Y, axis=-1))[0]

5 . 9

https://www.tensorflow.org/api_docs/python/tf/keras/Model#evaluate

What does the model get right?

5 . 10

What does the model get wrong?

5 . 11

For those using

▪ CPU Based, works on any computer

▪ Nvidia GPU based

▪ Install the first

Using your own python setup

▪ Follow Google’s

▪ Install keras from a terminal with

pip install keras

▪ R Studio’s keras package will automatically find

it

▪ May require a reboot to work on Windows

Addendum: Using R

▪ There is a port of for R made by the RStudio team

▪ It calls TensorFlow in python, however

▪ Install with: devtools::install_github("rstudio/keras")

▪ Finish the install in one of two ways:

By R Studio: details here

keras

Conda

library(keras)

install_keras()

So�ware requirements

library(keras)

install_keras(tensorflow = "gpu")

install instructions for

TensorFlow

5 . 12

https://keras.rstudio.com/index.html
https://keras.rstudio.com/
https://docs.conda.io/en/latest/
https://www.tensorflow.org/install/gpu
https://www.tensorflow.org/install

Transfer Learning

6 . 1

What is transfer learning?

▪ It is a method of training an algorithm on one domain and then applying the algorithm on another domain

▪ It is useful when…

▪ You don’t have enough data for your primary task

▪ And you have enough for a related task

▪ You want to augment a model with even more

6 . 2

Inputs:

Try it out!

▪ Colab file available at

▪ Largely based off of

▪ It just took a few tweaks to get it working in a Google Colaboratory environment properly

this link

dsgiitr/Neural-Style-Transfer

6 . 3

https://colab.research.google.com/drive/1fepwhtxIyqE9VQ02Hb7A7RpMpVKBFGkp
https://github.com/dsgiitr/Neural-Style-Transfer

How can transfer learning be useful?

▪ Simple neural networks are easy enough to train yourself using standard hardware

▪ Some more complex models, such as BERT models, are too complex to train fully on consumer hardware

▪ E.g., the FinBERT paper is trained on an DGX-1 (128 GB of Video RAM)

▪ Transfer learning represents an efficient middle ground

▪ Take a pretrained model and retrain it for a specific domain

▪ Neural networks o�en need much less data to retrain than to train initially

▪ This retraining is called fine-tuning

As researchers, most of us won’t have sufficient hardware to train these models

6 . 4

Using FinBERT

▪ FinBERT is available in three forms:

1. A pretrained model

2. A pretrained huggingface model via the package

3. A fine-tunable model

▪ Demos of each are available via my colab shares:

▪

▪

▪

▪ Note: Colab lacks the computational power needed for this task

pytorch

transformers

pytorch

pretrained pytorch model

pretrained huggingface model

Fine-tuning pytorch model

6 . 5

https://pytorch.org/
https://huggingface.co/transformers/
https://pytorch.org/
https://colab.research.google.com/drive/1T1NlGdU7waViQ6K-ragVV_Iwa1ie_4ue?usp=sharing
https://colab.research.google.com/drive/1T7Uuhc_7uM725pciep-IvL8xi8GJdRfv?usp=sharing
https://colab.research.google.com/drive/1fQrv5wXLiRV37lxc_sZnsiGfXzIPzUjA?usp=sharing

Conclusion

7 . 1

Wrap-up

▪ They provide very flexible functional forms and efficient solving methods

▪ BERT-based models can make effective baselines to fine-tune for text problems

Neural Networks can efficiently solve some numeric and text problems

Transfer learning helps us leverage complex models whose training is beyond our

computational limits

7 . 2

Packages used for these slides

Python

▪ numpy

▪ pandas

▪ PIL

▪ pytorch_pretrained_bert

▪ torch

▪ tensorflow

▪ transformers

7 . 3

References

▪ Huang, Allen, Hui Wang, and Yi Yang. “The Informativeness of Text, the Deep Learning Approach.” (2020).

▪ Liu, Xiao, Dokyun Lee, and Kannan Srinivasan. “Large-scale cross-category analysis of consumer review

content on sales conversion leveraging deep learning.” Journal of Marketing Research 56, no. 6 (2019): 918-

943.

7 . 4

