ML for SS: Classification

Session 2

Dr. Richard M. Crowley rcrowley@smu.edu.sg http://rmc.link/

Overview

1

Papers

Paper 1: Purda and Skillicorn 2015

- A fairly approachable overview of ML methods in economics
- The points the paper makes are applicable broadly in any archival/empirical discipline

Paper 2: Chahuneau et al 2012

- An application of LASSO to a context most should be familiar with: restaurant menus
- Easy to motivate LASSO in this paper more variables than observations!

Technical Discussion: Classification

- SVM
- Tree-based algorithms

Python

- Using sklearn for SVM
- Using xgboost for XGBoost
- Using sklearn for hyperparameter tuning

- Using caret for SVM

Python is generally a bit stronger for these topics.

There is a fully worked out solution for each language on my website, data is on eLearn.

R

• Using xgboost for XGBoost Using tidymodels and related packages for hyperparameter tuning

Main application: Binary problem

- Idea: Using the same data as in Application 1, can we predict instances of intentional misreporting?
- Testing: Predicting 10-K/A irregularities using finance, textual style, and topics

Dependent Variable

Intentional misreporting as stated in 10-K/A filings

【韵色

1 63 1

This test mirrors a subset of Brown, Crowley and Elliott (2020 JAR)

Same problem and data as last week's binary problem

Independent Variables

- 17 Financial measures
- 20 Style characteristics
- 31 10-K discussion topics

2011GBB

Main application: A Linear problem

- Idea: Discussion of risks, such as as foreign currency risks, operating risks, or legal risks should provide insight on the volatility of future outcomes for the firm.
- Testing: Predicting future stock return volatility based on 10-K filing discussion

Dependent Variable

Future stock return volatility

生的创始

生成中生

firm's annual report

This test mirrors Bao and Datta (2014 MS)

Same problem and data as last week's linear problem

Independent Variables

• A set of 31 measures of what was discussed in a

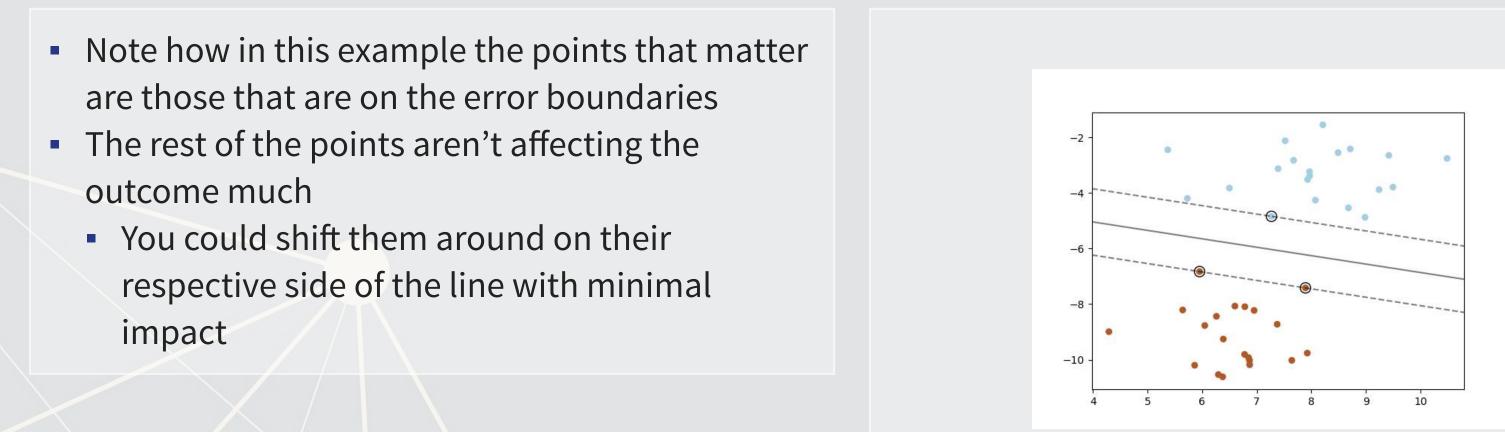
0011000

山神時間

What is SVM?

Simpler case: Binary Classification

- SVM-type algorithms generally focus on separability under some tolerance for error
 - This is quite different from our regression approaches
 - Regression focuses on *minimizing an error function*

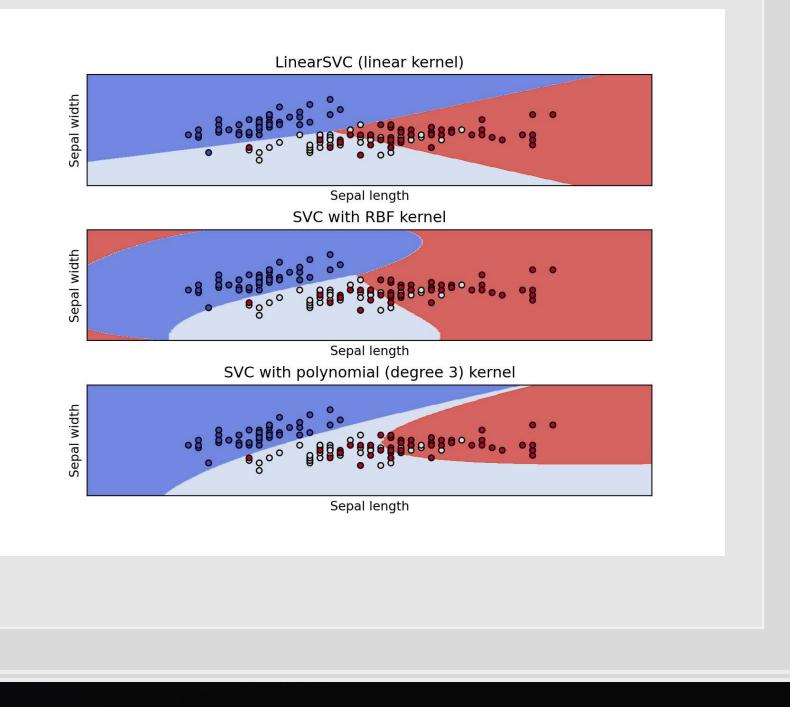


From the sklearn documentation

What are the benefits of SVM?

1. Non-linear kernels

- SVM can be linear or non-linear
 - 3 examples to the right, adapted from the sklearn documentation
- 2. Different objective function than regression
 - Fits better with classification, conceptually
- Can work with non-numeric data (text, images, graphs)



- 1.
- 2.

- 3.
- 4.

What are the costs of SVM?								
Doesn't work well on noisy data Can be slow to train on datasets with many observations • More than 10,000 observations leads to a lot of slow down for non-linear kernels Difficult to interpret model when using a non-linear kernel Can be difficult to pick an optimal kernel								
0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0	1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0							

Implementing SVM in python

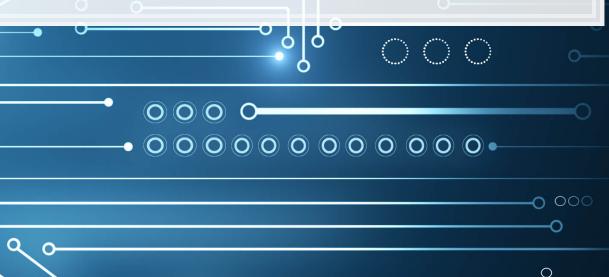
- For this we will use sklearn again
- To keep things simple and interpretable, we will use linear kernels in these examples

Binary classification

- Fast linear model:
 - sklearn.svm.LinearSVC()
- General model:
 - sklearn.svm.SVC()
- Both linear methods have a hyperparameter C which controls the amount of regularization (inversely)
 - We can tune this using sklearn as well!

Regression

- Fast linear model:
 - sklearn.svm.LinearSVR()
- General model:
 - sklearn.svm.SVR()



Why are there two ways each to run a linear SVM model?

- The two ways use different backends
 - The LinearSV methods use a backend called liblinear
 - The SV methods use a backend called libsvm
- Iblinear is faster but only supports linear kernels
 - Time to run is roughly linear in the number of observations
 - libsvm is fast on small samples, but time increase for additional observations is polynomial
- The results aren't quite the same across backends
 - Iblinear uses a penalized intercept while libsvm does not
 - Iblinear optimizes a "squared hinge" loss function while libsvm optimizes "hinge" loss

$$hinge(x,y)=\max(0,1-y\cdot f(x)), \hspace{1em} y\in\{-1\}$$

Both developed out of National Taiwan University, and both maintained by the same professor

- $1,+1\}, \quad f(x)\in \mathbb{R}$

Implementing LinearSVC for irregularity detection

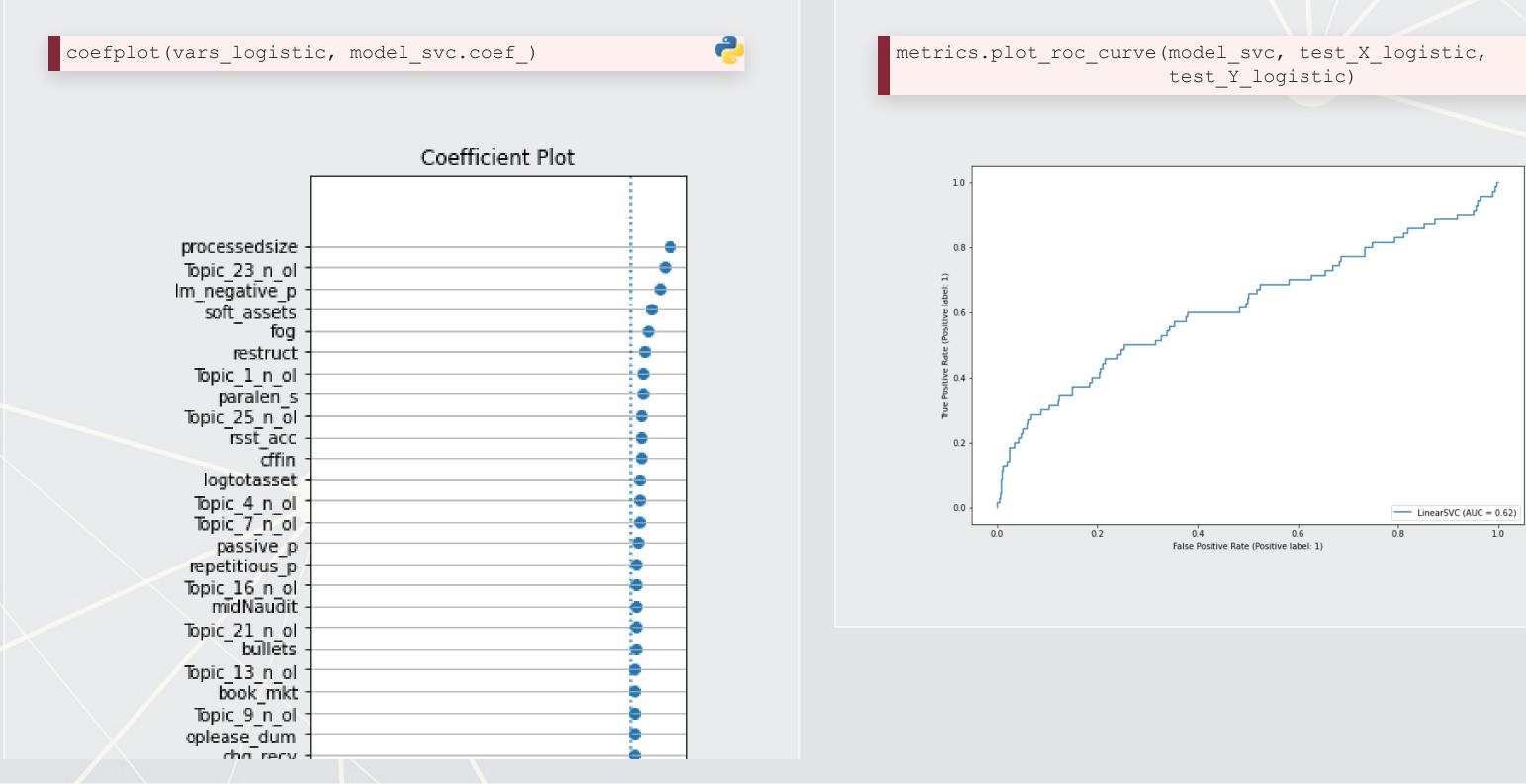
- To train a simple linear SVM classifier, we can call svm.LinearSVC() pretty much the same way that we used linear model.Lasso() earlier
 - Note: The dual=False option is to maintain efficiency when the number of observations is great than the number of variables

model_svc = svm.LinearSVC(C=1, dual=False) model_svc.fit(train_X_logistic, train_Y_logistic)

No regression table built in, but we can visualize it with coefplot ()

coefplot(vars_logistic, model_svc.coef_)

Visualizing LinearSVC for irregularity detection

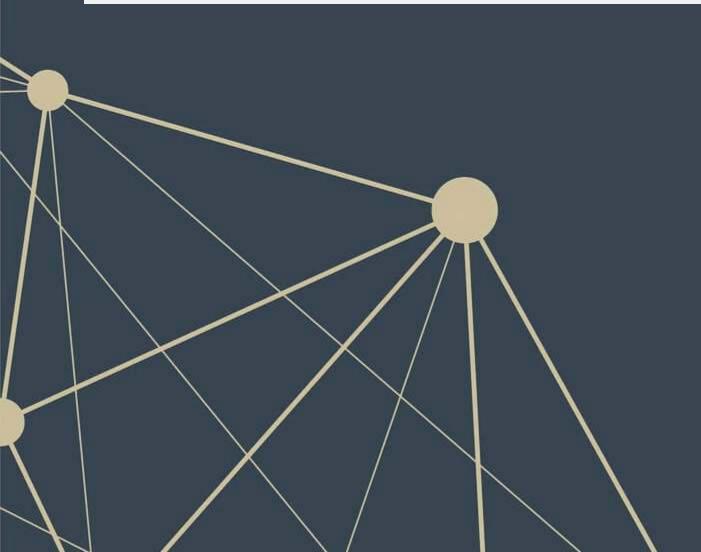


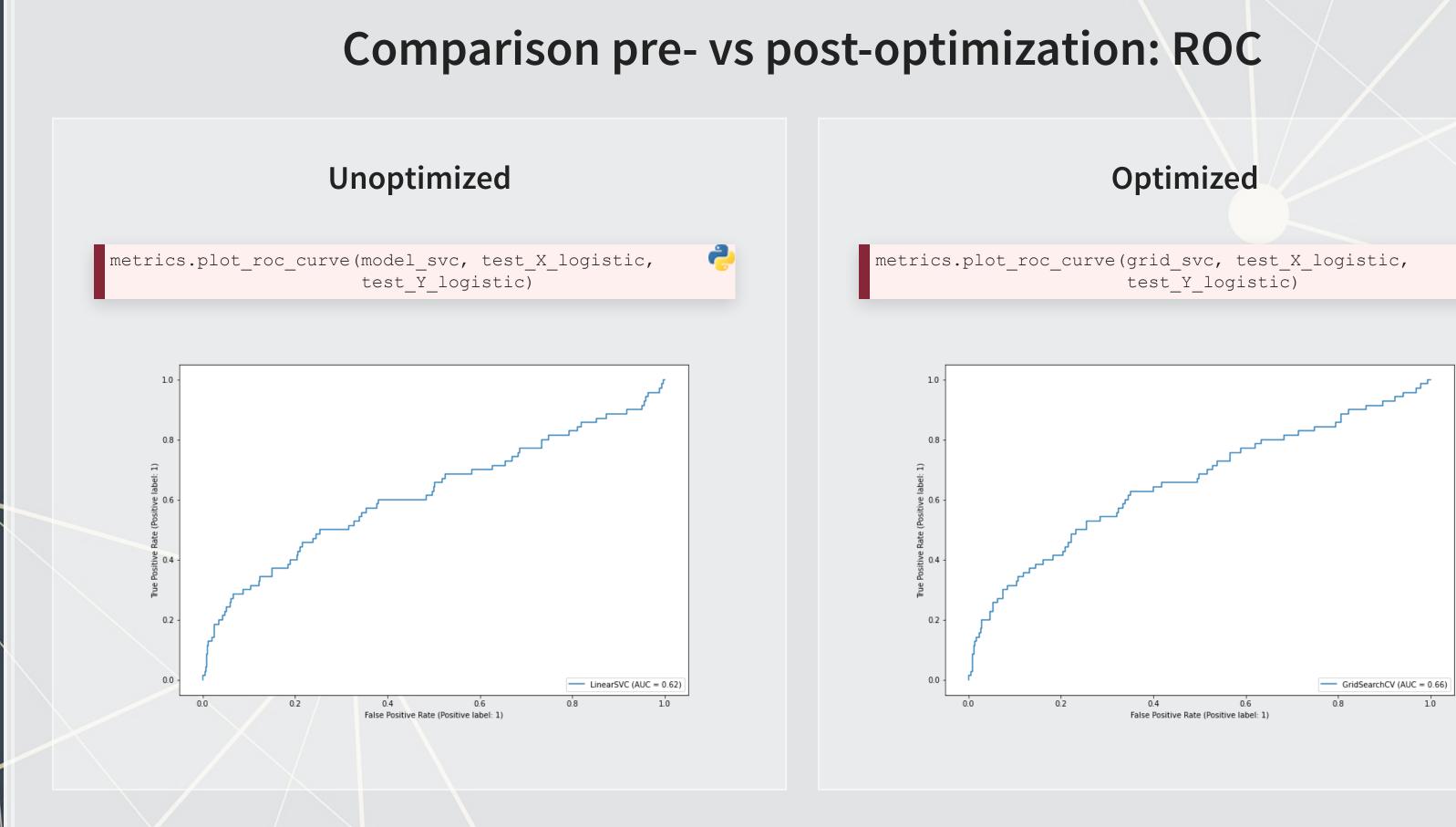
Ż

Optimizing the C parameter

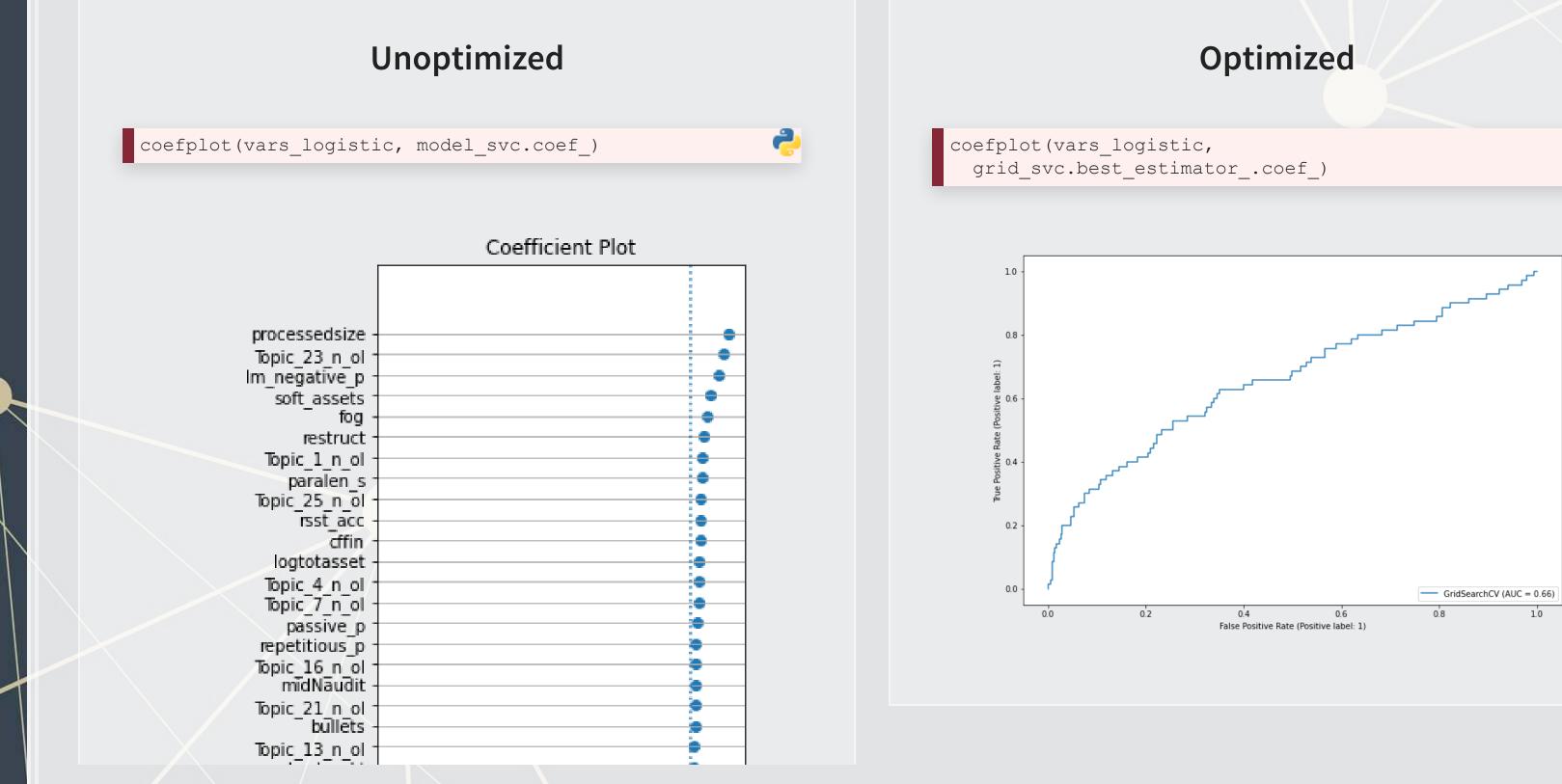
```
C range = np.logspace(-2, 6, 9)
param_grid = dict(C=C_range)
cv = model_selection.StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=1)
grid svc = model selection.GridSearchCV(svm.LinearSVC(dual=False), param grid=param grid, cv=cv)
grid_svc.fit(train_X_logistic, train_Y_logistic)
print("The best parameter is C=%s with a score of %0.2f"
      % (grid_svc.best_params_['C'], grid_svc.best_score_))
```

[1] "The best parameter is C=0.01 with a score of 0.99" ##





Comparison pre- vs post-optimization: Coefficients



2

Visualizing with UMAP

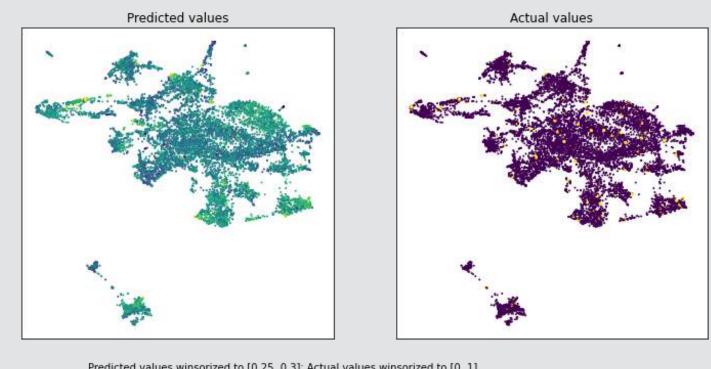
What is UMAP?

- UMAP stands for Uniform Manifold Approximation and Projection for Dimension Reduction
 - From Leland, Healy and Melville (2018) (2k+ cites already)
- It is useful for dimensionality reduction, like PCA
 - We will use it to reduce 68 dimensions down to 2
- It is useful for plotting 2 dimensional representations of high dimensional data by maintaining local distance structures, like t-SNE
 - Unlike t-SNE, it is efficient to run

UMAP essentially uses Reimannian manifolds and tries to maintain geodesic distance around a point – it is well supported theoretically

Visualizing what SVM is doing using UMAP

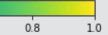
train_Yhat_logistic = logistic(grid_svc.decision_function(train_X_logistic)) umap_compare_svm(train_X_logistic, train_Yhat_logistic, train_Y_logistic, clip=[[0.25, 0.3], [0, 1]], binary=5, title="Full sample")



Full sample

Predicted values winsorized to [0.25, 0.3]; Actual values winsorized to [0, 1]

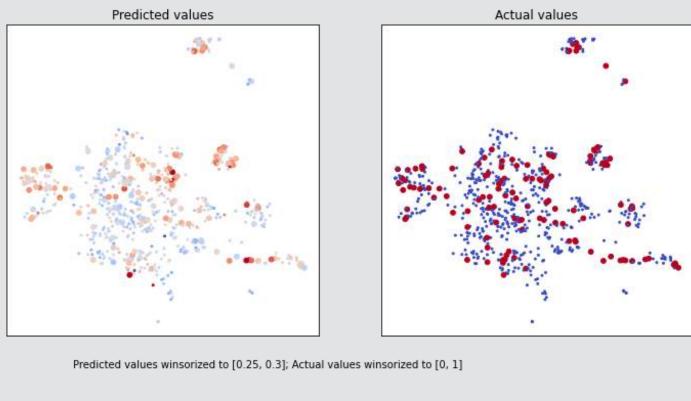
The data is really noisy



Visualizing what SVM is doing using UMAP

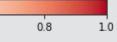
umap_compare_svm(train_X_logistic, train_Yhat_logistic, train_Y_logistic, clip=[[0.25, 0.3], [0, 1]], cmap='coolwarm', binary= subset=((train Y logistic==1) | (np.random.rand(len(train Y logistic))<0.05)),</pre> title="Performance on actual irregularities (Large) and random sample of non-irregularities")

Performance on actual irregularities (Large) and random sample of non-irregularities



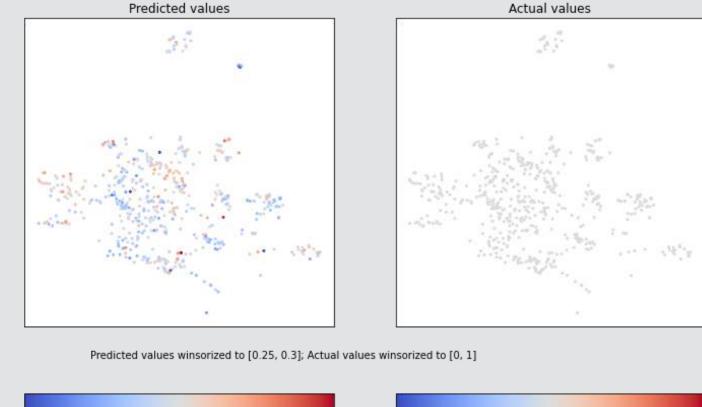


Type I errors are pretty minimal – the algorithm is rarely very off



Visualizing what SVM is doing using UMAP

umap_compare_svm(train_X_logistic, train_Yhat_logistic, train_Y_logistic, clip=[[0.25, 0.3], [0, 1]], cmap='coolwarm', binary subset=((train Y logistic==0) & (np.random.rand(len(train Y logistic))<0.05)),</pre> title="Performance on a random sample of non-irregularities")



Performance on a random sample of non-irregularities

There are definitely some combinations of parameters that are consistently leading to Type II errors

0.27

0.25

0.28

0.29

0.30

-0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100

SVM for regression: SVR

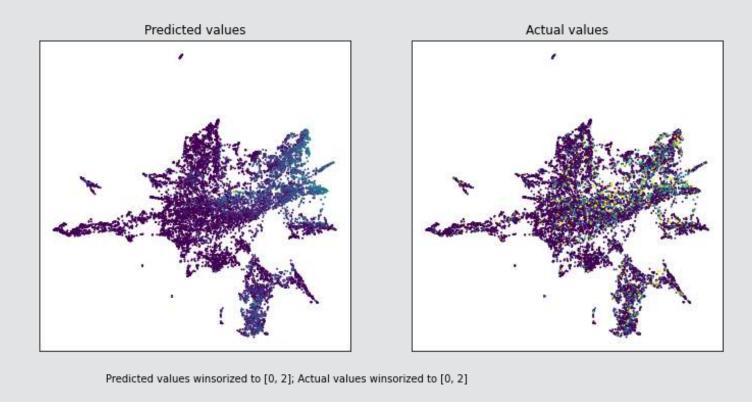
<pre>model_svr = svm.LinearSVR(C=1, dual=False, loss='squared_epsilon_insensitive') model_svr.fit(train_X_linear, np.ravel(train_Y_linear))</pre>	<pre>C_range = np.l param_grid = d cv = model_sel grid_svr = mod svm.LinearSV loss="square param_grid=p grid_svr.fit(t print("The bes % (grid_</pre>
	## [1] "The be

```
logspace(-4, 6, 11)
dict(C=C_range)
lection.KFold(n_splits=5)
del_selection.GridSearchCV(
VR(dual=False,
ed_epsilon_insensitive"),
param_grid, cv=cv)
train_X_linear, np.ravel(train_Y_linear))
st parameter is C=%s with a score of %0.2f"
_svr.best_params_['C'], grid_svr.best_score_
```

est parameter is C=0.0001 with a score of 0.

Visualizing SVR with UMAP

train_Yhat_linear = model_svr.predict(train_X_linear)
umap_compare_svm(train_X_linear, train_Yhat_linear, train_Y_linear, clip=[[0, 2], [0, 2]])



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Here we see some clusters that are indeed higher in volatility being picked up correctly by SVM

Using R for the above

- We can use tidymodels to handle training of the model
 - It will offload the model computation to kernlab
- tidymodels is a collection of packages intended to serve as a spiritual successor to caret
- It is a collection of packages aimed at making ML workflows easier in R, much like what Scikit-learn does for python
 - parsnip, recipes, rsample, dials, yardstick, etc.
- It is still rough around the edges, but it is fairly functional

Step 1: Make a recipe for your data • *Recipes* serve as a guide on how to preprocess your data • This keeps preprocessing quick and transparent

- - There are many possible steps

```
recipe svm <-
 recipe(BCE eq, data = train) %>%
 step zv(all predictors()) %>% # remove any zero variance predictors
 step_center(all_predictors()) %>% # Center all prediction variables
 step scale(all predictors()) %>% # Scale all prediction variables
 step_intercept() %>% # Add an intercept to the model
 step num2factor(all outcomes(), ordered = T, levels=c("0","1"),
                 transform = function(x) x + 1, skip = TRUE) # Convert DV to factor
```

Step 2: Define your ML model

- There are many built-in models in tidymodels
- For SVM, we will use svm_linear
 - Note how we specify tune () to the cost parameter
 - This is how we tell it where the grid search will go later!
- Setting mode to classification ensures we use something like SVC rather than SVR
- We can change the backend package by setting a different engine, with minimal changes needed to the rest
 of our code!

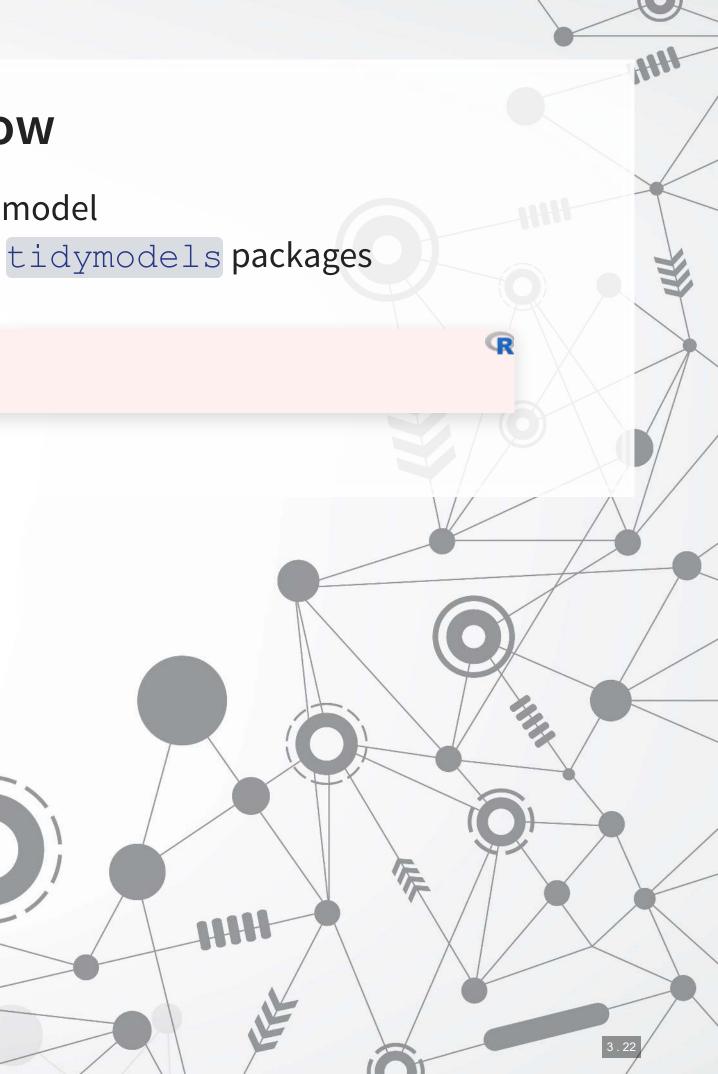
```
model_svm <-
   svm_linear(cost = tune()) %>%
   set_mode("classification") %>%
   set_engine("kernlab")
```

er than SVR h minimal changes needed to the rest

Step 3: Define a workflow

- Workflows piece together the larger elements of a tidy model
- Simplifies some of the hassle of using functions across tidymodels packages

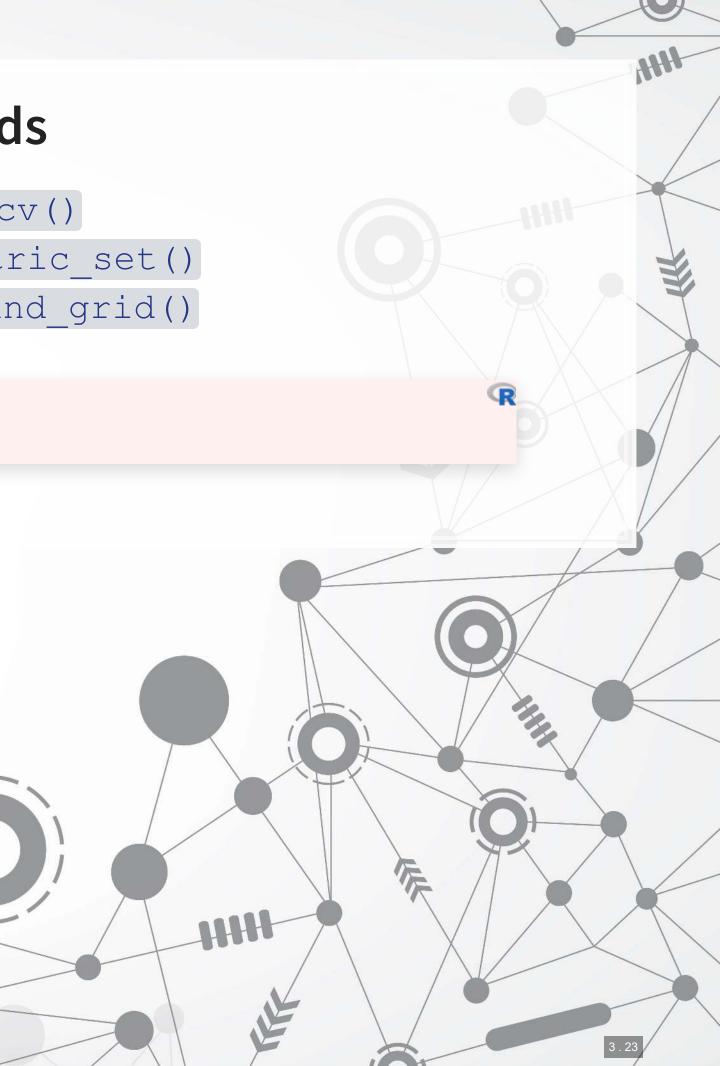
workflow_svm <- workflow() %>%
 add_model(model_svm) %>%
 add_recipe(recipe_svm)



Step 4: Tie up loose ends

- We need to set a cross validation: vfold_cv()
- We need to specify the metric to track: metric set()
- We need to set our grid search's grid: expand grid()

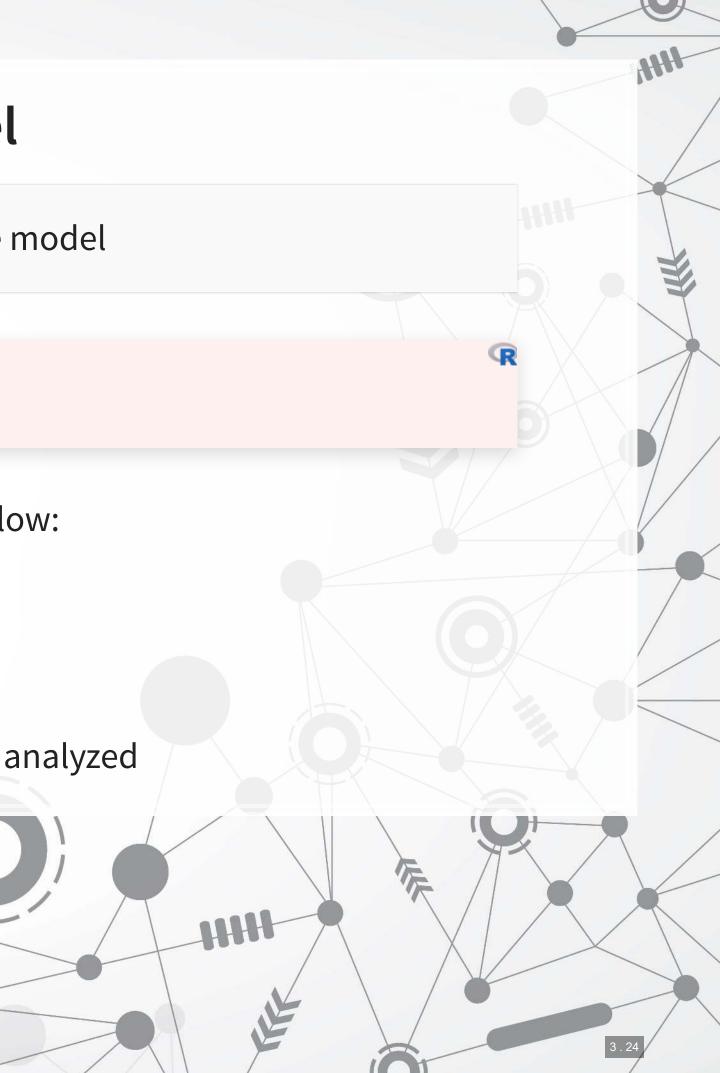
```
folds_svm <- vfold_cv(train, v=10) # from rsample
metrics_svm = metric_set(roc_auc) # from yardstick
grid_svm <- expand_grid(cost = exp(seq(-10,0, length.out=10)))</pre>
```



Step 5: Run the model

We have everything we need to run the model

- tune grid() will execute the workflow:
 - 1. Standardize our training data
 - 2. Run the model
 - 3. Apply 10-fold CV to it
 - 4. Track ROC AUC for each model run
- The resulting fitted model can then be analyzed



See which model was the best

show_best(svm_fit_tuned, metric = "roc_auc")

##	cost	.metric	.estimator	mean	n	std_err	.config
## 1	4.189421e-04	roc_auc	binary	0.6369609	10	0.02587312	Preprocessor1_Model03
## 2	2 1.379128e-04	roc_auc	binary	0.6157198	10	0.02662090	Preprocessor1_Model02
## 3	3 4.539993e-05	roc_auc	binary	0.6060063	10	0.03195342	Preprocessor1_Model01
## 4	1 3.865920e-03	roc auc	binary	0.6053433	10	0.02400210	Preprocessor1 Model05
## 5	5 1.174363e-02	roc_auc	binary	0.5987661	10	0.02568714	Preprocessor1_Model06

Step 6: Re-run the model with the full data

```
svm_final <- workflow_svm %>%
 finalize_workflow(
 select_best(svm_fit_tuned, "roc_auc")
 응>응
 fit(train)
```

You need to do this in order to be able to predict with the model

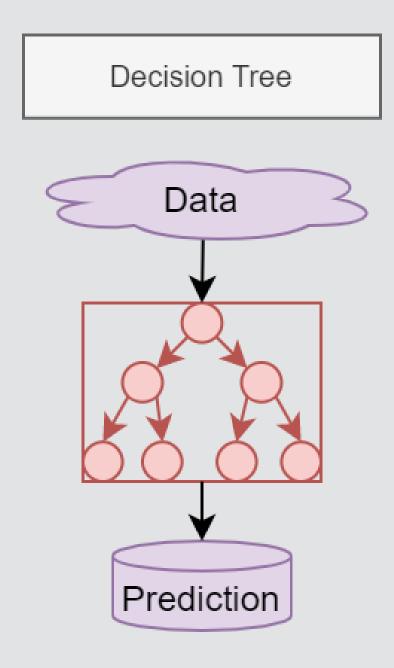
- The svm final object can be used with the standard predict () function
 - The svm fit tuned object could not!

Tree-based models

/

Simplest model: Decision tree

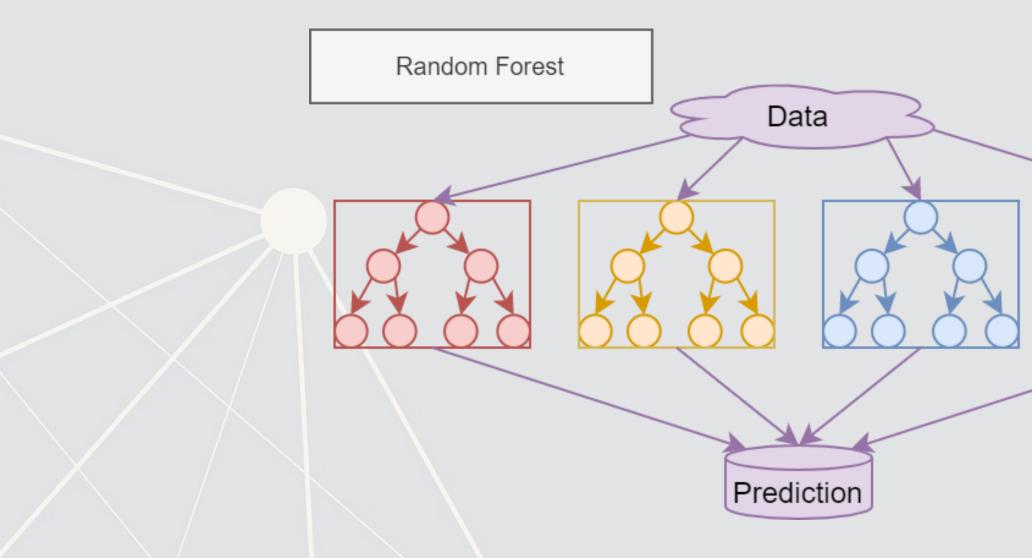
- A simple decision tree behaves as we saw in Mullainathan and Spiess (2017 JEP)
- It provides a set of conditions to traverse to go from data to the estimated output
- In order to capture a complex problem, many layers are needed

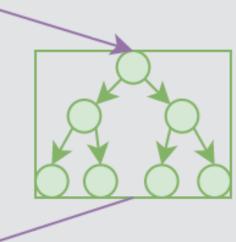


Simple model: Random Forest

- 1 decision tree is OK, but...
 - There is a lot of error unless the tree is complex
 - Successive iterations of trees can be very different from one another

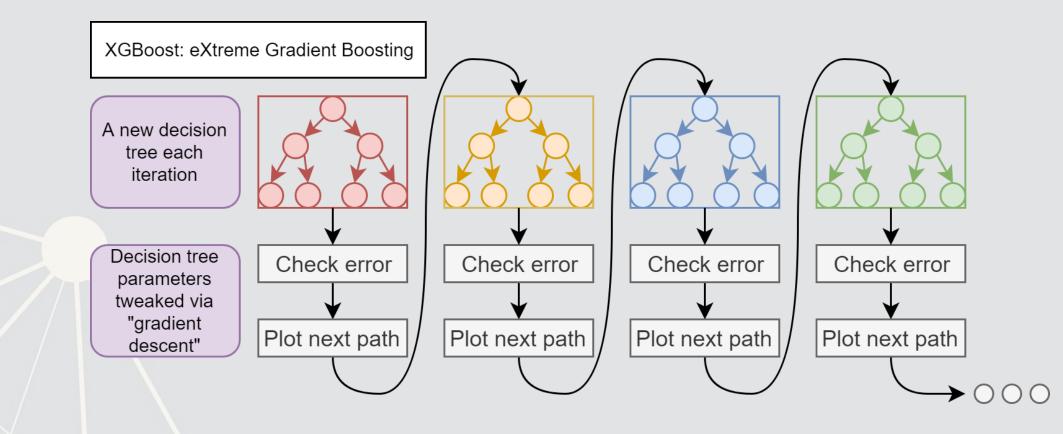
Run a bunch of decision trees with less depth each and average them (but don't give them) all exactly the same data)





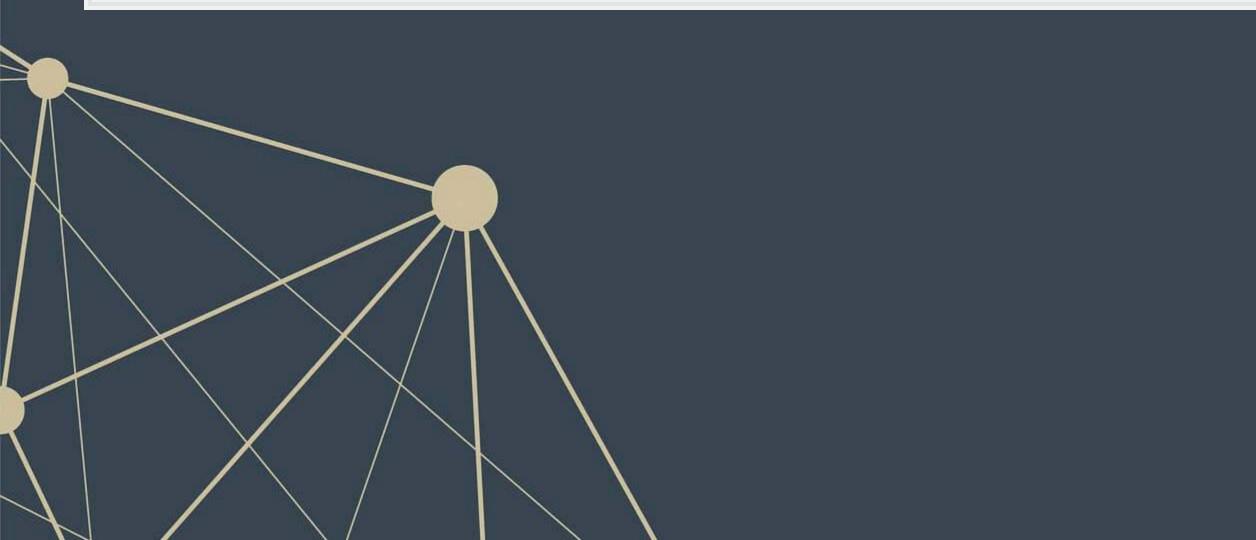
What is XGBoost

- eXtreme Gradient Boosting
- A simple explanation:
 - 1. Start with 1 or more decision trees & check error
 - 2. Make more decision trees & check error
 - 3. Use the difference in error to guess a another model
 - 4. Repeat #2 and #3 until the model's error is stable



XGBoost: Foundations

- XGBoost has its roots in AdaBoost (Adaptive Boosting)
 - Adaboost uses a sequence of weak learners to build a model
 - Combats against overfitting, and the sequence of individually weak models converges to be a strong learner
 - The convergence part is mathematically proven!
 - XGBoost isn't as theoretically founded as Adaboost'
 - It trades off some mathematical rigor for flexibility and empirical performance

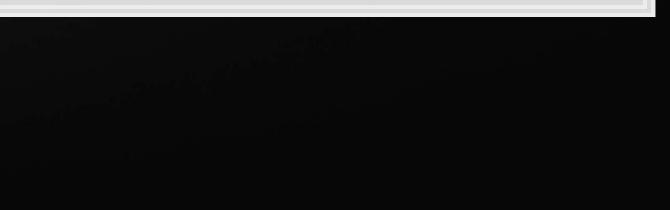


Benefits of XGBoost

- Tree based
 - Inherently non-parametric (no assumptions on data distribution)
- Non-linear but still somewhat interpretable
- Robust to noise
- Can handle missing or categorical variables (R implementation only)
- Robust to overfitting (somewhat)

As compared to other tree algorithms

- Implements gradient descent to sequentially grow trees
- Parallelizable (so it can be computed efficiently)
- Supports regularization



Drawbacks of XGBoost

So

many

hyperparameters.

- This makes it difficult to train a model well
 - But it is hard to beat a well trained XGBoost model with anything else we have discussed thus far
- It may technically be interpretable, but interpreting a big model is still difficult
- Like most tree-based methods, it struggles with extrapolation that is outside the bounds of its input data.

	0 0		• I 0 • I 0 • I

00100110000101111010000

0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1

else we have discussed thus far till difficult s outside the bounds of its input data

XGBoost parameters

```
param = {
   'booster': 'gbtree',
   'nthread': 8,
   'objective': 'binary:logistic', # binary, output probabilities
   'eval metric': 'auc',
   'eta': 0.3,
   'gamma': 0.1,
   'random state': 70
```

```
num round = 30
```

default -- tree based # number of threads to use for parallel processing # maximize ROC AUC *# shrinkage;* [0, 1], default 0.3 'max depth': 6, # maximum depth of each tree; default 6 # set above 0 to prune trees, [0, inf], default 0 'min_child_weight': 1, # higher leads to more pruning of tress, [0, inf], default 1
'subsample': 0.8, # Randomly subsample rows if in (0, 1), default 1 'colsample_bytree': 0.8, # Randomly subsample variables if in (0, 1), default 1

A lot of parameters - we can optimize all from eta to colsample bytree and the number of rounds

Running XGBoost

We use xgb.train() to fit the m

R

dtrain = xgb.DMatrix(train_X_logistic, label=train_Y_logistic, feature_names=vars_logistic)
dtest = xgb.DMatrix(test_X_logistic, label=test_Y_logistic, feature_names=vars_logistic)

model_xgb_logistic = xgb.train(param, dtrain, num_round)

test_Yhat_xgb_logistic = model_xgb_logistic.predict(dtest auc = metrics.roc_auc_score(test_Y_logistic, test_Yhat_xgl print('AUC is {}'.format(auc))

print('AUC is 0.6040163976960199')

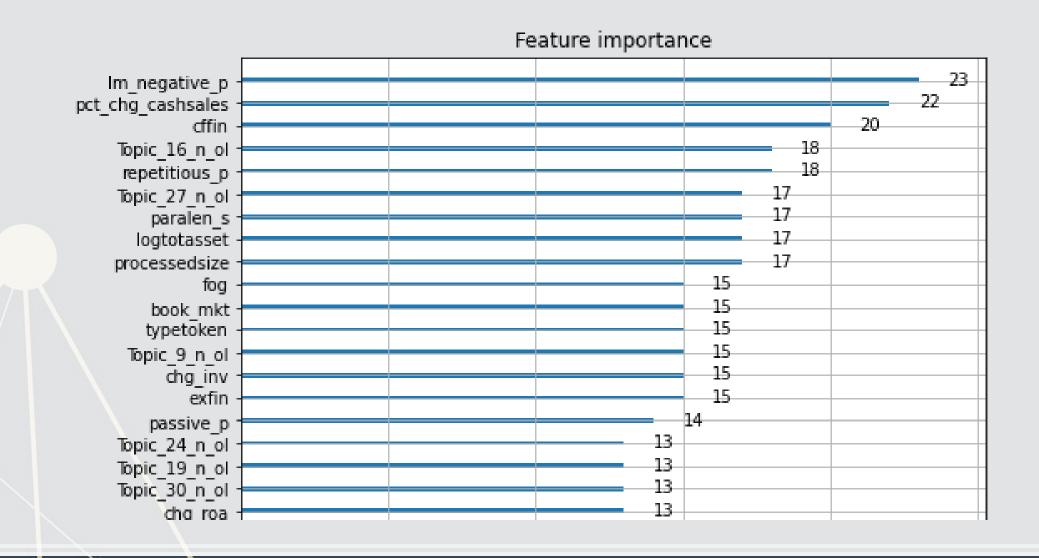
[1] "AUC is 0.6040163976960199"

fpr, tpr, thresholds = metrics.roc_curve(test_Y_logistic, display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_ardisplay.plot()

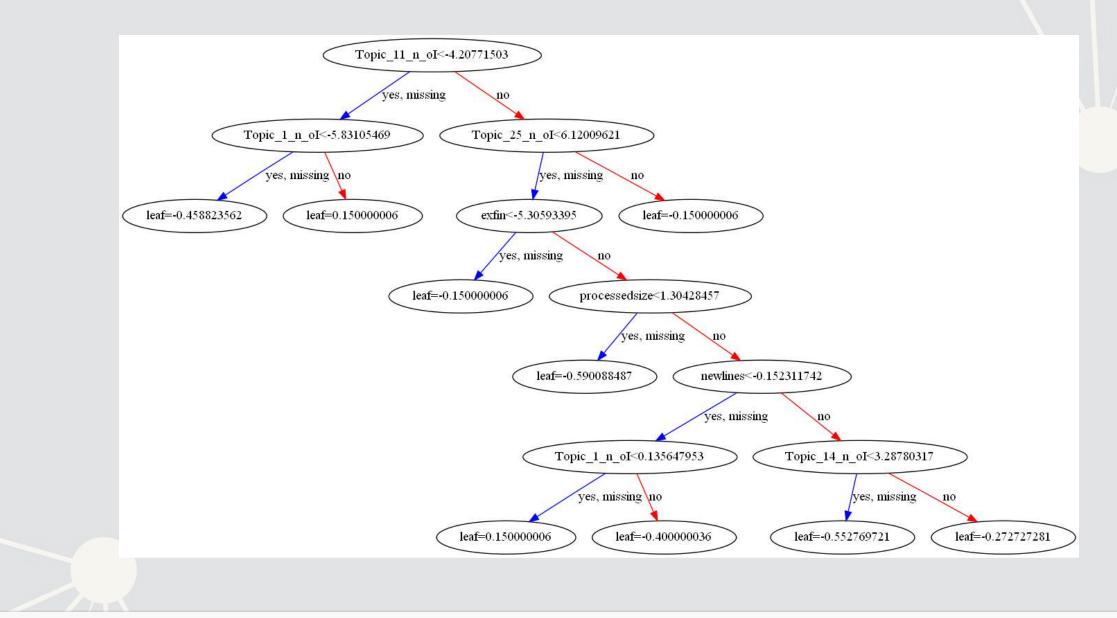
Analyzing the model: Importance plot

- The importance plot shows which variables have the greatest impact on the model
 - A higher number = more important
- In this case, we see a mix of sentiment, financial, topic, and grammatical measures in the top 5 measures

```
fig, ax = plt.subplots(figsize=(8,16))
xgb.plot_importance(model_xgb_logistic, ax=ax)
```



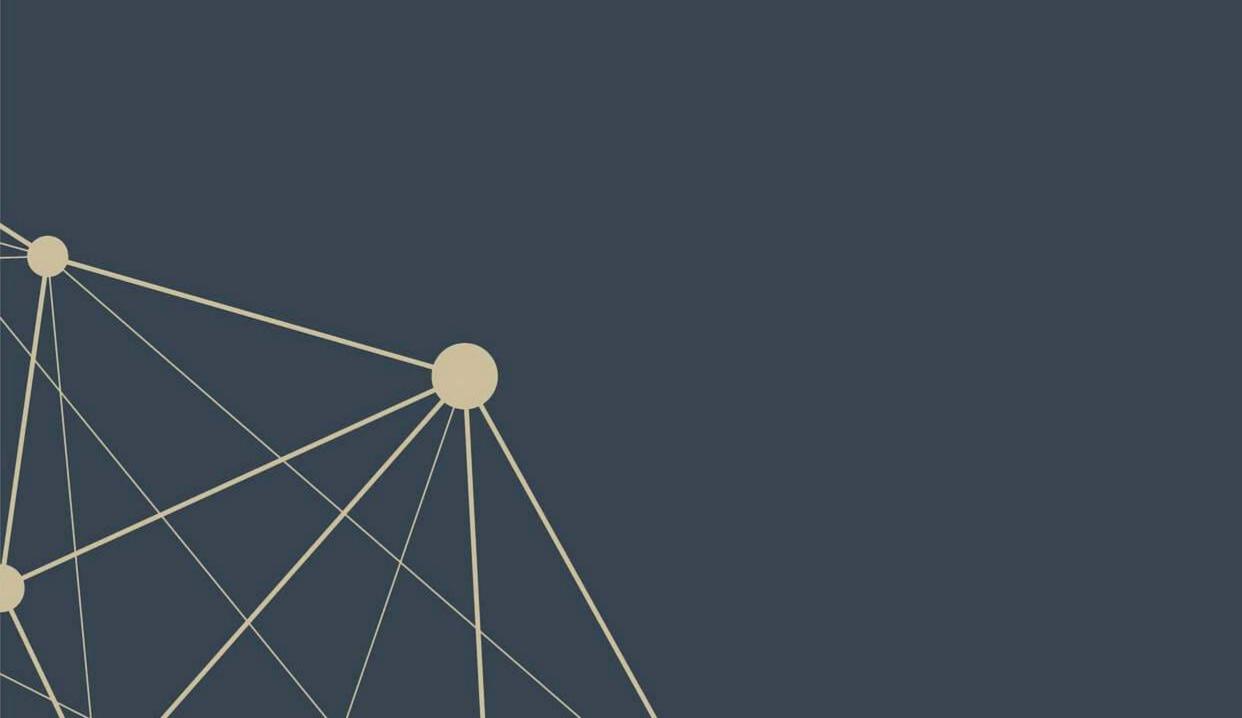
Analyzing the model: Seeing the trees



One of 30 trees in the model

What about optimizing all the parameters?

This can be done – details are in the python code file



Using R to run XGBoost

- The same package, xgboost works for this in R
 - The level of support across R and python is more or less the same

XGBoost in python

- Can solve numeric problems well
- Can do GPU computations for some models
- Can run larger-than-memory computations
 - Good for big data sets!
- Use tidymodels just like we did for SVM, but specify tune () for each parameter you want to tune

XGBoost in R

 Can solve numeric problems well Can also handle categorical inputs

Running CV XGBoost in R

HHH

```
label=train_x,
label=train_y,
nrounds=100,
eval_metric="auc",
nfold=10,
stratified=TRUE)
```


Conclusion

Wrap-up

SVM: Support Vector Machine

- Good for classification
- Can be good for regression in some contexts
- Key: Optimizes separability under some tolerance for error

Tree models

- Strong classification performance
- Can handle sparsity well
- A somewhat interpretable yet non-linear class of models

Packages used for these slides

R

- caret
- kableExtra
- kernlab
- knitr
- reticulate
- revealjs
- ROCR
- tidymodels
- tidyverse
- xgboost

O

5.3

0 000

0

References

- Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794. 2016.
- Deryugina, Tatyana, Garth Heutel, Nolan H. Miller, David Molitor, and Julian Reif. "The mortality and medical costs of air pollution: Evidence from changes in wind direction." American Economic Review 109, no. 12 (2019): 4178-4219.
- Mullainathan, Sendhil, and Jann Spiess. "Machine learning: an applied econometric approach." Journal of Economic Perspectives 31, no. 2 (2017): 87-106.
- Purda, Lynnette, and David Skillicorn. "Accounting variables, deception, and a bag of words: Assessing the tools of fraud detection." Contemporary Accounting Research 32, no. 3 (2015): 1193-1223.

Custom code

```
# Replication of R's coefplot function for use with sklearn's linear and logistic LASSO
def coefplot(names, coef, title=None):
   # Make sure coef is list, cast to list if needed.
   if isinstance(coef, np.ndarray):
       if len(coef.shape) > 1:
           coef = list(coef[0])
       else:
           coef = list(coef)
   # Drop unneeded vars
   data = []
   for i in range(0, len(coef)):
       if coef[i] != 0:
           data.append([names[i], coef[i]])
   data.sort(key=lambda x: x[1])
   # Add in a key for the plot axis
   data = [data[i] + [i+1] for i in range(0, len(data))]
   fig, ax = plt.subplots(figsize=(4,0.25*len(data)))
   ax.scatter([i[1] for i in data], [i[2] for i in data])
   ax.grid(axis='y')
   ax.set(xlabel="Fitted value", ylabel="Residual", title=(title if title is not None else "Coefficient Plot"))
   ax.axvline(x=0, linestyle='dotted')
   ax.set_yticks([i[2] for i in data])
   ax.set_yticklabels([i[0] for i in data])
   return ax
```

