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Overview
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Papers

▪ A fairly approachable overview of ML methods in economics

▪ The points the paper makes are applicable broadly in any archival/empirical discipline

▪ An application of LASSO to a context most should be familiar with: restaurant menus

▪ Easy to motivate LASSO in this paper – more variables than observations!

Paper 1: Purda and Skillicorn 2015

Paper 2: Chahuneau et al 2012

2 . 2



Python

▪ Using  for SVM

▪ Using  for XGBoost

▪ Using  for hyperparameter tuning

R

▪ Using  for SVM

▪ Using  for XGBoost

▪ Using  and related packages for

hyperparameter tuning

Technical Discussion: Classification

▪ SVM

▪ Tree-based algorithms

sklearn

xgboost

sklearn

caret

xgboost

tidymodels

Python is generally a bit stronger for these topics.

There is a fully worked out solution for each language on my website, data is on eLearn.
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Dependent Variable

Intentional misreporting as stated in 10-K/A filings

Independent Variables

▪ 17 Financial measures

▪ 20 Style characteristics

▪ 31 10-K discussion topics

Main application: Binary problem

▪ Idea: Using the same data as in Application 1, can we predict instances of intentional misreporting?

▪ Testing: Predicting 10-K/A irregularities using finance, textual style, and topics

This test mirrors a subset of Brown, Crowley and Elliott (2020 JAR)

Same problem and data as last week’s binary problem
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Dependent Variable

▪ Future stock return volatility

Independent Variables

▪ A set of 31 measures of what was discussed in a

firm’s annual report

Main application: A Linear problem

▪ Idea: Discussion of risks, such as as foreign currency risks, operating risks, or legal risks should provide

insight on the volatility of future outcomes for the firm.

▪ Testing: Predicting future stock return volatility based on 10-K filing discussion

This test mirrors Bao and Datta (2014 MS)

Same problem and data as last week’s linear problem
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SVM: Support Vector Machine
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▪ Note how in this example the points that matter

are those that are on the error boundaries

▪ The rest of the points aren’t affecting the

outcome much

▪ You could shi� them around on their

respective side of the line with minimal

impact

What is SVM?

▪ SVM-type algorithms generally focus on separability under some tolerance for error

▪ This is quite different from our regression approaches

▪ Regression focuses on minimizing an error function

Simpler case: Binary Classification

From the sklearn documentation

3 . 2

https://scikit-learn.org/stable/modules/svm.html


1. Non-linear kernels

▪ SVM can be linear or non-linear

▪ 3 examples to the right, 

2. Different objective function than regression

▪ Fits better with classification, conceptually

3. Can work with non-numeric data (text, images,

graphs)

What are the benefits of SVM?

adapted from the

sklearn documentation
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What are the costs of SVM?

1. Doesn’t work well on noisy data

2. Can be slow to train on datasets with many observations

▪ More than 10,000 observations leads to a lot of slow down for non-linear kernels

3. Difficult to interpret model when using a non-linear kernel

4. Can be difficult to pick an optimal kernel
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Binary classification

▪ Fast linear model:

▪

▪ General model:

▪

Regression

▪ Fast linear model:

▪

▪ General model:

▪

Implementing SVM in python

▪ For this we will use  again

▪ To keep things simple and interpretable, we will use linear kernels in these examples

▪ Both linear methods have a hyperparameter C which controls the amount of regularization (inversely)

▪ We can tune this using sklearn as well!

sklearn

sklearn.svm.LinearSVC()

sklearn.svm.SVC()

sklearn.svm.LinearSVR()

sklearn.svm.SVR()
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Why are there two ways each to run a linear SVM model?

▪ The two ways use different backends

▪ The LinearSV_ methods use a backend called liblinear

▪ The SV_ methods use a backend called libsvm

▪ liblinear is faster but only supports linear kernels

▪ Time to run is roughly linear in the number of observations

▪ libsvm is fast on small samples, but time increase for additional observations is polynomial

▪ The results aren’t quite the same across backends

▪ liblinear uses a penalized intercept while libsvm does not

▪ liblinear optimizes a “squared hinge” loss function while libsvm optimizes “hinge” loss

Both developed out of National Taiwan University, and both maintained by the same

professor
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Implementing LinearSVC for irregularity detection

▪ To train a simple linear SVM classifier, we can call  pretty much the same way that we

used  earlier

▪ Note: The dual=False option is to maintain efficiency when the number of observations is great than

the number of variables

▪ No regression table built in, but we can visualize it with 

svm.LinearSVC()

linear_model.Lasso()

model_svc = svm.LinearSVC(C=1, dual=False) 

model_svc.fit(train_X_logistic, train_Y_logistic)

coefplot()

coefplot(vars_logistic, model_svc.coef_)
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Visualizing LinearSVC for irregularity detection

coefplot(vars_logistic, model_svc.coef_) metrics.plot_roc_curve(model_svc, test_X_logistic, 

                       test_Y_logistic)
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Optimizing the C parameter

C_range = np.logspace(-2, 6, 9) 

param_grid = dict(C=C_range) 

cv = model_selection.StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=1) 

grid_svc = model_selection.GridSearchCV(svm.LinearSVC(dual=False), param_grid=param_grid, cv=cv) 

grid_svc.fit(train_X_logistic, train_Y_logistic) 

print("The best parameter is C=%s with a score of %0.2f" 

      % (grid_svc.best_params_['C'], grid_svc.best_score_))

## [1] "The best parameter is C=0.01 with a score of 0.99"
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Unoptimized Optimized

Comparison pre- vs post-optimization: ROC

metrics.plot_roc_curve(model_svc, test_X_logistic, 

                       test_Y_logistic)

metrics.plot_roc_curve(grid_svc, test_X_logistic, 

                       test_Y_logistic)
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Comparison pre- vs post-optimization: Coefficients

OptimizedUnoptimized

coefplot(vars_logistic, model_svc.coef_) coefplot(vars_logistic, 

  grid_svc.best_estimator_.coef_)
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Visualizing with UMAP

▪ UMAP stands for Uniform Manifold Approximation and Projection for Dimension Reduction

▪ From Leland, Healy and Melville (2018) (2k+ cites already)

▪ It is useful for dimensionality reduction, like PCA

▪ We will use it to reduce 68 dimensions down to 2

▪ It is useful for plotting 2 dimensional representations of high dimensional data by maintaining local distance

structures, like t-SNE

▪ Unlike t-SNE, it is efficient to run

What is UMAP?

UMAP essentially uses Reimannian manifolds and tries to maintain geodesic distance

around a point – it is well supported theoretically
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Visualizing what SVM is doing using UMAP

train_Yhat_logistic = logistic(grid_svc.decision_function(train_X_logistic)) 

umap_compare_svm(train_X_logistic, train_Yhat_logistic, train_Y_logistic, 

                 clip=[[0.25, 0.3], [0, 1]], binary=5, title="Full sample")

The data is really noisy
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Visualizing what SVM is doing using UMAP

umap_compare_svm(train_X_logistic, train_Yhat_logistic, train_Y_logistic, clip=[[0.25, 0.3], [0, 1]], cmap='coolwarm', binary=

                 subset=((train_Y_logistic==1) | (np.random.rand(len(train_Y_logistic))<0.05)), 

                 title="Performance on actual irregularities (Large) and random sample of non-irregularities")

Type I errors are pretty minimal – the algorithm is rarely very off
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Visualizing what SVM is doing using UMAP

umap_compare_svm(train_X_logistic, train_Yhat_logistic, train_Y_logistic, clip=[[0.25, 0.3], [0, 1]], cmap='coolwarm', binary=

                 subset=((train_Y_logistic==0) & (np.random.rand(len(train_Y_logistic))<0.05)), 

                 title="Performance on a random sample of non-irregularities")

There are definitely some combinations of parameters that are consistently leading to

Type II errors
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SVM for regression: SVR

model_svr = svm.LinearSVR(C=1, dual=False, 

  loss='squared_epsilon_insensitive') 

model_svr.fit(train_X_linear, np.ravel(train_Y_linear))

C_range = np.logspace(-4, 6, 11) 

param_grid = dict(C=C_range) 

cv = model_selection.KFold(n_splits=5) 

grid_svr = model_selection.GridSearchCV( 

  svm.LinearSVR(dual=False, 

  loss="squared_epsilon_insensitive"), 

  param_grid=param_grid, cv=cv) 

grid_svr.fit(train_X_linear, np.ravel(train_Y_linear)) 

print("The best parameter is C=%s with a score of %0.2f" 

      % (grid_svr.best_params_['C'], grid_svr.best_score_

## [1] "The best parameter is C=0.0001 with a score of 0.0
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SVR coefficients

coefplot(vars_linear, model_svr.coef_) coefplot(vars_linear, grid_svr.best_estimator_.coef_)
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Visualizing SVR with UMAP

train_Yhat_linear = model_svr.predict(train_X_linear) 

umap_compare_svm(train_X_linear, train_Yhat_linear, train_Y_linear, clip=[[0, 2], [0, 2]])

Here we see some clusters that are indeed higher in volatility being picked up correctly by

SVM
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Using R for the above

▪ We can use  to handle training of the model

▪ It will offload the model computation to 

▪  is a collection of packages intended to serve as a spiritual successor to 

▪ It is a collection of packages aimed at making ML workflows easier in R, much like what Scikit-learn does for

python

▪ , , , , , etc.

▪ It is still rough around the edges, but it is fairly functional

tidymodels

kernlab

tidymodels caret

parsnip recipes rsample dials yardstick
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Step 1: Make a recipe for your data

▪ Recipes serve as a guide on how to preprocess your data

▪ There are many possible steps

▪ This keeps preprocessing quick and transparent

recipe_svm <- 

  recipe(BCE_eq, data = train)  %>% 

  step_zv(all_predictors()) %>% # remove any zero variance predictors 

  step_center(all_predictors()) %>%  # Center all prediction variables 

  step_scale(all_predictors()) %>%  # Scale all prediction variables 

  step_intercept() %>% # Add an intercept to the model 

  step_num2factor(all_outcomes(), ordered = T, levels=c("0","1"), 

                  transform = function(x) x + 1, skip = TRUE)  # Convert DV to factor
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Step 2: Define your ML model

▪ There are many built-in models in 

▪ For SVM, we will use svm_linear

▪ Note how we specify  to the cost parameter

▪ This is how we tell it where the grid search will go later!

▪ Setting mode to classification ensures we use something like SVC rather than SVR

▪ We can change the backend package by setting a different engine, with minimal changes needed to the rest

of our code!

tidymodels

tune()

model_svm <- 

  svm_linear(cost = tune()) %>% 

  set_mode("classification") %>% 

  set_engine("kernlab")
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Step 3: Define a workflow

▪ Workflows piece together the larger elements of a tidy model

▪ Simplifies some of the hassle of using functions across  packagestidymodels

workflow_svm <- workflow() %>% 

  add_model(model_svm) %>% 

  add_recipe(recipe_svm)
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Step 4: Tie up loose ends

▪ We need to set a cross validation: 

▪ We need to specify the metric to track: 

▪ We need to set our grid search’s grid: 

vfold_cv()

metric_set()

expand_grid()

folds_svm <- vfold_cv(train, v=10)  # from rsample 

metrics_svm = metric_set(roc_auc)  # from yardstick 

grid_svm <- expand_grid(cost = exp(seq(-10,0, length.out=10)))
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Step 5: Run the model

▪  will execute the workflow:

1. Standardize our training data

2. Run the model

3. Apply 10-fold CV to it

4. Track ROC AUC for each model run

▪ The resulting fitted model can then be analyzed

We have everything we need to run the model

svm_fit_tuned <- tune_grid(workflow_svm, 

                           grid = grid_svm, 

                           resamples = folds_svm, 

                           metrics=metrics_svm)

tune_grid()
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See which model was the best

show_best(svm_fit_tuned, metric = "roc_auc")

##           cost .metric .estimator      mean  n    std_err               .config 
## 1 4.189421e-04 roc_auc     binary 0.6369609 10 0.02587312 Preprocessor1_Model03 
## 2 1.379128e-04 roc_auc     binary 0.6157198 10 0.02662090 Preprocessor1_Model02 
## 3 4.539993e-05 roc_auc     binary 0.6060063 10 0.03195342 Preprocessor1_Model01 
## 4 3.865920e-03 roc_auc     binary 0.6053433 10 0.02400210 Preprocessor1_Model05 
## 5 1.174363e-02 roc_auc     binary 0.5987661 10 0.02568714 Preprocessor1_Model06
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Step 6: Re-run the model with the full data

▪ The svm_final object can be used with the standard  function

▪ The svm_fit_tuned object could not!

svm_final <- workflow_svm %>% 

  finalize_workflow( 

  select_best(svm_fit_tuned, "roc_auc") 

) %>% 

  fit(train)

You need to do this in order to be able to predict with the model

predict()
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Tree-based models
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Simplest model: Decision tree

▪ A simple decision tree behaves as we saw in Mullainathan and Spiess (2017 JEP)

▪ It provides a set of conditions to traverse to go from data to the estimated output

▪ In order to capture a complex problem, many layers are needed
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Simple model: Random Forest

▪ 1 decision tree is OK, but…

▪ There is a lot of error unless the tree is complex

▪ Successive iterations of trees can be very different from one another

Run a bunch of decision trees with less depth each and average them (but don’t give them

all exactly the same data )
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What is XGBoost

▪ eXtreme Gradient Boosting

▪ A simple explanation:

1. Start with 1 or more decision trees & check error

2. Make more decision trees & check error

3. Use the difference in error to guess a another model

4. Repeat #2 and #3 until the model’s error is stable
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XGBoost: Foundations

▪ XGBoost has its roots in AdaBoost (Adaptive Boosting)

▪ Adaboost uses a sequence of weak learners to build a model

▪ Combats against overfitting, and the sequence of individually weak models converges to be a strong

learner

▪ The convergence part is mathematically proven!

▪ XGBoost isn’t as theoretically founded as Adaboost’

▪ It trades off some mathematical rigor for flexibility and empirical performance
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Benefits of XGBoost

▪ Tree based

▪ Inherently non-parametric (no assumptions on data distribution)

▪ Non-linear but still somewhat interpretable

▪ Robust to noise

▪ Can handle missing or categorical variables (R implementation only)

▪ Robust to overfitting (somewhat)

▪ Implements gradient descent to sequentially grow trees

▪ Parallelizable (so it can be computed efficiently)

▪ Supports regularization

As compared to other tree algorithms
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Drawbacks of XGBoost

▪ This makes it difficult to train a model well

▪ But it is hard to beat a well trained XGBoost model with anything else we have discussed thus far

▪ It may technically be interpretable, but interpreting a big model is still difficult

▪ Like most tree-based methods, it struggles with extrapolation that is outside the bounds of its input data.

So

many

hyperparameters.
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XGBoost parameters

param = { 

    'booster': 'gbtree',             # default -- tree based 

    'nthread': 8,                    # number of threads to use for parallel processing 

    'objective': 'binary:logistic',  # binary, output probabilities 

    'eval_metric': 'auc',            # maximize ROC AUC 

    'eta': 0.3,                      # shrinkage; [0, 1], default 0.3 

    'max_depth': 6,                  # maximum depth of each tree; default 6 

    'gamma': 0.1,                    # set above 0 to prune trees, [0, inf], default 0 

    'min_child_weight': 1,           # higher leads to more pruning of tress, [0, inf], default 1 

    'subsample': 0.8,                # Randomly subsample rows if in (0, 1), default 1 

    'colsample_bytree': 0.8,         # Randomly subsample variables if in (0, 1), default 1 

    'random_state': 70 

} 

num_round = 30

A lot of parameters – we can optimize all from eta to colsample_bytree and the

number of rounds
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Running XGBoost

▪ We use  to fit the modelxgb.train()

dtrain = xgb.DMatrix(train_X_logistic, label=train_Y_logistic, feature_names=vars_logistic) 

dtest = xgb.DMatrix(test_X_logistic, label=test_Y_logistic, feature_names=vars_logistic) 

 
model_xgb_logistic = xgb.train(param, dtrain, num_round)

test_Yhat_xgb_logistic = model_xgb_logistic.predict(dtest

auc = metrics.roc_auc_score(test_Y_logistic, test_Yhat_xgb

print('AUC is {}'.format(auc))

print('AUC is 0.6040163976960199')

## [1] "AUC is 0.6040163976960199"

fpr, tpr, thresholds = metrics.roc_curve(test_Y_logistic, 

display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_au

display.plot()

4 . 9

https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.train


Analyzing the model: Importance plot

▪ The importance plot shows which variables have the greatest impact on the model

▪ A higher number = more important

▪ In this case, we see a mix of sentiment, financial, topic, and grammatical measures in the top 5 measures

fig, ax = plt.subplots(figsize=(8,16)) 

xgb.plot_importance(model_xgb_logistic, ax=ax)
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Analyzing the model: Seeing the trees

One of 30 trees in the model
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What about optimizing all the parameters?

This can be done – details are in the python code file
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XGBoost in python

▪ Can solve numeric problems well

▪ Can do GPU computations for some models

▪ Can run larger-than-memory computations

▪ Good for big data sets!

XGBoost in R

▪ Can solve numeric problems well

▪ Can also handle categorical inputs

Using R to run XGBoost

▪ The same package,  works for this in R

▪ The level of support across R and python is more or less the same

▪ Use  just like we did for SVM, but specify  for each parameter you want to tune

xgboost

tidymodels tune()
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Running CV XGBoost in R

# model setup 

params <- list(max_depth=10, 

               eta=0.2, 

               gamma=10, 

               min_child_weight = 5, 

               objective = 

                 "binary:logistic") 

 
# run the model 

xgbCV <- xgb.cv(params=params, 

                data=train_x, 

                label=train_y, 

                nrounds=100, 

                eval_metric="auc", 

                nfold=10, 

                stratified=TRUE)
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Conclusion
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Wrap-up

▪ Good for classification

▪ Can be good for regression in some contexts

▪ Key: Optimizes separability under some tolerance for error

▪ Strong classification performance

▪ Can handle sparsity well

▪ A somewhat interpretable yet non-linear class of models

SVM: Support Vector Machine

Tree models
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Python

▪ matplotlib

▪ numpy

▪ pandas

▪ scikit-learn

▪ xgboost

▪ umap-learn

R

▪ caret

▪ kableExtra

▪ kernlab

▪ knitr

▪ reticulate

▪ revealjs

▪ ROCR

▪ tidymodels

▪ tidyverse

▪ xgboost

Packages used for these slides
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Custom code

# Replication of R's coefplot function for use with sklearn's linear and logistic LASSO 

 

def coefplot(names, coef, title=None): 

    # Make sure coef is list, cast to list if needed. 

    if isinstance(coef, np.ndarray): 

        if len(coef.shape) > 1: 

            coef = list(coef[0]) 

        else: 

            coef = list(coef) 

     

    # Drop unneeded vars 

    data = [] 

    for i in range(0, len(coef)): 

        if coef[i] != 0: 

            data.append([names[i], coef[i]]) 

    data.sort(key=lambda x: x[1]) 

     

    # Add in a key for the plot axis 

    data = [data[i] + [i+1] for i in range(0,len(data))] 

     

    fig, ax = plt.subplots(figsize=(4,0.25*len(data))) 

 

    ax.scatter([i[1] for i in data], [i[2] for i in data]) 

     

    ax.grid(axis='y') 

    ax.set(xlabel="Fitted value", ylabel="Residual", title=(title if title is not None else "Coefficient Plot")) 

     

    ax.axvline(x=0, linestyle='dotted') 

    ax.set_yticks([i[2] for i in data]) 

    ax.set_yticklabels([i[0] for i in data]) 

     

    return ax
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