ML for SS: Neural Networks for Image Classification

Session 12

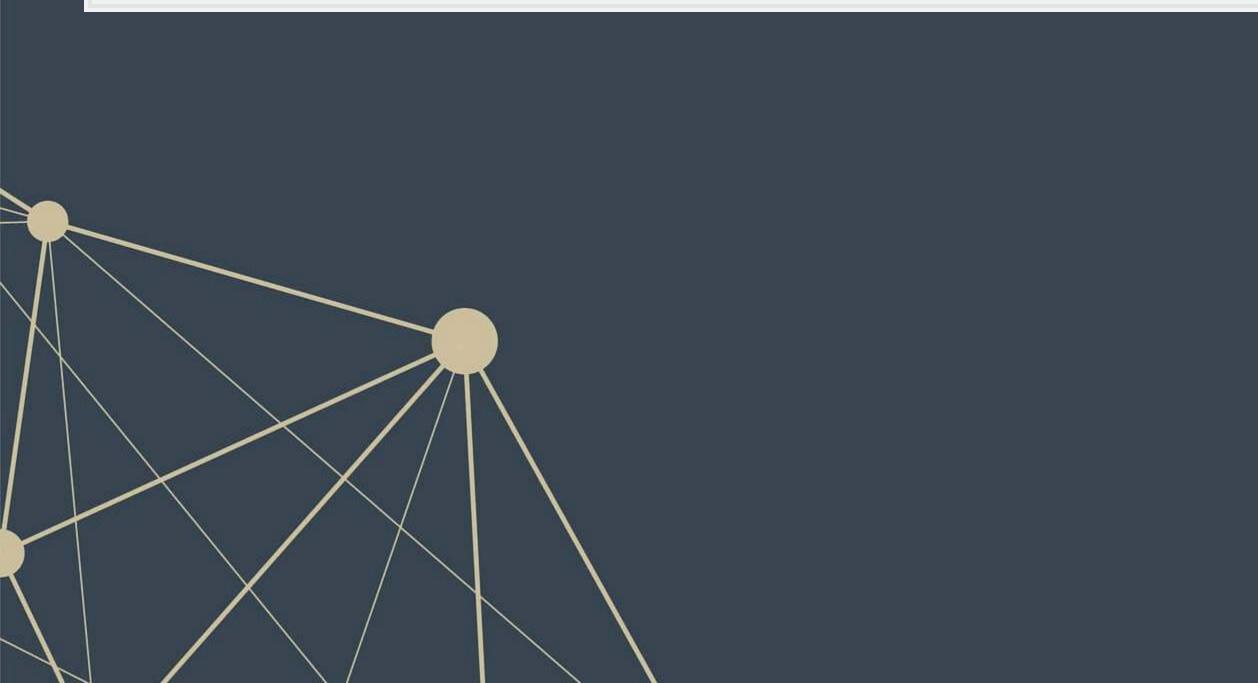
Dr. Richard M. Crowley rcrowley@smu.edu.sg http://rmc.link/

Overview

1

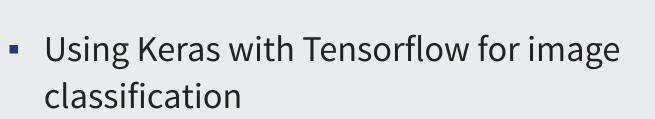
Papers

- Liu, Dzyabura and Mizik (2020)
 - Examines brand image and how reflective profiles are of the brands
- Zhang, Lee, Singh and Srinivasan (2017)
 - Examines how images in listings impact AirBNB properties



Technical Discussion

Focus on Neural Networks for images



1. Repeat our MNIST example using a proper CNN

Python

2. Using a premade GAN approach for even higher performance

Using a 80-class pretrained classifier

package

Python's support is a lot better here

R

You can use Keras from R through RStudio's

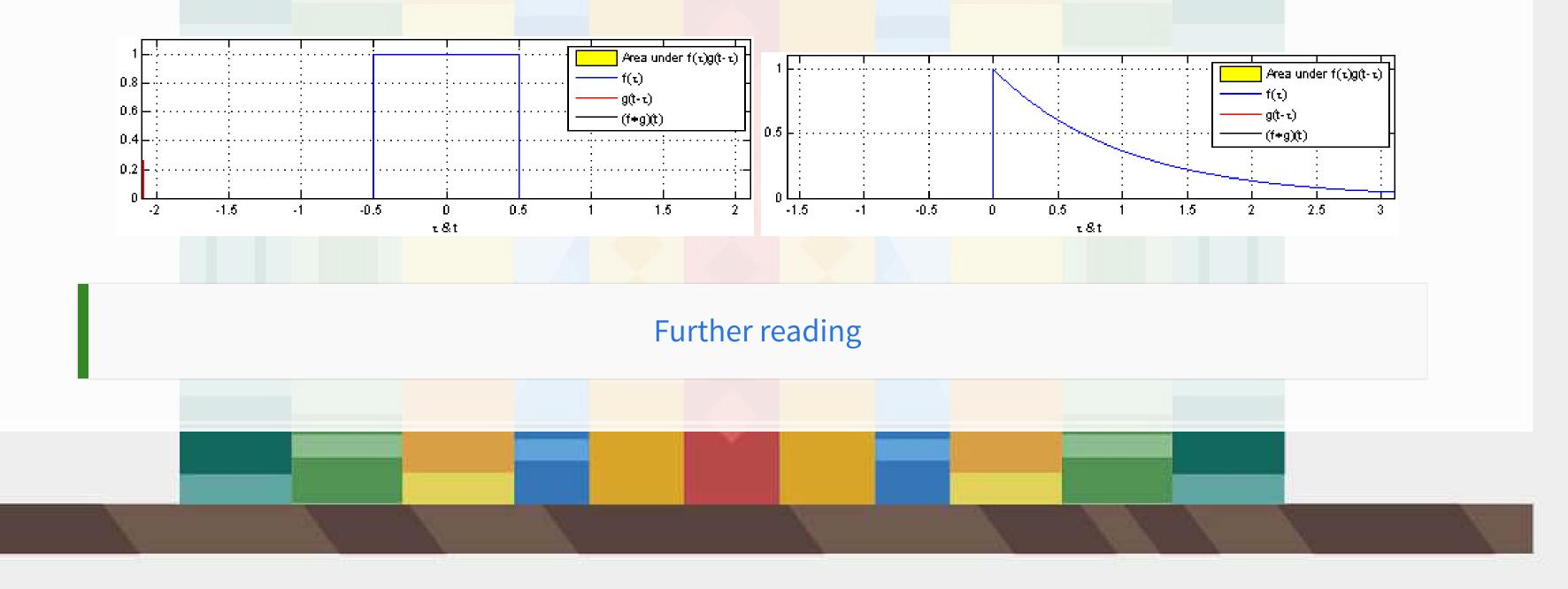
MNIST: Extending to a CNN

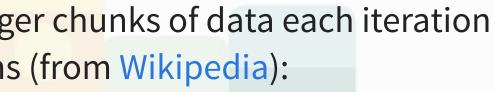
/



How CNNs work

- CNNs use repeated convolution, usually looking at slightly bigger chunks of data each iteration
- But what is convolution? It is illustrated by the following graphs (from Wikipedia):



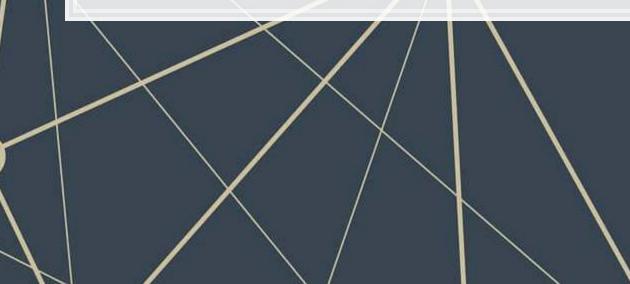


Setup

- The setup is similar, except we don't need to reshape our X data
- We do need to add an additional dimension to our images though, which np.expand dims() does for us

```
(train X, train Y), (test X, test Y) = keras.datasets.mnist.load data()
train X = train X.astype("float32") / 255
test X = test X.astype("float32") / 255
train X = np.expand dims(train X, -1)
test X = np.expand dims(test X, -1)
train Y = keras.utils.to categorical(train Y, 10)
test Y = keras.utils.to categorical(test Y, 10)
print('Train, X:%s, Y:%s' % (train X.shape, train Y.shape))
print('Test, X:%s, Y:%s' % (test_X.shape, test_Y.shape))
```

Train, X:(60000, 28, 28, 1), Y:(60000, 10) ## Test, X:(10000, 28, 28, 1), Y:(10000, 10)



Build the model

- Here we use Conv2D () layers for the convolution
- The MaxPooling2D() layers downsample (shrink) the data
- The Flatten () layer reshapes the output to a vector
- Reluis essentially the same as a call option payoff ("hockey stick")
- Softmax is to output the class with the highest weight (argmax)

model cnn.summary()

on rink) the data vector roff ("hockey stick^a weight (argmay)

Build the model

# # # #	Model: "sequential_4"		
## ##	Layer (type)	Output Shape	Param #
# # # # # #	conv2d_2 (Conv2D)	(None, 26, 26, 32)	320
# # # #	<pre>max_pooling2d_2 (MaxPooling2</pre>	(None, 13, 13, 32)	0
# # # #	conv2d_3 (Conv2D)	(None, 11, 11, 64)	18496
# # # #	<pre>max_pooling2d_3 (MaxPooling2</pre>	(None, 5, 5, 64)	0
# # # #	flatten_1 (Flatten)	(None, 1600)	0
# # # #	dropout_2 (Dropout)	(None, 1600)	0
## ##	dense_5 (Dense)	(None, 10)	16010
# # # # # #	Total params: 34,826 Trainable params: 34,826 Non-trainable params: 0		

Fit the model and evaluate

• Fitting and evaluating is the same as before

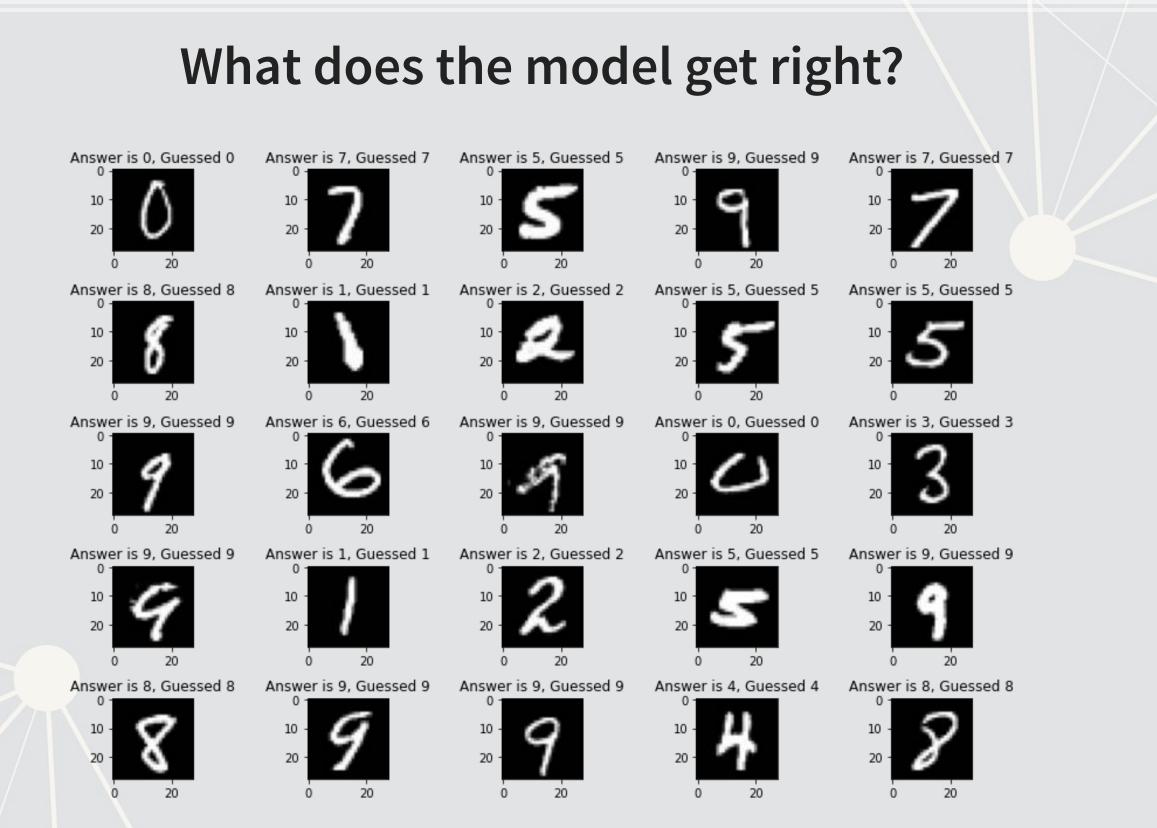
batch_size = 128
epochs = 10

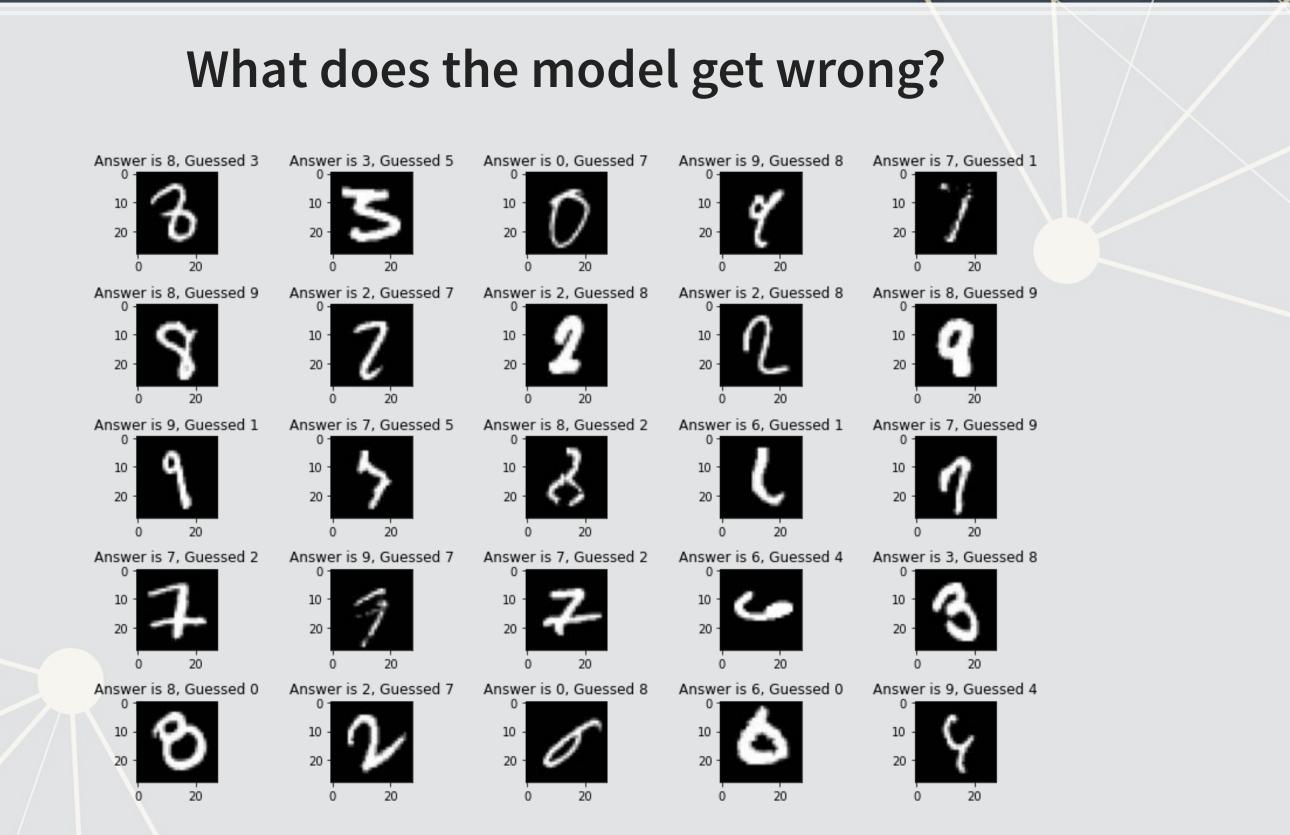
model_cnn.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model_cnn.fit(train_X, train_Y, batch_size=batch_size, epochs=epochs, validation_split=0.1)

```
score = model_cnn.evaluate(test_X, test_Y, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
```

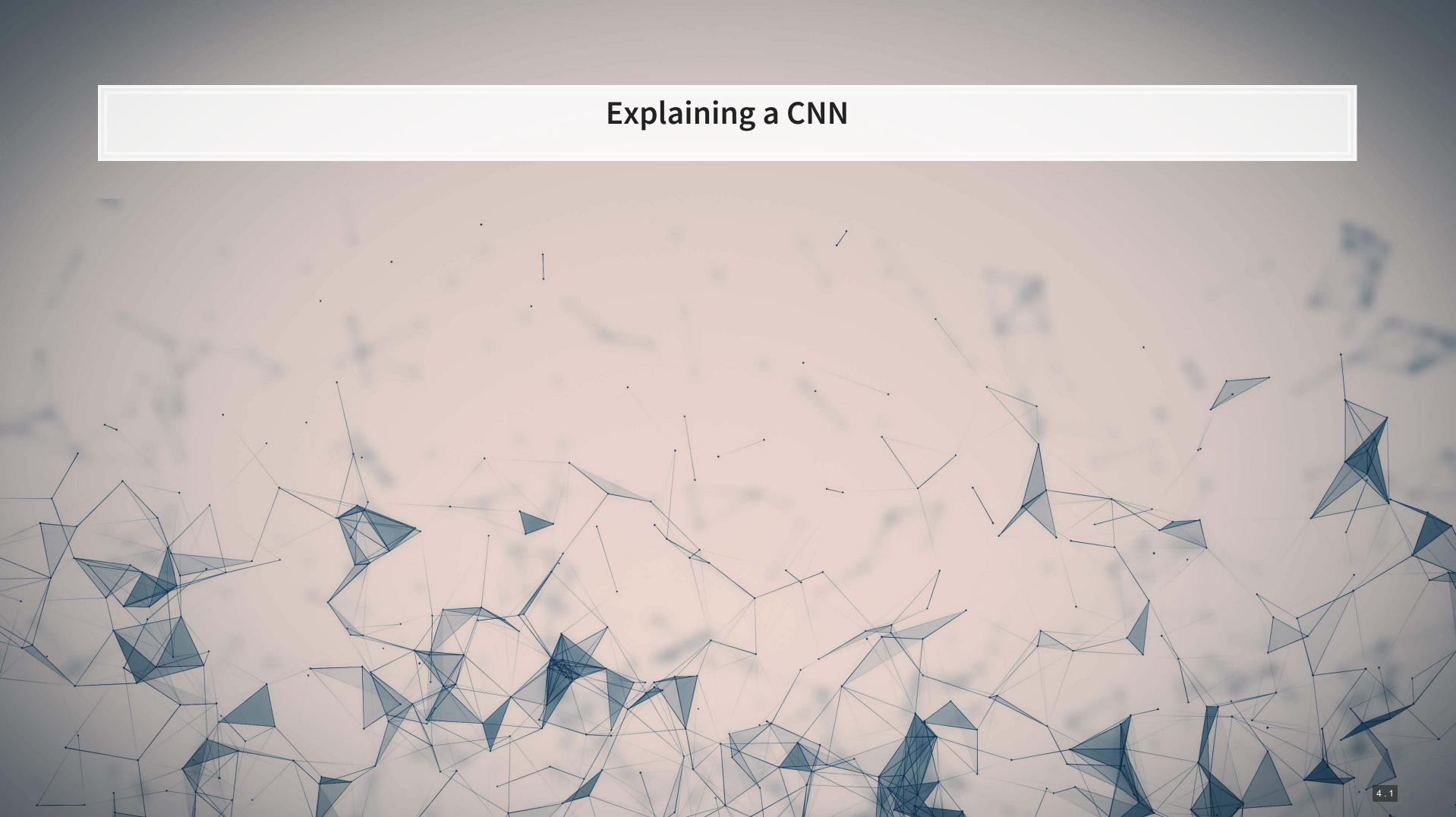
Test loss: 0.0291274506598711
Test accuracy: 0.9897000193595886







3.8



SHAP and TensorFlow

- Recall that Wich, Bauer and Groh (2020 WOAH) used shap.DeepExplainer() to analyze a neural network
 - We can do the same!
- First, feed SHAP the model and some sample images

images = np.random.randint(0, train_X.shape[0], size=25) = shap.DeepExplainer(model_cnn, train_X[images])

• Then we will select 1 of each digit that the CNN got correct and incorrect

correct = [np.where((np.argmax(model cnn.predict(test X), axis=-1) == np.argmax(test Y, axis=-1)) & \ (np.argmax(test Y, axis=-1) == i))[0][0] for i in range(0, 10)] incorrect = [np.where((np.argmax(model_cnn.predict(test_X), axis=-1) != np.argmax(test Y, axis=-1)) & \ (np.argmax(test Y, axis=-1) == i))[0][0] for i in range(0, 10)]

SHAP for correct images

shap_values = e.shap_values(test_X[correct]) shap.image_plot(shap_values, -test_X[correct])

0.000 SHAP value

-0.005

0	0	0
1	£	1
2	2	2
9	8	3
4	9	9
5	\$	5
6	6	6
37	7	7
8	8	8
9	8	2

SHAP for incorrect images

shap_values = e.shap_values(test_X[incorrect]) shap.image_plot(shap_values, -test_X[incorrect])

-0.03

-0.02

-0.01

0.00 SHAP value

0.01

6	6	6
3	2	3
2	2	2
3	ъ	3
4	A.	¥.
5	5	5
6	6	Ð
2	7	7
3	8	8
G?	9	9

0.02

Recent attempts at explaining CNNs

Google & Stanford's "Automated Concept-based Explanation"

Figure 2: The output of ACE for three ImageNet classes. Here we depict three randomly selected examples of the top-4 important concepts of each class (each example is shown above the original image it was segmented from). Using this result, for instance, we could see that the network classifies police vans using the van's tire and the police logo.

Working with pretrained models

Where can I find pretrained models?

- There are many pretrained models on TensorFlow Hub
- There are also models contained in the TensorFlow Github page:
 - Research models
 - Community models
- Google Brain also maintains a collection of models in trax

Other platforms also maintain model collections

- PyTorch has PyTorch Hub
- Hugging Face maintains a large collection of text models
- ONNX maintains a collection of framework-agnostic models

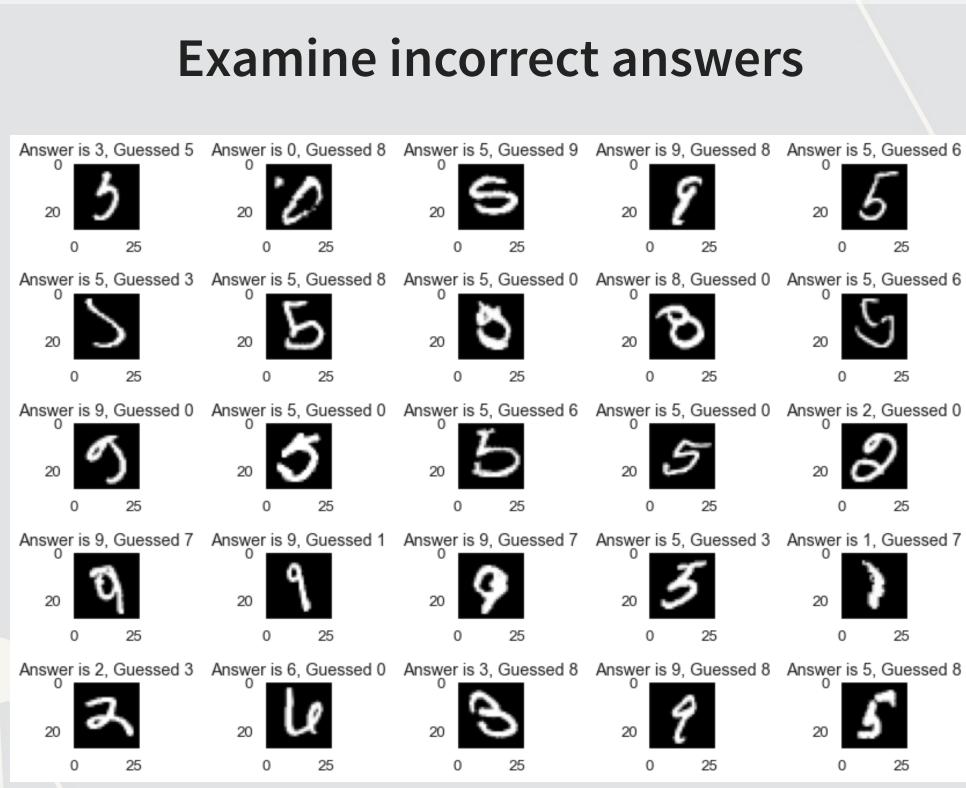
We will look at TensorFlow Hub today

MNIST off-the-shelf

- The model we will be using is GAN-based MNIST classifier
 - tfgan/eval/mnist/logits
- Use hub.load() to load in a model
- Apply it to our testing data, same as before
 - Just apply the model to our data

```
model_tfgan = hub.load("https://tfhub.dev/tensorflow/tfgan/eval/mnist/logits/1")
logits = model_tfgan(test_X).numpy()
```

```
# Check accuracy
sum(np.argmax(logits,-1) == np.argmax(test_Y, -1))
```

Object detection off-the-shelf

COCO Classification problem

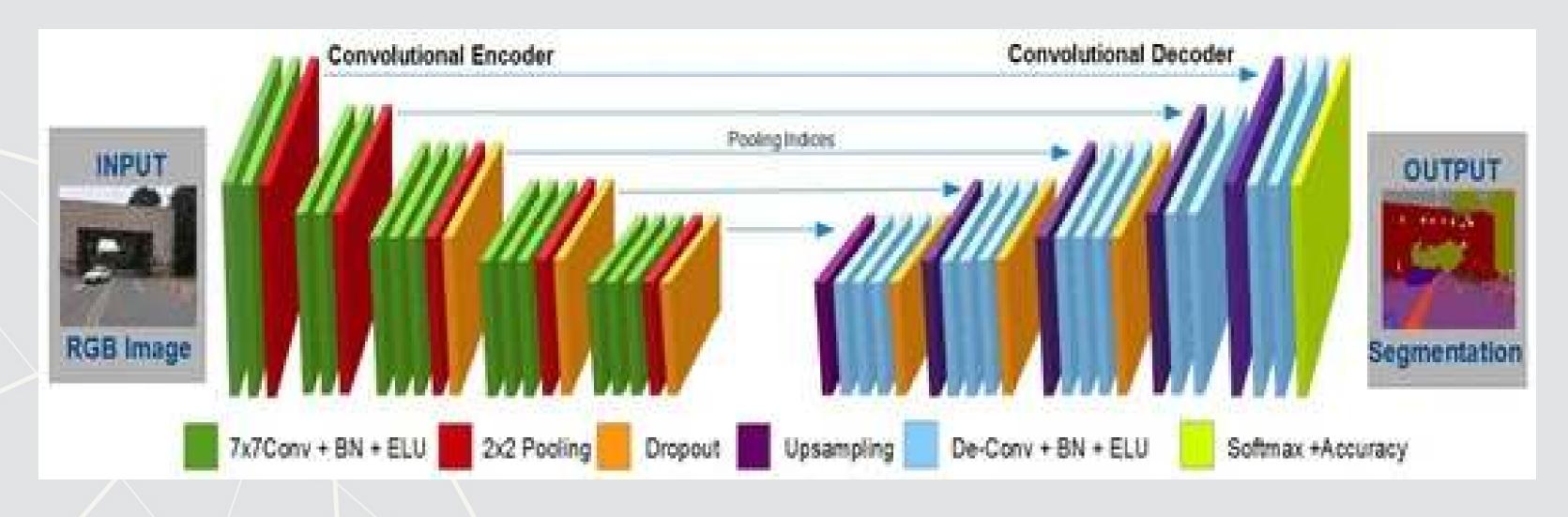
- There are a lot of options for this
- We will use a model trained on COCO from CenterNet
 - centernet/hourglass_512x512
- This can detect 80 different object types, including people

Full list of object types
labels = load_COCO_labelmap()
print(list(labels.values()))

```
## ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
## 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter',
## 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
## 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase',
## 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
## 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle',
## 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
## 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
## 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
## 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven',
## 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
## 'teddy bear', 'hair drier', 'toothbrush']
```


What is Centernet/Hourglass?

- Centernet is an approach that's intended to be used for drawing bounding boxes around objects
 - From Zhou, Wang, and Krähenbühl (2019)
 - The second stage in the classification problem for computer vision:
 - 1. Detect objects
 - 2. Locate them in the image
- Hourglass is a neural network structure based on CNNs



Using the model

centernet = hub.load('https://tfhub.dev/tensorflow/centernet/hourglass 512x512/1')

```
image1, image1_np = load_image('../Data/S6_1.jpeg')
image2, image2_np = load_image('https://pbs.twimg.com/media/E8ZIIKGXIAAipIh?format=jpg&name=small')
```


-w-r--r-- 1 root rw-r--r-- 1 root w-r--r-- 1 root rw-r--r-- 1 root -rw-r--r-- 1 root rw-r--r-- 1 root rw-r--r-- 1 root rw-r--r-- 1 root rw-r--r-- 1 root -rw-r--r-- 1 root -rw-r--r-- 1 root rw-r--r-- 1 root -rw-r--r-- 1 root -rw-r--r-- 1 root -rw-r--r-- 1 root -rw-r--r-- 1 root drwxr-xr-x 2 root -rw-r--r-- 1 root root@es3:/data/redd

oot	9916885161	Aug	9	15:13	RC_2021-04-30
oot	9223343241	Aug	9	15:30	RC_2021-05-01
oot	9646977002	Aug	9	15:48	RC_2021-05-02
oot	9790222766	Aug	9	16:06	RC_2021-05-03
oot	9629653589	Aug	9	16:23	RC_2021-05-04
oot	10128104379	Aug	9	16:43	RC_2021-05-05
oot	10030968634	Aug	9	17:06	RC_2021-05-06
oot	9640296547	Aug	9	17:28	RC_2021-05-07
oot	8725756019	Aug	9	17:48	RC_2021-05-08
oot	8889488493	Aug	9	18:07	RC_2021-05-09
oot	9605987029	Aug	9	18:24	RC_2021-05-10
oot	9938707285	Aug	9	18:43	RC_2021-05-11
oot	10076510269	Aug	9	19:02	RC_2021-05-12
oot	9883018150	Aug	9	19:19	RC_2021-05-13
oot	9695352031	Aug	9	19:36	RC_2021-05-14
oot	8726999970	Aug	9	19:52	RC_2021-05-15
oot	9160705762	Aug	9	20:09	RC_2021-05-16
oot	10034858757	Aug	9	20:31	RC_2021-05-17
oot	10085444956	Aug	9	20:58	RC_2021-05-18
oot	10223552907	Aug	9	21:28	RC_2021-05-19
oot	10035523908	Aug	9	21:49	RC_2021-05-20
oot	9366915647	Aug	9	22:14	RC_2021-05-21
oot	8595795622	Aug	10	00:27	RC_2021-05-22
root	8821664968	Aug	10	00:44	RC_2021-05-23
oot	9292102711	Aug	10	01:07	RC_2021-05-24
oot	4096	Aug	10	01:07	
oot	7022061644	Aug	10	01:28	RC_2021-05-25
lit#					

Applying the model

- We apply the model to the numpy matrix representation of the image
- result is just a numpy version of results
 - This contains four types of information

```
results = centernet(image1_np)
result = {key:value.numpy() for key,value in results.items()}
print(result.keys())
```

dict_keys(['detection_scores', 'num_detections', 'detection_boxes', 'detection_classes']) ##

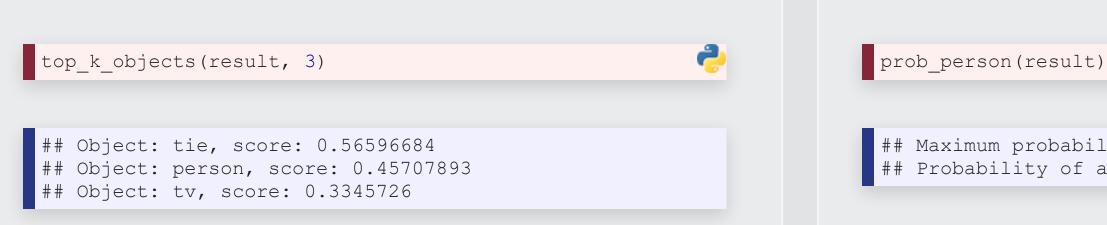
Applying the model

The below functions are defined out of convenience

```
def top k objects(result, k=3):
    top scores = result['detection scores'][0][0:k]
    top ids = [labels[str(int(i))] for i in result['detection classes'][0]][0:k]
   for row in zip(top scores, top ids):
        print('Object: ' + row[1] + ', score: ' + str(row[0]))
def prob person(result):
   id person = 1
   if len(np.where(result['detection classes'][0] == 1)[0]):
        top person loc = np.where(result['detection classes'][0] == 1)[0][0]
        people = np.where(result['detection classes'][0] == 1)[0]
       max prob = result['detection scores'][0][top person loc]
        implied prob = 1-np.prod(1-result['detection scores'][0][people])
        print('Maximum probability of an object in the photo being a person: ' + str(max prob) +
              '\nProbability of at least 1 person: ' + str(implied prob))
    else:
        print('No person found')
```

• The first function reports the top k objects detected, based on weights assigned by the model • The second function reports the highest probability that a person was included in the image as well as an aggregate probability measure

Analyzing the first image



President, Cognizant Technology Solutions

Maximum probability of an object in the photo being a p ## Probability of at least 1 person: 0.5256033539772034

Cognizant

22

Applying to the second in

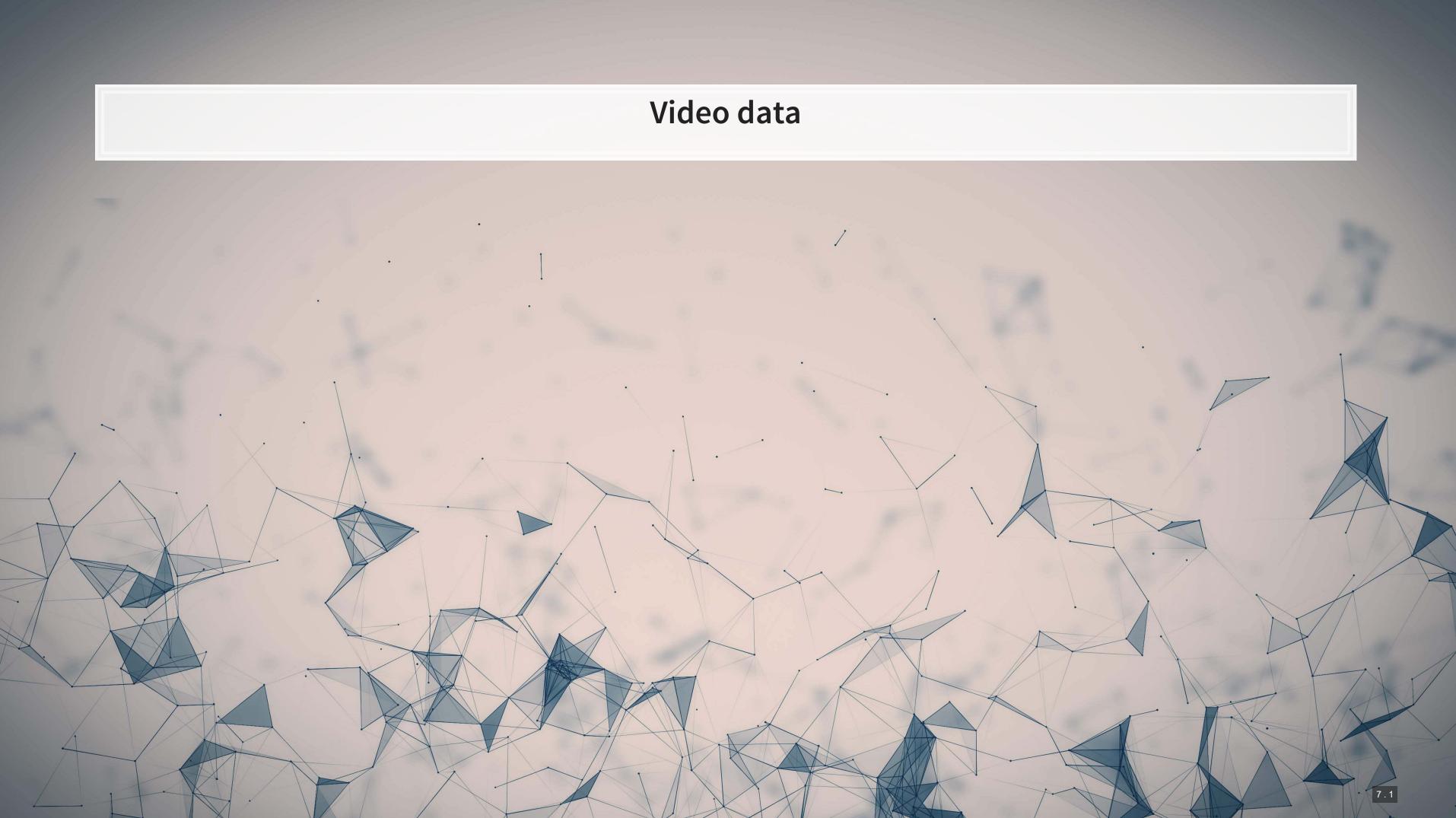
results = centernet(image2_np) result = {key:value.numpy() for key,value in results.items()}

top_k_objects(result, 3)

Object: book, score: 0.7087656
Object: tv, score: 0.10406752
Object: book, score: 0.07747121

- FW- F F	1	root	root	9916885161	Aug	9	15:13	RC_2021-04-30
- FW-FF	1	root	root	9223343241	Aug	9	15:30	RC_2021-05-01
- FW - F F	1	root	root	9646977002	Aug	9	15:48	RC_2021-05-02
- FW - F F	1	root	root	9790222766	Aug	9	16:06	RC_2021-05-03
- FW - F F	1	root	root	9629653589	Aug	9	16:23	RC_2021-05-04
- FW - F F	1	root	root	10128104379	Aug	9	16:43	RC_2021-05-05
- FW - F F	1	root	root	10030968634	Aug	9	17:06	RC_2021-05-06
- FW - F F	1	root	root	9640296547	Aug	9	17:28	RC_2021-05-07
- FW- F F	1	root	root	8725756019	Aug	9	17:48	RC_2021-05-08
- rw - r r	1	root	root	8889488493	Aug	9	18:07	RC_2021-05-09
- FW - F F	1	root	root	9605987029	Aug			RC_2021-05-10
- FW - F F	1	root	root	9938707285	Aug	9	18:43	RC_2021-05-11
- rw - r r	1	root	root	10076510269	Aug	9	19:02	RC_2021-05-12
- rw - r r	1	root	root	9883018150	Aug	9	19:19	RC_2021-05-13
- rw-rr	1	root	root	9695352031	Aug	9	19:36	RC_2021-05-14
- FW - F F	1	root	root	8726999970	Aug	9	19:52	RC_2021-05-15
- rw - r r	1	root	root	9160705762	Aug	9	20:09	RC_2021-05-16
- rw - r r	1	root	root	10034858757	Aug	9	20:31	RC_2021-05-17
- rw - r r	1	root	root	10085444956	Aug	9	20:58	RC_2021-05-18
- FW - F F	1	root	root	10223552907	Aug			RC_2021-05-19
- FW - F F	1	root	root	10035523908	-			RC_2021-05-20
- rw - r r	1	root	root	9366915647	Aug	9	22:14	RC_2021-05-21
- rw - r r	1	root	root					RC_2021-05-22
- FW - F F	1	root	root	8821664968	Aug	10	00:44	RC_2021-05-23
- FW-FF	1	root	root	9292102711	Aug	10	01:07	RC_2021-05-24
drwxr-xr-x	2	root	root	4096	Aug	10	01:07	
- rw-rr	1	root	root	_7022061644	Aug	10	01:28	RC_2021-05-25
root@es3:/data/reddit#								

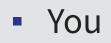
	\bigvee	
econd image		
	2	
prob_person(result)	\$	
## No person found		



Working with video

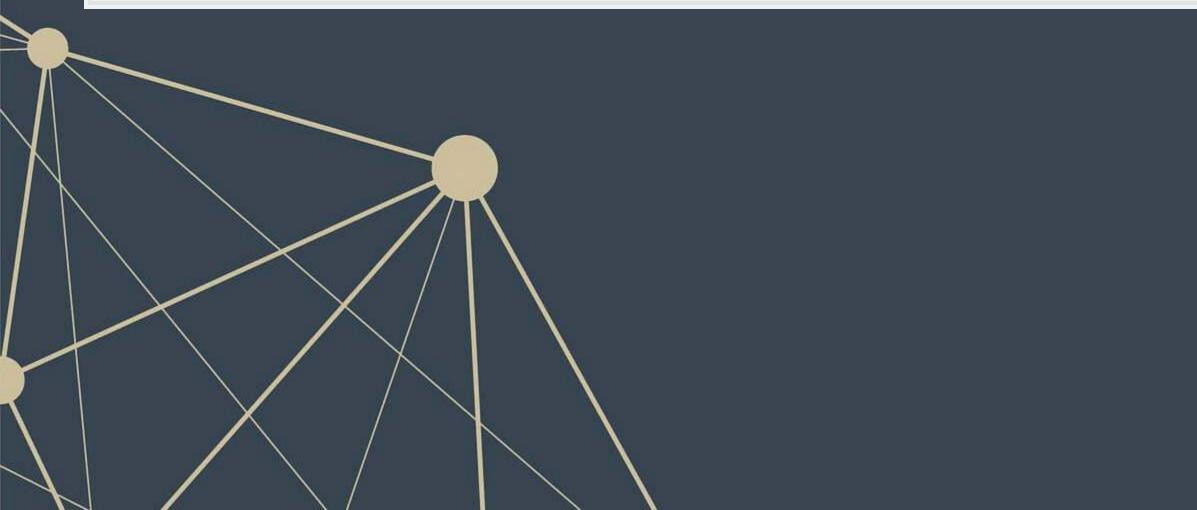
- Video data is challenging very storage intensive
 - Ex.: Uber's self driving cars would generate >100GB of data *per hour* **per car**
- Video data is very promising
 - Think of how many task involve vision!
 - Driving
 - Photography
 - Warehouse auditing...
- At the end of the day though, video is just a sequence of images

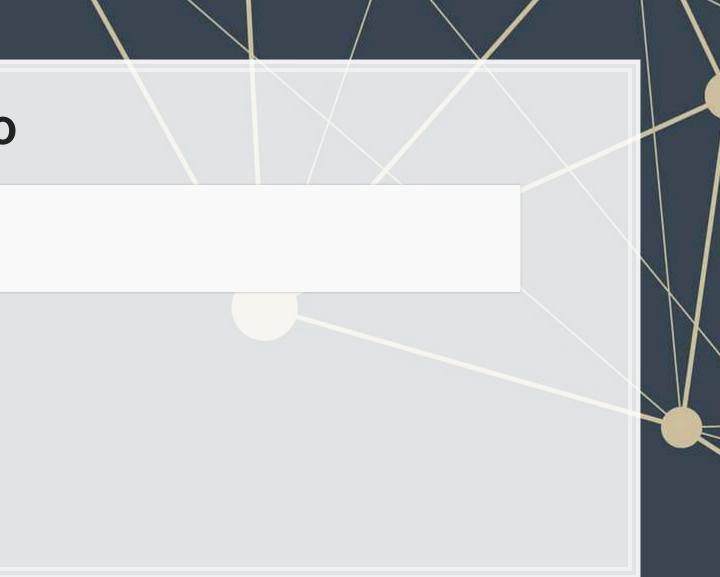
One method for video

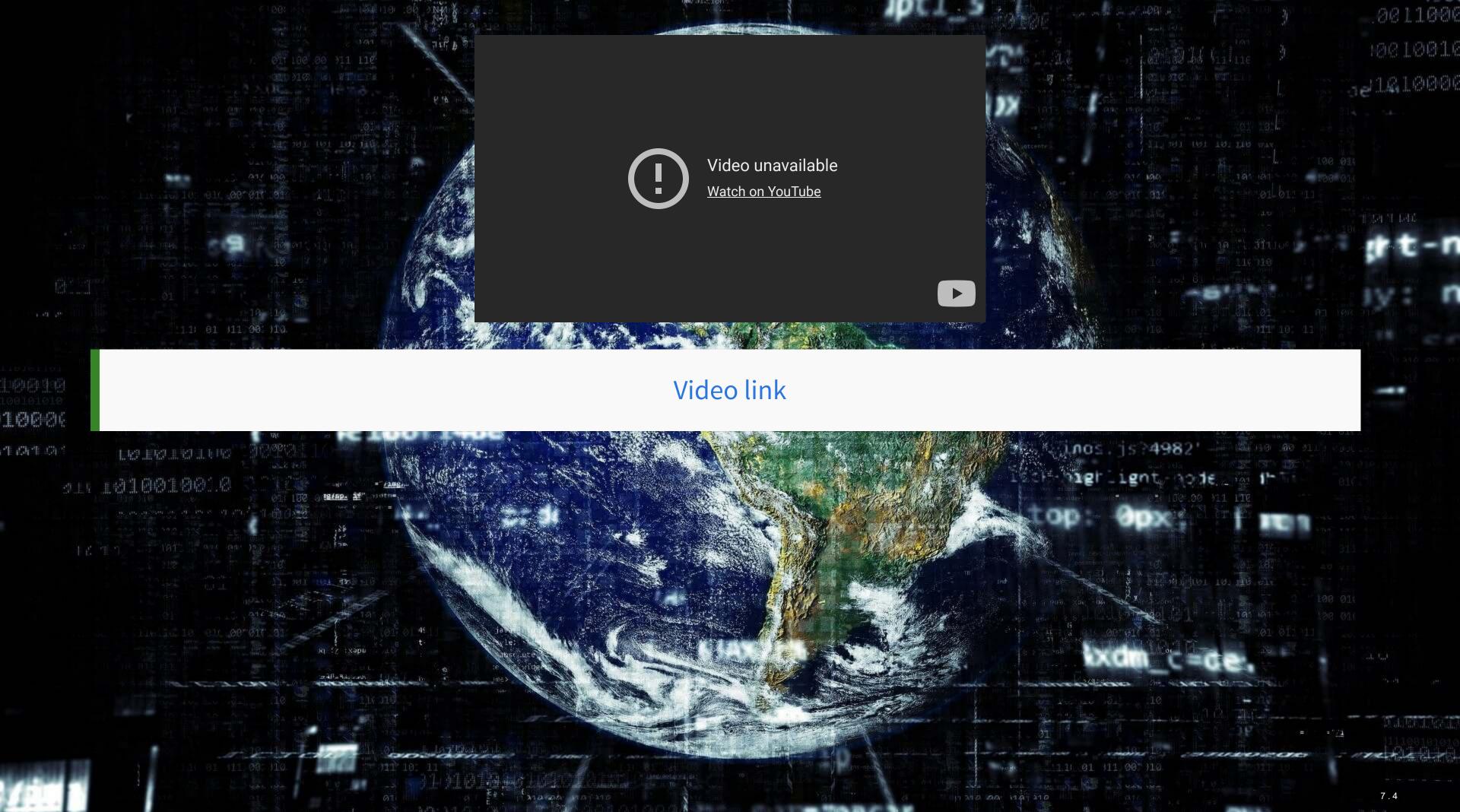


- Only
- ,_____

Once

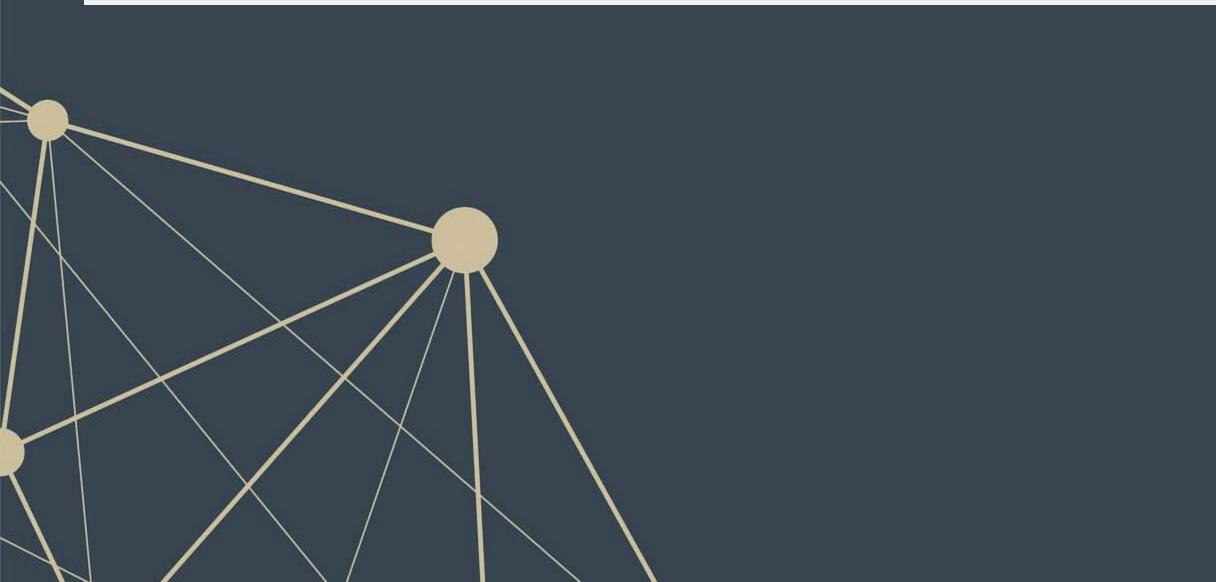




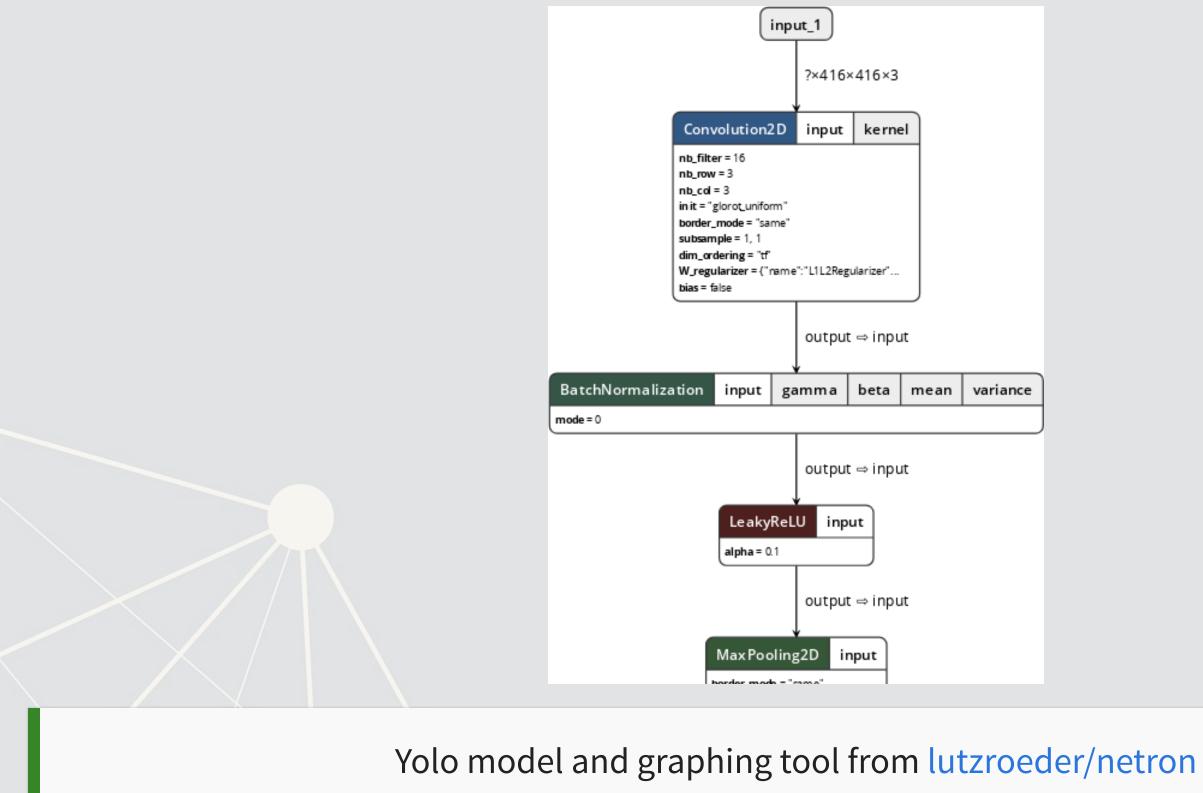


What does YOLO do?

- It spots objects in videos and labels them
 - It also figures out a bounding box a box containing the object inside the video frame
- It can spot overlapping objects
- It can spot multiple of the same or different object types
- The baseline model (using the COCO dataset) can detect 80 different object types
 - There are other datasets with more objects



How does Yolo do it? Map of Tiny YOLO



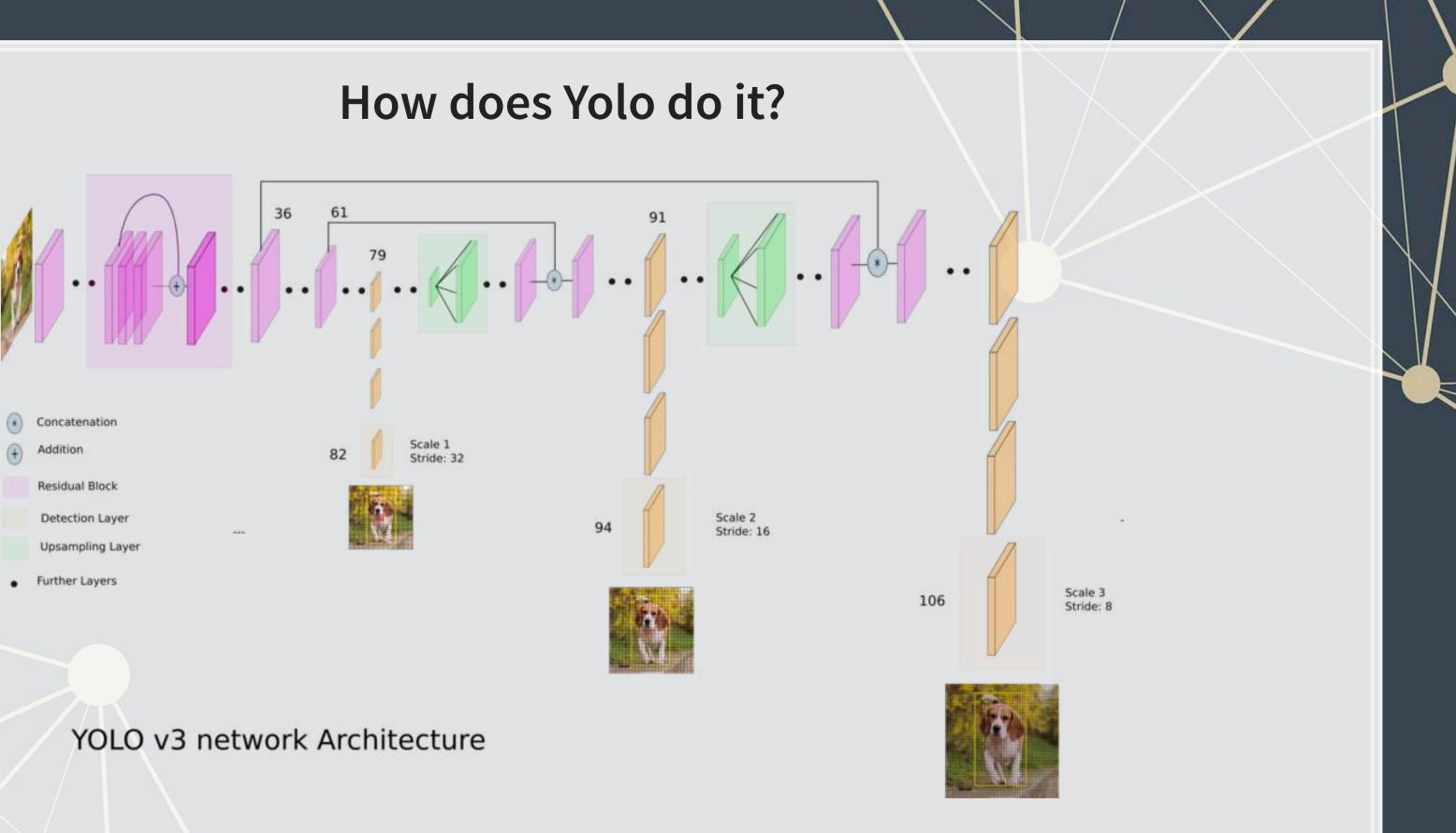


Diagram from *What's new in YOLO v3* by Ayoosh Kathuria

Final word on object detection

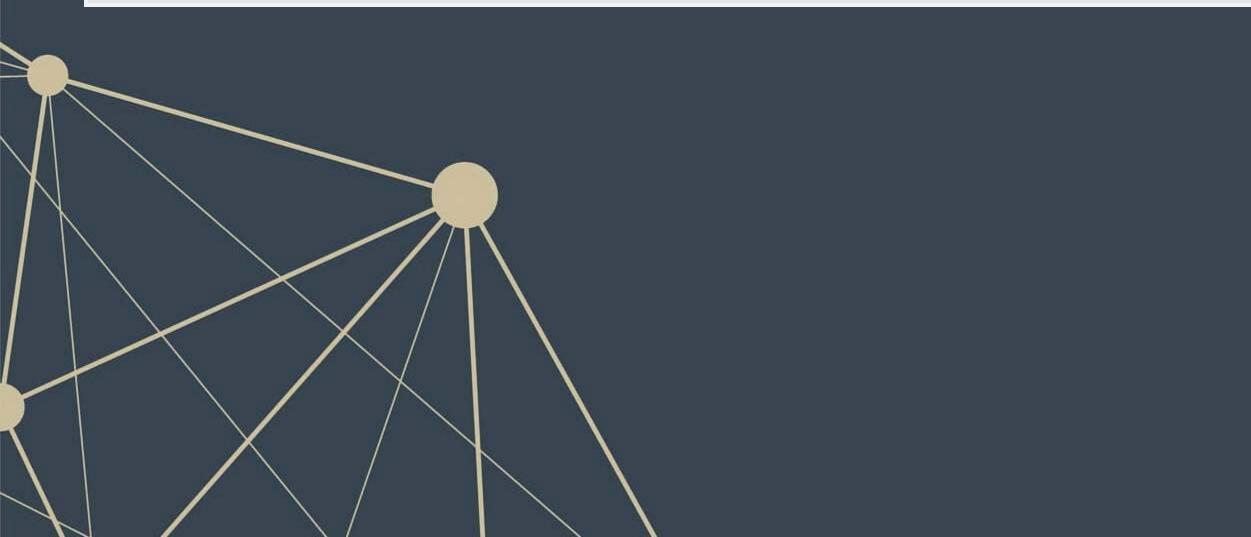
- An algorithm like YOLO v3 is somewhat tricky to run
- Preparing the algorithm takes a long time
 - The final output, though, can run on much cheaper hardware
- These algorithms just recently became feasible so their impact has yet to be felt so strongly

Think about how facial recognition showed up everywhere for images over the past few years

are act has yet to be felt so strongly

Where to get video data

- One extensive source is Youtube-8M
 - 6.1M videos, 3-10 minutes each
 - Each video has >1,000 views
 - 350,000 hours of video
 - 237,000 labeled 5 second segments
 - 1.3B video features that are machine labeled
 - 1.3B audio features that are machine labeled



Conclusion

Wrap-up

Neural networks can accurate classify entire images

Useful for clustering our classifying images

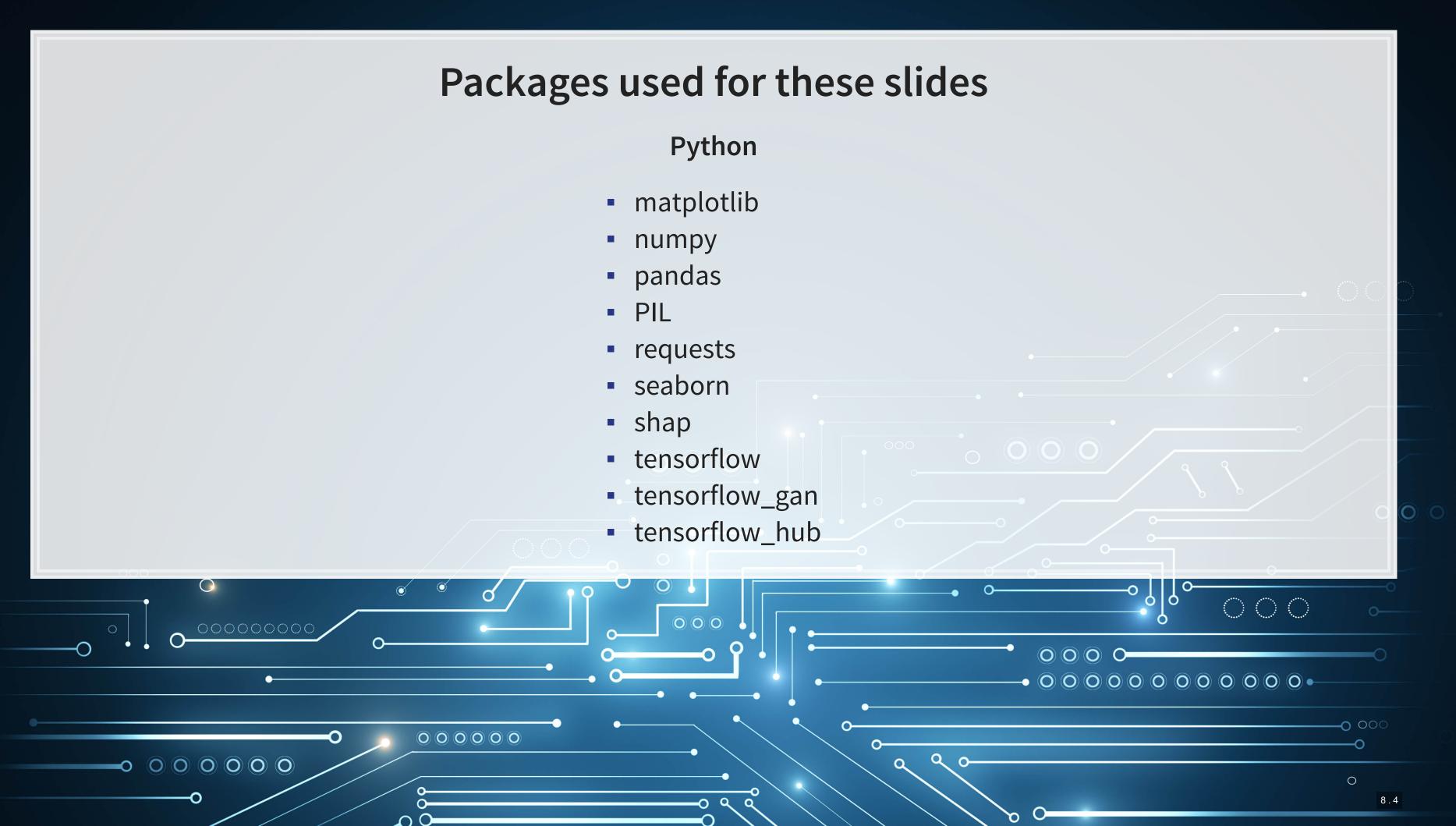
Neural networks can accurately classify or detect objects included in images

- Opens up a lot of possibilities
 - Such as looking at whether a person is wearing a mask or not (related to HW3)

What remains

- Assignment 2
 - New due date: November 30th
 - You are welcome to submit earlier
 - If you want t finalize your submission and get earlier feedback, email me to let me know
- Assignment 3
 - Will be posted soon
 - Shorter than the other assignments
 - Focuses on image detection and classification
 - Online hosted tools will be available in case you can't get a local copy of tensorflow to work
 - Due: December 6th
- Proposal
 - Due: December 6th

Can't extend past December 6th due to grade deadlines



- Liu, Liu, Daria Dzyabura, and Natalie Mizik. "Visual listening in: Extracting brand image portrayed on social media." Marketing Science 39, no. 4 (2020): 669-686.
- Zhang, Shunyuan, Dokyun DK Lee, Param Vir Singh, and Kannan Srinivasan. "How much is an image worth? Airbnb property demand estimation leveraging large scale image analytics." Airbnb Property Demand Estimation Leveraging Large Scale Image Analytics (May 25, 2021) (2021).
- Yasrab, Robail, Naijie Gu, and Xiaoci Zhang. "An encoder-decoder based convolution neural network (CNN) for future advanced driver assistance system (ADAS)." Applied Sciences 7, no. 4 (2017): 312.
- Zhou, Xingyi, Dequan Wang, and Philipp Krähenbühl. "Objects as points." arXiv preprint arXiv:1904.07850 (2019).

