
ML for SS: Classification

Session 2

Dr. Richard M. Crowley

 rcrowley@smu.edu.sg

http://rmc.link/

1

mailto:rcrowley@smu.edu.sg
http://rmc.link/

Overview

2 . 1

Papers

▪ A fairly approachable overview of ML methods in economics

▪ The points the paper makes are applicable broadly in any archival/empirical discipline

▪ An application of LASSO to a context most should be familiar with: restaurant menus

▪ Easy to motivate LASSO in this paper – more variables than observations!

Paper 1: Purda and Skillicorn 2015

Paper 2: Chahuneau et al 2012

2 . 2

Python

▪ Using for SVM

▪ Using for XGBoost

▪ Using for hyperparameter tuning

R

▪ Using for SVM

▪ Using for XGBoost

▪ Using and related packages for

hyperparameter tuning

Technical Discussion: Classification

▪ SVM

▪ Tree-based algorithms

sklearn

xgboost

sklearn

caret

xgboost

tidymodels

Python is generally a bit stronger for these topics.

There is a fully worked out solution for each language on my website, data is on eLearn.

2 . 3

https://scikit-learn.org/stable/
https://github.com/dmlc/xgboost
https://scikit-learn.org/stable/
http://topepo.github.io/caret/index.html
https://github.com/dmlc/xgboost
https://www.tidymodels.org/

Dependent Variable

Intentional misreporting as stated in 10-K/A filings

Independent Variables

▪ 17 Financial measures

▪ 20 Style characteristics

▪ 31 10-K discussion topics

Main application: Binary problem

▪ Idea: Using the same data as in Application 1, can we predict instances of intentional misreporting?

▪ Testing: Predicting 10-K/A irregularities using finance, textual style, and topics

This test mirrors a subset of Brown, Crowley and Elliott (2020 JAR)

Same problem and data as last week’s binary problem

2 . 4

Dependent Variable

▪ Future stock return volatility

Independent Variables

▪ A set of 31 measures of what was discussed in a

firm’s annual report

Main application: A Linear problem

▪ Idea: Discussion of risks, such as as foreign currency risks, operating risks, or legal risks should provide

insight on the volatility of future outcomes for the firm.

▪ Testing: Predicting future stock return volatility based on 10-K filing discussion

This test mirrors Bao and Datta (2014 MS)

Same problem and data as last week’s linear problem

2 . 5

SVM: Support Vector Machine

3 . 1

▪ Note how in this example the points that matter

are those that are on the error boundaries

▪ The rest of the points aren’t affecting the

outcome much

▪ You could shi� them around on their

respective side of the line with minimal

impact

What is SVM?

▪ SVM-type algorithms generally focus on separability under some tolerance for error

▪ This is quite different from our regression approaches

▪ Regression focuses on minimizing an error function

Simpler case: Binary Classification

From the sklearn documentation

3 . 2

https://scikit-learn.org/stable/modules/svm.html

1. Non-linear kernels

▪ SVM can be linear or non-linear

▪ 3 examples to the right,

2. Different objective function than regression

▪ Fits better with classification, conceptually

3. Can work with non-numeric data (text, images,

graphs)

What are the benefits of SVM?

adapted from the

sklearn documentation

3 . 3

https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html

What are the costs of SVM?

1. Doesn’t work well on noisy data

2. Can be slow to train on datasets with many observations

▪ More than 10,000 observations leads to a lot of slow down for non-linear kernels

3. Difficult to interpret model when using a non-linear kernel

4. Can be difficult to pick an optimal kernel

3 . 4

Binary classification

▪ Fast linear model:

▪

▪ General model:

▪

Regression

▪ Fast linear model:

▪

▪ General model:

▪

Implementing SVM in python

▪ For this we will use again

▪ To keep things simple and interpretable, we will use linear kernels in these examples

▪ Both linear methods have a hyperparameter C which controls the amount of regularization (inversely)

▪ We can tune this using sklearn as well!

sklearn

sklearn.svm.LinearSVC()

sklearn.svm.SVC()

sklearn.svm.LinearSVR()

sklearn.svm.SVR()

3 . 5

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

Why are there two ways each to run a linear SVM model?

▪ The two ways use different backends

▪ The LinearSV_ methods use a backend called liblinear

▪ The SV_ methods use a backend called libsvm

▪ liblinear is faster but only supports linear kernels

▪ Time to run is roughly linear in the number of observations

▪ libsvm is fast on small samples, but time increase for additional observations is polynomial

▪ The results aren’t quite the same across backends

▪ liblinear uses a penalized intercept while libsvm does not

▪ liblinear optimizes a “squared hinge” loss function while libsvm optimizes “hinge” loss

Both developed out of National Taiwan University, and both maintained by the same

professor

3 . 6

Implementing LinearSVC for irregularity detection

▪ To train a simple linear SVM classifier, we can call pretty much the same way that we

used earlier

▪ Note: The dual=False option is to maintain efficiency when the number of observations is great than

the number of variables

▪ No regression table built in, but we can visualize it with

svm.LinearSVC()

linear_model.Lasso()

model_svc = svm.LinearSVC(C=1, dual=False)

model_svc.fit(train_X_logistic, train_Y_logistic)

coefplot()

coefplot(vars_logistic, model_svc.coef_)

3 . 7

https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://cran.r-project.org/web/packages/coefplot/index.html

Visualizing LinearSVC for irregularity detection

coefplot(vars_logistic, model_svc.coef_) metrics.plot_roc_curve(model_svc, test_X_logistic,

 test_Y_logistic)

3 . 8

Optimizing the C parameter

C_range = np.logspace(-2, 6, 9)

param_grid = dict(C=C_range)

cv = model_selection.StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=1)

grid_svc = model_selection.GridSearchCV(svm.LinearSVC(dual=False), param_grid=param_grid, cv=cv)

grid_svc.fit(train_X_logistic, train_Y_logistic)

print("The best parameter is C=%s with a score of %0.2f"

 % (grid_svc.best_params_['C'], grid_svc.best_score_))

[1] "The best parameter is C=0.01 with a score of 0.99"

3 . 9

Unoptimized Optimized

Comparison pre- vs post-optimization: ROC

metrics.plot_roc_curve(model_svc, test_X_logistic,

 test_Y_logistic)

metrics.plot_roc_curve(grid_svc, test_X_logistic,

 test_Y_logistic)

3 . 10

Comparison pre- vs post-optimization: Coefficients

OptimizedUnoptimized

coefplot(vars_logistic, model_svc.coef_) coefplot(vars_logistic,

 grid_svc.best_estimator_.coef_)

3 . 11

Visualizing with UMAP

▪ UMAP stands for Uniform Manifold Approximation and Projection for Dimension Reduction

▪ From Leland, Healy and Melville (2018) (2k+ cites already)

▪ It is useful for dimensionality reduction, like PCA

▪ We will use it to reduce 68 dimensions down to 2

▪ It is useful for plotting 2 dimensional representations of high dimensional data by maintaining local distance

structures, like t-SNE

▪ Unlike t-SNE, it is efficient to run

What is UMAP?

UMAP essentially uses Reimannian manifolds and tries to maintain geodesic distance

around a point – it is well supported theoretically

3 . 12

Visualizing what SVM is doing using UMAP

train_Yhat_logistic = logistic(grid_svc.decision_function(train_X_logistic))

umap_compare_svm(train_X_logistic, train_Yhat_logistic, train_Y_logistic,

 clip=[[0.25, 0.3], [0, 1]], binary=5, title="Full sample")

The data is really noisy

3 . 13

Visualizing what SVM is doing using UMAP

umap_compare_svm(train_X_logistic, train_Yhat_logistic, train_Y_logistic, clip=[[0.25, 0.3], [0, 1]], cmap='coolwarm', binary=

 subset=((train_Y_logistic==1) | (np.random.rand(len(train_Y_logistic))<0.05)),

 title="Performance on actual irregularities (Large) and random sample of non-irregularities")

Type I errors are pretty minimal – the algorithm is rarely very off

3 . 14

Visualizing what SVM is doing using UMAP

umap_compare_svm(train_X_logistic, train_Yhat_logistic, train_Y_logistic, clip=[[0.25, 0.3], [0, 1]], cmap='coolwarm', binary=

 subset=((train_Y_logistic==0) & (np.random.rand(len(train_Y_logistic))<0.05)),

 title="Performance on a random sample of non-irregularities")

There are definitely some combinations of parameters that are consistently leading to

Type II errors

3 . 15

SVM for regression: SVR

model_svr = svm.LinearSVR(C=1, dual=False,

 loss='squared_epsilon_insensitive')

model_svr.fit(train_X_linear, np.ravel(train_Y_linear))

C_range = np.logspace(-4, 6, 11)

param_grid = dict(C=C_range)

cv = model_selection.KFold(n_splits=5)

grid_svr = model_selection.GridSearchCV(

 svm.LinearSVR(dual=False,

 loss="squared_epsilon_insensitive"),

 param_grid=param_grid, cv=cv)

grid_svr.fit(train_X_linear, np.ravel(train_Y_linear))

print("The best parameter is C=%s with a score of %0.2f"

 % (grid_svr.best_params_['C'], grid_svr.best_score_

[1] "The best parameter is C=0.0001 with a score of 0.0

3 . 16

SVR coefficients

coefplot(vars_linear, model_svr.coef_) coefplot(vars_linear, grid_svr.best_estimator_.coef_)

3 . 17

Visualizing SVR with UMAP

train_Yhat_linear = model_svr.predict(train_X_linear)

umap_compare_svm(train_X_linear, train_Yhat_linear, train_Y_linear, clip=[[0, 2], [0, 2]])

Here we see some clusters that are indeed higher in volatility being picked up correctly by

SVM

3 . 18

Using R for the above

▪ We can use to handle training of the model

▪ It will offload the model computation to

▪ is a collection of packages intended to serve as a spiritual successor to

▪ It is a collection of packages aimed at making ML workflows easier in R, much like what Scikit-learn does for

python

▪ , , , , , etc.

▪ It is still rough around the edges, but it is fairly functional

tidymodels

kernlab

tidymodels caret

parsnip recipes rsample dials yardstick

3 . 19

https://www.tidymodels.org/
https://cran.r-project.org/web/packages/kernlab/index.html
https://www.tidymodels.org/
http://topepo.github.io/caret/index.html
https://tidymodels.github.io/parsnip/
https://tidymodels.github.io/recipes/
https://tidymodels.github.io/rsample/
https://dials.tidymodels.org/
https://github.com/tidymodels/yardstick

Step 1: Make a recipe for your data

▪ Recipes serve as a guide on how to preprocess your data

▪ There are many possible steps

▪ This keeps preprocessing quick and transparent

recipe_svm <-

 recipe(BCE_eq, data = train) %>%

 step_zv(all_predictors()) %>% # remove any zero variance predictors

 step_center(all_predictors()) %>% # Center all prediction variables

 step_scale(all_predictors()) %>% # Scale all prediction variables

 step_intercept() %>% # Add an intercept to the model

 step_num2factor(all_outcomes(), ordered = T, levels=c("0","1"),

 transform = function(x) x + 1, skip = TRUE) # Convert DV to factor

3 . 20

Step 2: Define your ML model

▪ There are many built-in models in

▪ For SVM, we will use svm_linear

▪ Note how we specify to the cost parameter

▪ This is how we tell it where the grid search will go later!

▪ Setting mode to classification ensures we use something like SVC rather than SVR

▪ We can change the backend package by setting a different engine, with minimal changes needed to the rest

of our code!

tidymodels

tune()

model_svm <-

 svm_linear(cost = tune()) %>%

 set_mode("classification") %>%

 set_engine("kernlab")

3 . 21

https://www.tidymodels.org/
https://tune.tidymodels.org/

Step 3: Define a workflow

▪ Workflows piece together the larger elements of a tidy model

▪ Simplifies some of the hassle of using functions across packagestidymodels

workflow_svm <- workflow() %>%

 add_model(model_svm) %>%

 add_recipe(recipe_svm)

3 . 22

https://www.tidymodels.org/

Step 4: Tie up loose ends

▪ We need to set a cross validation:

▪ We need to specify the metric to track:

▪ We need to set our grid search’s grid:

vfold_cv()

metric_set()

expand_grid()

folds_svm <- vfold_cv(train, v=10) # from rsample

metrics_svm = metric_set(roc_auc) # from yardstick

grid_svm <- expand_grid(cost = exp(seq(-10,0, length.out=10)))

3 . 23

https://rsample.tidymodels.org/reference/vfold_cv.html
https://yardstick.tidymodels.org/reference/metric_set.html
https://tidyr.tidyverse.org/reference/expand_grid.html

Step 5: Run the model

▪ will execute the workflow:

1. Standardize our training data

2. Run the model

3. Apply 10-fold CV to it

4. Track ROC AUC for each model run

▪ The resulting fitted model can then be analyzed

We have everything we need to run the model

svm_fit_tuned <- tune_grid(workflow_svm,

 grid = grid_svm,

 resamples = folds_svm,

 metrics=metrics_svm)

tune_grid()

3 . 24

https://tune.tidymodels.org/reference/tune_grid.html

See which model was the best

show_best(svm_fit_tuned, metric = "roc_auc")

cost .metric .estimator mean n std_err .config
1 4.189421e-04 roc_auc binary 0.6369609 10 0.02587312 Preprocessor1_Model03
2 1.379128e-04 roc_auc binary 0.6157198 10 0.02662090 Preprocessor1_Model02
3 4.539993e-05 roc_auc binary 0.6060063 10 0.03195342 Preprocessor1_Model01
4 3.865920e-03 roc_auc binary 0.6053433 10 0.02400210 Preprocessor1_Model05
5 1.174363e-02 roc_auc binary 0.5987661 10 0.02568714 Preprocessor1_Model06

3 . 25

Step 6: Re-run the model with the full data

▪ The svm_final object can be used with the standard function

▪ The svm_fit_tuned object could not!

svm_final <- workflow_svm %>%

 finalize_workflow(

 select_best(svm_fit_tuned, "roc_auc")

) %>%

 fit(train)

You need to do this in order to be able to predict with the model

predict()

3 . 26

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/predict

Tree-based models

4 . 1

Simplest model: Decision tree

▪ A simple decision tree behaves as we saw in Mullainathan and Spiess (2017 JEP)

▪ It provides a set of conditions to traverse to go from data to the estimated output

▪ In order to capture a complex problem, many layers are needed

4 . 2

Simple model: Random Forest

▪ 1 decision tree is OK, but…

▪ There is a lot of error unless the tree is complex

▪ Successive iterations of trees can be very different from one another

Run a bunch of decision trees with less depth each and average them (but don’t give them

all exactly the same data)

4 . 3

What is XGBoost

▪ eXtreme Gradient Boosting

▪ A simple explanation:

1. Start with 1 or more decision trees & check error

2. Make more decision trees & check error

3. Use the difference in error to guess a another model

4. Repeat #2 and #3 until the model’s error is stable

4 . 4

XGBoost: Foundations

▪ XGBoost has its roots in AdaBoost (Adaptive Boosting)

▪ Adaboost uses a sequence of weak learners to build a model

▪ Combats against overfitting, and the sequence of individually weak models converges to be a strong

learner

▪ The convergence part is mathematically proven!

▪ XGBoost isn’t as theoretically founded as Adaboost’

▪ It trades off some mathematical rigor for flexibility and empirical performance

4 . 5

Benefits of XGBoost

▪ Tree based

▪ Inherently non-parametric (no assumptions on data distribution)

▪ Non-linear but still somewhat interpretable

▪ Robust to noise

▪ Can handle missing or categorical variables (R implementation only)

▪ Robust to overfitting (somewhat)

▪ Implements gradient descent to sequentially grow trees

▪ Parallelizable (so it can be computed efficiently)

▪ Supports regularization

As compared to other tree algorithms

4 . 6

Drawbacks of XGBoost

▪ This makes it difficult to train a model well

▪ But it is hard to beat a well trained XGBoost model with anything else we have discussed thus far

▪ It may technically be interpretable, but interpreting a big model is still difficult

▪ Like most tree-based methods, it struggles with extrapolation that is outside the bounds of its input data.

So

many

hyperparameters.

4 . 7

XGBoost parameters

param = {

 'booster': 'gbtree', # default -- tree based

 'nthread': 8, # number of threads to use for parallel processing

 'objective': 'binary:logistic', # binary, output probabilities

 'eval_metric': 'auc', # maximize ROC AUC

 'eta': 0.3, # shrinkage; [0, 1], default 0.3

 'max_depth': 6, # maximum depth of each tree; default 6

 'gamma': 0.1, # set above 0 to prune trees, [0, inf], default 0

 'min_child_weight': 1, # higher leads to more pruning of tress, [0, inf], default 1

 'subsample': 0.8, # Randomly subsample rows if in (0, 1), default 1

 'colsample_bytree': 0.8, # Randomly subsample variables if in (0, 1), default 1

 'random_state': 70

}

num_round = 30

A lot of parameters – we can optimize all from eta to colsample_bytree and the

number of rounds

4 . 8

Running XGBoost

▪ We use to fit the modelxgb.train()

dtrain = xgb.DMatrix(train_X_logistic, label=train_Y_logistic, feature_names=vars_logistic)

dtest = xgb.DMatrix(test_X_logistic, label=test_Y_logistic, feature_names=vars_logistic)

model_xgb_logistic = xgb.train(param, dtrain, num_round)

test_Yhat_xgb_logistic = model_xgb_logistic.predict(dtest

auc = metrics.roc_auc_score(test_Y_logistic, test_Yhat_xgb

print('AUC is {}'.format(auc))

print('AUC is 0.6040163976960199')

[1] "AUC is 0.6040163976960199"

fpr, tpr, thresholds = metrics.roc_curve(test_Y_logistic,

display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_au

display.plot()

4 . 9

https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.train

Analyzing the model: Importance plot

▪ The importance plot shows which variables have the greatest impact on the model

▪ A higher number = more important

▪ In this case, we see a mix of sentiment, financial, topic, and grammatical measures in the top 5 measures

fig, ax = plt.subplots(figsize=(8,16))

xgb.plot_importance(model_xgb_logistic, ax=ax)

4 . 10

Analyzing the model: Seeing the trees

One of 30 trees in the model

4 . 11

What about optimizing all the parameters?

This can be done – details are in the python code file

4 . 12

XGBoost in python

▪ Can solve numeric problems well

▪ Can do GPU computations for some models

▪ Can run larger-than-memory computations

▪ Good for big data sets!

XGBoost in R

▪ Can solve numeric problems well

▪ Can also handle categorical inputs

Using R to run XGBoost

▪ The same package, works for this in R

▪ The level of support across R and python is more or less the same

▪ Use just like we did for SVM, but specify for each parameter you want to tune

xgboost

tidymodels tune()

4 . 13

https://github.com/dmlc/xgboost
https://www.tidymodels.org/
https://tune.tidymodels.org/

Running CV XGBoost in R

model setup

params <- list(max_depth=10,

 eta=0.2,

 gamma=10,

 min_child_weight = 5,

 objective =

 "binary:logistic")

run the model

xgbCV <- xgb.cv(params=params,

 data=train_x,

 label=train_y,

 nrounds=100,

 eval_metric="auc",

 nfold=10,

 stratified=TRUE)

4 . 14

Conclusion

5 . 1

Wrap-up

▪ Good for classification

▪ Can be good for regression in some contexts

▪ Key: Optimizes separability under some tolerance for error

▪ Strong classification performance

▪ Can handle sparsity well

▪ A somewhat interpretable yet non-linear class of models

SVM: Support Vector Machine

Tree models

5 . 2

Python

▪ matplotlib

▪ numpy

▪ pandas

▪ scikit-learn

▪ xgboost

▪ umap-learn

R

▪ caret

▪ kableExtra

▪ kernlab

▪ knitr

▪ reticulate

▪ revealjs

▪ ROCR

▪ tidymodels

▪ tidyverse

▪ xgboost

Packages used for these slides

5 . 3

References

▪ Chen, Tianqi, and Carlos Guestrin. “Xgboost: A scalable tree boosting system.” In Proceedings of the 22nd

acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794. 2016.

▪ Deryugina, Tatyana, Garth Heutel, Nolan H. Miller, David Molitor, and Julian Reif. “The mortality and medical

costs of air pollution: Evidence from changes in wind direction.” American Economic Review 109, no. 12

(2019): 4178-4219.

▪ Mullainathan, Sendhil, and Jann Spiess. “Machine learning: an applied econometric approach.” Journal of

Economic Perspectives 31, no. 2 (2017): 87-106.

▪ Purda, Lynnette, and David Skillicorn. “Accounting variables, deception, and a bag of words: Assessing the

tools of fraud detection.” Contemporary Accounting Research 32, no. 3 (2015): 1193-1223.

5 . 4

Custom code

Replication of R's coefplot function for use with sklearn's linear and logistic LASSO

def coefplot(names, coef, title=None):

 # Make sure coef is list, cast to list if needed.

 if isinstance(coef, np.ndarray):

 if len(coef.shape) > 1:

 coef = list(coef[0])

 else:

 coef = list(coef)

 # Drop unneeded vars

 data = []

 for i in range(0, len(coef)):

 if coef[i] != 0:

 data.append([names[i], coef[i]])

 data.sort(key=lambda x: x[1])

 # Add in a key for the plot axis

 data = [data[i] + [i+1] for i in range(0,len(data))]

 fig, ax = plt.subplots(figsize=(4,0.25*len(data)))

 ax.scatter([i[1] for i in data], [i[2] for i in data])

 ax.grid(axis='y')

 ax.set(xlabel="Fitted value", ylabel="Residual", title=(title if title is not None else "Coefficient Plot"))

 ax.axvline(x=0, linestyle='dotted')

 ax.set_yticks([i[2] for i in data])

 ax.set_yticklabels([i[0] for i in data])

 return ax

5 . 5

