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Papers

▪ This is a nicely motivated paper in terms of its usage of LDA

▪ Needed to answer the research question

▪ Demonstrates a usage of embedding methods for

▪ Also showcases a variant of LDA for social media classification

▪ Demonstrates an interesting variant of LDA that can help with identifying differences in information across

groups or conditions

Huang et al. (2018 MS)

Crowley, Huang, and Lu (2020 working)

Roberts et al. (2014 AJPS)
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Python

▪ LDA

▪  is the easiest to use in general

▪ Some incompatibilities with python 3.9

however

▪ Word2Vec

▪  is again quite easy to use

▪  is another good option

▪  is also an option

▪ USE

▪  is the best choice

R

▪ LDA

▪  can do a lot more than just standard LDA

▪ STM is only available in R

▪  and  both play nicely

with 

▪  gives an interface to the venerable

, capable of more

advanced topic modeling

▪ Word2vec

▪ The word2vec and rword2vec packages

may be useful

Technical Discussion

gensim

gensim

fastText

Tensorflow

Tensorflow

stm

lda topicmodels

quanteda

mallet

MALLET Java package

Both R and python are good for LDA. Python is better for embedding methods. R is the

only option for STM.
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Main application: Analyzing Wall Street Journal articles

▪ On eLearn you will find a full issue of the WSJ in text format

▪ Apply a topic model to the documents

▪ Analyze the documents using an STM

Tasks

We will also explore embedding methods more generally
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Embeddings
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What are “vector space models”

▪ Different ways of converting some abstract information into numeric information

▪ Focus on maintaining some of the underlying structure of the abstract information

▪ Examples (in chronological order):

▪ Word vectors:

▪

▪

▪ Paragraph/document vectors:

▪

▪ Sentence vectors:

▪

▪ Topic vectors:

▪

Word2vec

GloVe

Doc2Vec

Universal Sentence Encoder

Latent Dirichlet Allocation (LDA)
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https://www.tensorflow.org/tutorials/representation/word2vec
https://nlp.stanford.edu/projects/glove/
https://medium.com/scaleabout/a-gentle-introduction-to-doc2vec-db3e8c0cce5
https://tfhub.dev/google/universal-sentence-encoder/2
https://ai.stanford.edu/~ang/papers/jair03-lda.pdf


Word vectors

▪ Instead of coding individual words, encode word meaning

▪ The idea:

▪ Our old way (encode words as IDs from 1 to N) doesn’t understand relationships such as:

▪ Spatial

▪ Categorical

▪ Grammatical (weakly when using stemming)

▪ Social

▪ etc.

Word vectors try to encapsulate all of the above implicitly, through by encoding words as

a vector based on how features manifest themselves in text
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Word vectors: Simple example

words f_animal f_people f_location

dog 0.5 0.3 -0.3

cat 0.5 0.1 -0.3

Bill 0.1 0.9 -0.4

turkey 0.5 -0.2 -0.3

Turkey -0.5 0.1 0.7

Singapore -0.5 0.1 0.8

▪ The above is a simplified illustrative example

▪ Notice how we can tell apart different animals based on their relationship with people

▪ Notice how we can distinguish turkey (the animal) from Turkey (the country) as well
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What it retains: word2vec
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https://www.tensorflow.org/tutorials/representation/word2vec#visualizing_the_learned_embeddings


  

What it retains: GloVe
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https://nlp.stanford.edu/projects/glove/


How does word order work?

Infer a word’s meaning from the words around it

Refered to as CBOW (continuous bag of words)
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How else can word order work?

Infer a word’s meaning by generating words around it

Refered to as the Skip-gram model
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An example of using word2vec

▪ In Brown, Crowley and Elliott (2020 JAR), word2vec was used to provide assurance that the LDA model works

reasonably well on annual reports

1. We trained a word2vec model on random issues of the Wall Street Journal (247.8M words)

2. The resulting model “understood” words in the context of the WSJ

3. We then ran a psychology experiment (word intrusion task) on the algorithm
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Word intrusion task

▪ The task is to find which word doesn’t belong

▪ Each question consisted of 3 words from 1 topic and 1 intruded from another random topic

▪ Ex.:

▪ Laser, Drug, Viral, Therapeutic

▪ Supply, Steel, Capacity, Losses

▪ Relief, Lousisiana, Cargo, Assisted
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Results
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Loading in word2vec with Gensim

▪ The  package comes with the ability to download word2vec and GloVe vectors from a repository

▪ The code below would allow you to download a model trained on Google News

▪ In this model, each word is represented as a 300-dimensional vector

▪ The model will be stored in ~/gensim_models/

▪ ~ represents your user directory

▪ You can safely delete this directory a�er you are done using it

gensim

import gensim 

import gensim.downloader 

 
base_w2v = gensim.downloader.load('word2vec-google-news-300')

Note: The model it downloads is 1.7GB
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Examining word2vec: Odd one out

base_w2v.doesnt_match(['Queen', 'King', 'Prince', 'Peasant'])

## 'Peasant'

base_w2v.doesnt_match(['Singapore', 'Malyasia', 'Indonesia', 'Germany'])

## 'Germany'

base_w2v.doesnt_match(['Euro', 'USD', 'RMB', 'computer'])

## 'computer'

base_w2v.doesnt_match(['mee goreng', 'char kway teoh', 'laksa', 'hamburger'])

## 'hamburger'
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Examining word2vec: Closest words

base_w2v.most_similar(['Earnings'])

## ('Pro_Forma_EPS', 0.6441532373428345) ('Diluted_EPS', 0.636042058467865)  
##  ('Goodwill_Impairment', 0.6357625126838684) ('Tax_Expense', 0.6289322376251221)  
##  ('Reconciling_Items', 0.6285154819488525) ('Restructuring_Charges', 0.6268271207809448)  
##  ('Backs_FY##', 0.6254147291183472) ('Raises_FY##_EPS', 0.6230234503746033)  
##  ('Restructuring_Charge', 0.6216667294502258) ('FFO_Per_Share', 0.6207219958305359)

base_w2v.most_similar('IASB')

## ('Accounting_Standards_Board', 0.7211726307868958) ('FASB', 0.6697319149971008)  
##  ('IAASB', 0.6319378614425659) ('IAS##', 0.6150702834129333)  
##  ('FASB_IASB', 0.593984842300415) ('Exposure_Draft', 0.5892050266265869)  
##  ('Board_IASB', 0.5818656086921692) ('IFRS', 0.5813880562782288)  
##  ('GNAIE', 0.5802473425865173) ('Solvency_II', 0.574397087097168)

3 . 14



Examining word2vec: Closest words

base_w2v.most_similar(['KPMG'])

## ('PwC', 0.8044512867927551) ('PricewaterhouseCoopers', 0.8032213449478149)  
##  ('Deloitte', 0.7856791019439697) ('Grant_Thornton', 0.7815379500389099)  
##  ('PriceWaterhouseCoopers', 0.7609084248542786) ('KMPG', 0.7575340270996094)  
##  ('PricewaterhouseCoopers_PwC', 0.7438496351242065) ('Pricewaterhouse_Coopers', 0.7163813710212708)  
##  ('Delloitte', 0.7009097337722778) ('KPMG_LLP', 0.7008424401283264)

base_w2v.most_similar(['Arthur_Andersen'])

## ('Arthur_Andersen_LLP', 0.7720072269439697) ('Peat_Marwick', 0.6542829275131226)  
##  ('Price_Waterhouse', 0.6524070501327515) ('KPMG_Peat_Marwick', 0.6093755960464478)  
##  ('Peat_Marwick_Mitchell', 0.6006763577461243) ('&_Lybrand', 0.5949062705039978)  
##  ('Arthur_Andersen_accounting', 0.559570848941803) ('auditor_Arthur_Andersen', 0.5569155812263489)  
##  ('KPMG', 0.5496521592140198) ('Price_Waterhouse_LLP', 0.5493941903114319)
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Examining word2vec: Analogies

▪ Mathematically: 

man : King :: woman : ?

base_w2v.most_similar(positive=['King', 'woman'], negative=['man'])

## ('Queen', 0.5515626668930054) ('Oprah_BFF_Gayle', 0.47597548365592957)  
##  ('Geoffrey_Rush_Exit', 0.46460166573524475) ('Princess', 0.4533674716949463)  
##  ('Yvonne_Stickney', 0.4507041573524475) ('L._Bonauto', 0.4422135353088379)  
##  ('gal_pal_Gayle', 0.4408389925956726) ('Alveda_C.', 0.4402790665626526)  
##  ('Tupou_V.', 0.4373864233493805) ('K._Letourneau', 0.4351031482219696)
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The sleight of hand behind this

▪ Word2Vec implementations usually bar a word in the analogy from being an output

▪ E.g., it will never report man : King :: woman : King

▪ But this is actually the mathematical answer

analogy = base_w2v['King'] + base_w2v['woman'] + base_w2v['man'] 

analogy = analogy / np.linalg.norm(analogy) 

print('King', np.linalg.norm(analogy - base_w2v['King']))

## King 1.9888592

print('Queen', np.linalg.norm(analogy - base_w2v['Queen']))

## Queen 2.7364814
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It’s still pretty good though!

▪ Note that since word2vec’s original answer was Queen, this implies it was second best

▪ If Queen is the closest word to King, then this would be mathematically uninteresting

▪ It’s actually 7th though!

base_w2v.most_similar('King')

## [('Jackson', 0.5326348543167114), ('Prince', 0.5306329727172852), ('Tupou_V.', 0.5292826294898987), ('KIng', 0.522750139236
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What is this good for?

1. You care about the words used, by not stylistic choices

▪ Abstraction

2. You want to crunch down a bunch of words into a smaller number of dimensions without running any bigger

models (like LDA) on the text.

▪ E.g., you can toss the 300 dimensions of the Google News model to a Lasso or Elastic Net model

▪ This is a big improvement over the past method of tossing vectors of word counts at Naive Bayes

3. You want synonyms for a set of words that are selected in a less-researcher-biased fashion

▪ You can even get n-gram synonyms this way

▪ A popular method for augmenting small dictionaries
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Exercise: Trying out word2vec

▪ This set of exercise is to help you understand a bit better about what word2vec is good at

▪ As well as what it isn’t good at

Colab file available at https://rmc.link/colab_w2v
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Universal Sentence Encoder (USE)
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Universal Sentence Encoder (USE)

Focuses on representing sentence-length chunks of text
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A fun example of with USE

▪ Predict Shakespeare with Cloud TPUs and Keras
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https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/shakespeare_with_tpu_and_keras.ipynb


Cavaet on using USE

▪ One big caveat: USE only knows what it’s trained on

▪ Ex.: Feeding the same USE algorithm WSJ text

Samsung Electronics Co., suffering a handset sales slide, revealed a foldable-screen

smartphone that folds like a book and opens up to tablet size. Ah, horror? I play Thee to

her alone; 

And when we have withdrom him, good all. 

Come, go with no less through. 

 

Enter Don Pedres. A flourish and my money. I will tarry. Well, you do! 

 

LADY CAPULET. 

Farewell; and you are
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How does USE work?

▪ USE is based on DAN and Transformer

▪ There is also a specification using Transformers

▪ USE learns the meaning of sentences via words’ implied meanings

▪ Learn more:  and 

▪ In practice, it works quite well

Original paper TensorFlow site
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Using USE

▪ The model we will be using is the  by Cer et al. (2018)

▪ Converts text that is between phrase and paragraph length into 512-dimensional vectors

Universal Sentence Encoder (USE) Transformer v5

embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder-large/5") 

 
messages = ['Two words', 

            'This is a sentence.', 

            'This is a few sentences.  They are strung together.  They are in one string' 

           ] 

 
embeddings = embed(messages) 

embeddings

## <tf.Tensor: shape=(3, 512), dtype=float32, numpy= 
## array([[-1.0184747e-02, -3.1019164e-02, -4.2781506e-02, ..., 
##          1.0805108e-01,  7.7099161e-05, -6.1001875e-03], 
##        [-1.2058644e-02, -3.8627390e-02,  1.5427187e-03, ..., 
##          3.3353332e-02, -7.0963770e-02, -1.7223844e-03], 
##        [ 3.6280617e-02,  1.7835487e-03, -7.6090815e-03, ..., 
##          5.9779502e-02, -1.0792013e-01, -6.0476218e-03]], dtype=float32)>
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Compare sentences with USE

messages = ["How are you feeling?","How are you?","What's up?", 

    "How old are you?","How old are you, in years?","What is your age?"] 

embeddings = embed(messages) 

plot_similarity(messages, embeddings, 90)

4 . 7



LDA
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What is LDA?

▪ Latent Dirichlet Allocation

▪ One of the most popular methods under the field of topic modeling

▪ LDA is a Bayesian method of assessing the content of a document

▪ LDA assumes there are a set of topics in each document, and that this set follows a Dirichlet prior for each

document

▪ Words within topics also have a Dirichlet prior

From Blei, Ng, and Jordan (2003). More details from the creator
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An example of LDA
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How does it work?

1. Reads all the documents

▪ Calculates counts of each word within the document, tied to a specific ID used across all documents

2. Uses variation in words within and across documents to infer topics

▪ By using a Gibbs sampler to simulate the underlying distributions

▪ An MCMC method  

▪ It’s quite complicated in the background, but it boils down to a system where generating a document follows

a couple rules:

1. Topics in a document follow a multinomial/categorical distribution

2. Words in a topic follow a multinomial/categorical distribution
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Implementing LDA in python

▪ The best package for this is 

▪ As long as your data fits in memory comfortably, it is easy to use

▪ If not, you will need to construct a generator to pass to it, which is more complex

▪ The code file for this session has an example of this!

▪ In terms of computation time, you will likely spend more time prepping your text than running the LDA

model

gensim
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Prepping text

▪ We will take a more thorough approach using  for preprocessing

▪ Remove stopwords using ’

▪ Remove numbers, symbols, and punctuation based on a neural network dependency parser

▪ Lemmatize words based on the word and its POS tags

▪ If accuracy is less important or your computer can’t handle ’s approach, another approach is:

▪ Use a regex or NLTK to tokenize into words

▪ Use the stop-words package or NLTK to get a list of stopwords

▪ Filter them out using a list comprehension

doc = [w for w in doc if w not in stopwords]

▪ Apply a word-based lemmatizer from NLTK such as 

spaCy

spaCy

spaCy

WordNet
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Running the LDA model

# docs contains all of our cleaned 10-K filings 

# doc_names contains the filings' accession numbers 

 
# Prepare the needed parts for gensim's LDA implementation 

words = gensim.corpora.Dictionary(articles) 

words.filter_extremes(no_below=3, no_above=0.5) 

words.filter_tokens(bad_ids=[words.token2id['_']])  # '_' is not treated as a symbol by spaCy 

corpus = [words.doc2bow(doc) for doc in articles] 

 
# Save the intermediate data -- useful if we want to tweak model parameters and re-run later 

with open('../../Data/corpus_WSJ.pkl', 'wb') as f: 

    pickle.dump([corpus, words], f, protocol=pickle.HIGHEST_PROTOCOL) 

 
# Run the model 

lda = gensim.models.ldamodel.LdaModel(corpus, id2word=words, num_topics=10, passes=5, 

                                      update_every=5, alpha='auto', eta='auto') 

 
# Save the output 

lda.save('../../Data/lda_WSJ')
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Examining the LDA model

1. Load in the LDA model along with the corpus structure and the document names

▪ No need to do this if the model is still in memory

2. Examine a topic

## M:\Python_environments\Teaching_ML_v1\lib\site-packages\gensim\similarities\__init__.py:15: UserWarning: The gensim.similar
##   warnings.warn(msg)

lda = gensim.models.ldamodel.LdaModel.load('../../Data/lda_WSJ') 

with open('../../Data/corpus_WSJ.pkl', 'rb') as f: 

    corpus, words, doc_names = pickle.load(f)

# Parameters: topic number, number of words 

lda.show_topic(0, 10)

## [('economy', 0.011805763), ('china', 0.010748677), ('%', 0.009966104), ('bank', 0.009680315)]  
##  [('growth', 0.006861799), ('official', 0.0065729623), ('sunday', 0.0061146426), ('debt', 0.005799608)]  
##  [('u.s.', 0.005709917), ('market', 0.005480105)]

Note the weights associated with the words – some words are more meaningful than

others
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Examining the LDA model

3. See the top words in each topic

for i in range(0,10): 

    top = lda.show_topic(i, 10) 

    top_words = [w for w, _ in top ] 

    print('{}: {}'.format(i, ' '.join(top_words)))

## 0: economy china % bank growth official sunday debt u.s. market 
## 1: s&p school home public rating credit downgrade go firm store 
## 2: city de blasio president york % campaign candidate tax support 
## 3: company price car williams % u.s. end retiree plan open 
## 4: benefit security school obama district officer house president claim support 
## 5: % fund fee investor stock survey management york hedge u.s. 
## 6: work day city life people old plan retirement live take 
## 7: government fund play bank crisis president house financial people federal 
## 8: company service go ms. rule catsimatidis market mobile u.s. like 
## 9: market emerge group yard smith report jet investor bond %
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Examining the LDA model

▪ The  package produces a nice interactive map of the topicspyLDAvis

ldavis = pyLDAvis.gensim_models.prepare(lda, corpus, words, sort_topics=False) 

pyLDAvis.display(ldavis)

Click here to see the output
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STM

▪ STM (Structural Topic Modeling) adds two elements to the standard LDA approach:

1. Covariates can be included in determining the distribution of topics overall (“prevalence”)

2. Covariates can be included in determining the weights of words within topics (“content”)

This allows us to better examine the impact of characteristics on textual content

A worked out example is in the R code file
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Conclusion
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Wrap-up

▪ Can use them to more accurately compare textual similarity

▪ Can use them as inputs into a model

▪ Provides document-level insight into content distribution

Embeddings are useful in many contexts, but usually not as the final measure

LDA models work well as measures and can capture meaningful variation in text

STM provides more power for analyses interested in if textual content differs across

groups or treatments
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Python

▪ gensim

▪ numpy

▪ pandas

▪ pyLDAvis

▪ seaborn

▪ spacy

▪ tensorflow

▪ tensorflow_hub

R

▪ gender

▪ knitr

▪ reticulate

▪ revealjs

▪ quanteda

▪ readtext

▪ stm

▪ stmBrowser

▪ tidyverse

Packages used for these slides
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