
ML for SS: Ensembling and Clustering

Session 3

Dr. Richard M. Crowley
 rcrowley@smu.edu.sg

http://rmc.link/

1

mailto:rcrowley@smu.edu.sg
http://rmc.link/

Overview

2 . 1

Papers

▪ Introduces a well motivated use for clustering

▪ Takes a standard approach to the introduction of a new technique

▪ The points the paper makes are applicable broadly in any archival/empirical discipline

▪ A fairly straightforward paper introducing the concept of ensembling

Paper 1: Easton et al. 2020

Paper 2: Qiu, Xie and Jun (2020 working)

2 . 2

Python

▪ Rolling your own is pretty doable

▪ is the primary tool for constructing

them in python

R

▪ Rolling your own is pretty doable

▪ There are some packages for automating

ensemble construction:

▪

▪

Technical Discussion: Ensembling

sklearn

SuperLearner

EnsembleML

Python is generally a bit stronger for these topics.

There is a fully worked out solution for using python, data and pretrained models are on

eLearn.

2 . 3

https://scikit-learn.org/stable/
https://github.com/ecpolley/SuperLearner
https://github.com/nagdevAmruthnath/EnsembleML

Dependent Variable

Intentional misreporting as stated in 10-K/A filings

Independent Variables

▪ 17 Financial measures

▪ 20 Style characteristics

▪ 31 10-K discussion topics

Main application: Ensembling

▪ Idea: Predict instances of intentional misreporting?

▪ Testing: Predicting 10-K/A irregularities using finance, textual style, and topics

This test mirrors a subset of Brown, Crowley and Elliott (2020 JAR)

We will combine the models from the past two weeks

2 . 4

Python

▪ is still good for this

▪ k-means and KNN

▪ t-SNE

▪ umap-learn for UMAP

R

▪ For standard clustering, is a good choice

▪ For t-SNE, works well

▪ For UMAP, works

Technical Discussion: Clustering

sklearn caret

Rtsne

umap

Python is generally a bit stronger for these topics.

There is a fully worked out solution for using python, data is on elearn

2 . 5

https://scikit-learn.org/stable/
http://topepo.github.io/caret/index.html
https://cran.r-project.org/web/packages/Rtsne/index.html
https://cran.r-project.org/web/packages/umap/index.html

Dependent Variable

SIC Codes

Independent Variables

▪ 31 10-K discussion topics

Main application: Clustering

▪ Idea: Industry classification based on the text of annual reports

Somewhat in the vein of Hoberg and Phillips (2016 JPE), though less precise

2 . 6

Ensembling

3 . 1

What are ensembles?

▪ Ensembles are models made out of models

▪ Ex.: You train 3 models using different techniques, and each seems to work well in certain cases and poorly in

others

▪ If you use the models in isolation, then any of them would do an OK (but not great) job

▪ If you make a model using all three, you can get better performance if their strengths all shine through

▪ Ensembles range from simple to complex

▪ Simple: a (weighted) average of a few model’s predictions

3 . 2

When are ensembles useful?

1. You have multiple models that are all decent, but none are great

▪ And, ideally, the models’ predictions are not highly correlated

3 . 3

When are ensembles useful?

2. You have a really good model and a bunch of mediocre models

▪ And, ideally the mediocre models are not highly correlated

3 . 4

When are ensembles useful?

3. You really need to get just a bit more accuracy/less error out of the model, and you have some other models

lying around

4. You want a more stable model

▪ It helps to stabilize predictions by limiting the effect of errors or outliers produced by any one model on

your prediction

▪ Think: Diversification

3 . 5

A simple ensemble (averaging)

▪ For continuous predictions, simple averaging is viable

▪ O�en you may want to weight the best model a bit higher

▪ For binary or categorical predictions, consider averaging ranks

▪ i.e., instead of using a probability from a logit, use ranks 1, 2, 3, etc.

▪ Ranks average a bit better, as scores on binary models (particularly when evaluated with measures like

AUC) can have extremely different variances across models

▪ In which case the ensemble is really just the most volatile model’s prediction…

▪ Not much of an ensemble

3 . 6

A more complex ensemble (voting model)

▪ If you have a model the is very good at predicting a binary outcome, ensembling can still help

▪ This is particularly true when you have other models that capture different aspects of the problem

▪ Let the other models vote against the best model, and use their prediction if they are above some threshold

of agreement

3 . 7

A lot more complex ensemble

▪ Stacking models (2 layers)

1. Train models on subsets (folds) of the training data

2. Make predictions for each model on the folds it wasn’t applied to

3. Train a new model that takes those predictions as inputs (and optionally the data set as well)

▪ Blending (similar to stacking)

▪ Like stacking, but using predictions on a hold out sample instead of folds (and thus all models are using

the same data for predictions)

3 . 8

A simple averaging ensemble of our models

test_X_ens = pd.DataFrame({'XGBoost': models['XGBoost'].predict_proba(models['test_X_ML'])[:,1],

 'SVC': logistic(models['SVC'].decision_function(models['test_X_ML'])),

 'ElasticNet': models['ElasticNet'].predict_proba(models['test_X_ML'])[:,1],

 'LASSO': models['LASSO'].predict_proba(models['test_X_ML'])[:,1],

 'logit': models['logit'].predict(models['test_pd'][models['vars']])})

rank_X_ens = test_X_ens.rank()

arank_X_ens = rank_X_ens.XGBoost + rank_X_ens.SVC + rank_X_ens.ElasticNet + rank_X_ens.LASSO + rank_X_ens.logit

auc = metrics.roc_auc_score(models['test_pd'].Restate_Int, arank_X_ens)

fpr, tpr, thresholds = metrics.roc_curve(models['test_pd'].Restate_Int, arank_X_ens)

display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=auc)

display.plot()

3 . 9

Practicalities

▪ Methods like stacking or blending are much more complex than a simple averaging or voting based

ensemble

▪ But in practice they perform slightly better

▪ As such, we may not prefer the complex ensemble in practice, unless we only care about accuracy

Recall the tradeoff between complexity and accuracy!

Example: In 2009, Netflix awarded a $1M prize to the BellKor’s Pragmatic Chaos team for

beating Netflix’s own user preference algorithm by >10%. The alogorithm was so

complex that Netflix . It instead used a simpler algorithm with an 8%

improvement.

never used it

3 . 10

https://www.wired.com/2012/04/netflix-prize-costs/

Where is ensembling useful in academic work

▪ It can also be a reasonable approach when you are already calculating other models anyway

Where multiple reasonable models exist, and pushing performance (accuracy) is

important

3 . 11

[Geoff Hinton’s] Dark knowledge

▪ Complex ensembles work well

▪ Complex ensembles are exceedingly computationally intensive

▪ This is bad for running on small or constrained devices (like phones)

▪ We can (almost) always create a simple model that approximates the complex model

▪ Interpret the above literally – we can train a model to fit the model

Dark knowledge

3 . 12

Dark knowledge

▪ Train the simple model not on the actual DV from the training data, but on the best algorithm’s (so�ened)

prediction for the training data

▪ Somewhat surprisingly, this new, simple algorithm can work almost as well as the full thing!

3 . 13

An example of this dark knowledge

▪ Google’s full model for interpreting human speech is >100GB

▪ As of October 2019

▪ In Google’s Pixel 4 phone, they have human speech interpretation running locally on the phone

▪ Not in the cloud like it works on any other Android phone

▪ They can approximate the output of the complex speech model using a 0.5GB model

▪ 0.5GB isn’t small, but it’s small enough to run on a phone

How did they do this?

3 . 14

Learning more about Ensembling

▪

▪

▪ For more details on dark knowledge, applications, and the so�ening transform

▪ His interesting (though highly technical)

▪

▪ A short guide on stacking with nice visualizations

▪

▪ A comprehensive list of ensembling methods with some code samples and applications discussed

▪

▪ Nicely covers bagging and boosting (two other techniques)

Scikit-learn’s documentation on ensemble methods it supports

Geoff Hinton’s Dark Knowledge slides

Reddit AMA

A Kaggler’s Guide to Model Stacking in Practice

Kaggle Ensembling Guide

Ensemble Learning to Improve Machine Learning Results

There are many ways to ensemble, and there is no specific guide as to what is best. It may

prove useful in the group project, however.

3 . 15

https://scikit-learn.org/stable/modules/ensemble.html
http://www.ttic.edu/dl/dark14.pdf
https://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/
http://blog.kaggle.com/2016/12/27/a-kagglers-guide-to-model-stacking-in-practice/
https://mlwave.com/kaggle-ensembling-guide/
https://blog.statsbot.co/ensemble-learning-d1dcd548e936

Addendum: Using R

▪ There are a couple interesting packages in R for ensembling:

▪ The package aims to automate building ensembles

▪ Think of it like an automated cross-validation for ensemble construction

▪ The package allows you to specify an ensemble and train the underlying models together

▪ You can also roll your own ensemble as we did in the example earlier

Superlearner

EnsembleML

3 . 16

https://github.com/ecpolley/SuperLearner
https://github.com/nagdevAmruthnath/EnsembleML

Clustering: k-means

4 . 1

▪ Pros:

▪ Very fast to run

▪ Simple interpretation

▪ Cons

▪ Simple algorithm

▪ Need to specify , the number of clusters

What is k-means?

▪ Minimizes the sum of squared distance between points within groups

▪ Technically this is a machine learning algorithm, despite its simplicity

▪ You need to specify the number of groups you want

Since the algorithm is unsupervised, optimizing can be tricky

4 . 2

Projecting to 2D with UMAP

▪ Like last session, we will use UMAP to get a sense of how well topics line up with SIC industries

4 . 3

Projecting to 2D with UMAP

▪ It is also interesting to see how well the topics can be clustered

▪ The below colors UMAP by a k=9 kmeans algorithm applied to the LDA output

4 . 4

Why are these graphs different?

▪ Possibly due to…

▪ Data: 10-K disclosure content doesn’t fully capture industry inclusion

▪ Topic modeling: The measure may be noisy

▪ SIC code: The measure doesn’t cleanly capture industry inclusion

▪ Some firms are essentially misclassified

▪ Recall, SIC covers Agriculture, Forestry and Fishing; Mining; Construction; Manufacturing; Transportation,

Communications, Electric, Gas, and Sanitary Services; Wholesale Trade; Retail Trade; Finance, Insurance, and

Real Estate; Services; Public Administration

4 . 5

Optimizing K-means clustering

▪ K-means clustering is very fast to run, but suffers from the same issue as LDA:

▪ O�en times the solutions to this are similar to what we discussed for LDA

▪ Hand tuning

▪ In sample performance

▪ However, there is a statistics-based, researcher-bias-free method

You need to specify the number of clusters!

The Gap Statistic

4 . 6

How does the Gap statistic work?

▪ Let…

▪ be the number of clusters,

▪ the number of simulated samples

▪ be the K-Means inertia score on actual data

▪ be the K-Means inertia score for iteration with synthetic data

▪ be the average of the s

▪ Select the lowest such that

I.e., select the lowest s.t. the log-scaled error removed by clustering on real data at is

no worse than 1 SD below the log-scaled error removed at
4 . 7

Implementation in python

▪ The code is too long to put in the slides, but it is in the code file

▪ Sketch of the code:

1. Iterate through values starting at 2

2. Determine performance (inertia) at k with real data

3. Determine performance (inertia) at k with simulated (random) data 10 times

4. Calculate the standard deviation of the log of performance on random data

5. See if the 2x2 difference in log inertia between and on real and random data is less than the

standard deviation

▪ If so, is optimal, stop iterating

▪ If not, and start again

 for the model presented here

4 . 8

Optimal clustering

model = cluster.KMeans(n_clusters=30)

kmeans = model.fit(df[topic_names])

df['cluster_opt'] = kmeans.labels_

umap_color(df[topic_names], df.cluster_opt.astype("category"))

4 . 9

Example companies in the optimized clusters

df[df.cluster_opt==0][['industry']].sample(n=10)

industry
9770 Services
8622 Wholesale Trade
11401 Services
1882 Retail Trade
696 Manufacturing
222 Manufacturing
6752 Manufacturing
10218 Services
189 Manufacturing
2021 Retail Trade

df[df.cluster_opt==2][['industry']].sample(n=10)

industry
13779 Manufacturing
7898 Manufacturing
9036 Manufacturing
1500 Services
12279 Manufacturing
12383 Manufacturing
5800 Manufacturing
11568 Manufacturing
7256 Manufacturing
7181 Manufacturing

4 . 10

Clustering: KNN

5 . 1

Using k-means for filling in data

▪ One possible approach we could use is to fill based on the category assigned by k-means

▪ However, as we saw, k-means and SIC code don’t line up perfectly…

▪ So using this classification will definitely be noisy

5 . 2

A better approach with KNN

▪ KNN, or K-Nearest Neighbors is a supervised approach to clustering

▪ Since we already have industry classifications for most of our data, we can use that structure to inform our

assignment of the missing industry codes

▪ The way the model uses the information is by letting the nearest labeled points “vote” on what the point

should be

▪ Points are defined by 10-K content in our case

▪ Voting can be weighted by distance or done uniformly

5 . 3

Implementing KNN

▪ Scikit-learn has a KNN implementation in its neighbors module

▪ The primary parameter in the model is k: how many points get to vote

▪ k is n_neighbors in Scikit-learn

knn = neighbors.KNeighborsClassifier(n_neighbors=5)

knn.fit(df[topic_names], df['Industry'])

The above is sufficient to fit a simple model

5 . 4

Checking performance

▪ First, we need to get predictions

▪ Since this is a multiclass problem, we will not output probabilities, but instead the top guess

▪ We can quickly check multiclass performance using Scikit-learn as well

in_pred = knn.predict(df[topic_names])

out_pred = knn.predict(testing[topic_names])

print('In sample: {},\nOut of sample: {}'.format(

 metrics.accuracy_score(df['industry'], in_pred),

 metrics.accuracy_score(testing['industry'], out_pred)))

In sample: 1.0,
Out of sample: 0.922422954303932

5 . 5

A note on dimensionality reduction techniques

6 . 1

Principle Component Analysis

▪ PCA is a common technique to see in older studies

▪ It is reasonably efficient at identifying a lower dimensional representation of a relationship

▪ It is not good at maintaining relationships in the lower dimensional space

6 . 2

t-distributed Stochastic Neighbor Embedding

▪ t-SNE is focused on keeping distances relatively similar between the full dimensional input space and the

projected output space

▪ If 2 points are close to each other in dimensions, they will be close to each other in 2 or 3 dimensions as

well!

▪ t-SNE does not maintain distances over longer distances!

▪ Should not be used as input to a regression

6 . 3

Uniform Manifold Approximation and Projection

▪ UMAP maintains local distances like t-SNE

▪ UMAP also maintains global distances, mostly

▪ As such, it can be used for isolating data components for regression like PCA

6 . 4

Conclusion

7 . 1

Wrap-up

▪ Good for pushing forecasting ability

▪ Easy to do when you already made a bunch of models

▪ Can be done as an unsupervised or supervised algorithm

▪ Can be used for dimensionality reduction

▪ Many possible uses

Ensembling

Clustering

7 . 2

Python

▪ matplotlib

▪ numpy

▪ pandas

▪ scikit-learn

▪ seaborn

▪ umap-learn

R

▪ caret

▪ cluster

Packages used for these slides

7 . 3

References

▪ Easton, Peter D., Martin Kapons, Steven J. Monahan, Harm H. Schütt, and Eric H. Weisbrod. “Forecasting

Earnings Using k-Nearest Neighbor Matching.” Available at SSRN (2020).

▪ Qiu, Yue, Tian Xie, and Y. U. Jun. “Forecast combinations in machine learning.” (2020).

▪ Wang, Bingling, Min-Bin Lin, and Wolfgang Karl Hardle, “Non-fungible Tokens & VizTech.” (2021).

7 . 4

Custom code

From umap.plot source code on Github
def _get_embedding(umap_object):
 if hasattr(umap_object, "embedding_"):
 return umap_object.embedding_
 elif hasattr(umap_object, "embedding"):
 return umap_object.embedding
 else:
 raise ValueError("Could not find embedding attribute of umap_object")

Cut down version of umap.plot.points to remove dependencies on datashader, bokeh, holoviews, scikit-image, and colorcet
Introduces a dependency on seaborn though
def umap_color(data_map, data_color, cmap='viridis', subset=None, title=None):
 reducer = umap.UMAP()
 umap_object = reducer.fit(data_map)
 embed = _get_embedding(umap_object)

 if subset is not None:
 embed_X = embed[subset,0]
 embed_Y = embed[subset,1]
 data_color = np.array(data_color[subset])
 else:
 embed_X = embed[:, 0]
 embed_Y = embed[:, 1]

 point_size = 100.0 / np.sqrt(len(embed_X))

 # color by values
 fig, ax = plt.subplots(figsize=(12,8))
 g = sns.scatterplot(ax=ax, x=embed_X, y=embed_Y, hue=data_color, size=point_size)
 _ = plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
 return g

7 . 5

