
ML for SS: Neural Networks for Image

Classification

Session 12

Dr. Richard M. Crowley

 rcrowley@smu.edu.sg

http://rmc.link/

1

mailto:rcrowley@smu.edu.sg
http://rmc.link/

Overview

2 . 1

Papers

▪ Liu, Dzyabura and Mizik (2020)

▪ Examines brand image and how reflective profiles are of the brands

▪ Zhang, Lee, Singh and Srinivasan (2017)

▪ Examines how images in listings impact AirBNB properties

▪ Aubry, Kraeussl, Manso, and Spaenjers (2022)

▪ Estimation errors in art auction listings

2 . 2

Python

▪ Using Keras with Tensorflow for image

classification

1. Repeat our MNIST example using a proper

CNN

2. Using a premade GAN approach for even

higher performance

▪ Using a 80-class pretrained classifier

▪ Combining images and text with CLIP

R

▪ You can use Keras from R through RStudio’s

package

Technical Discussion

Focus on Neural Networks for images

Python’s support is a lot better here

2 . 3

MNIST: Extending to a CNN

3 . 1

How CNNs work

▪ CNNs use repeated convolution, usually looking at slightly bigger chunks of data each iteration

▪ But what is convolution? It is illustrated by the following graphs (from):

Wikipedia

Further reading

3 . 2

https://en.wikipedia.org/wiki/Convolution
http://colah.github.io/posts/2014-07-Understanding-Convolutions/

Setup

▪ The setup is similar, except we don’t need to reshape our X data

▪ We do need to add an additional dimension to our images though, which does for usnp.expand_dims()

(train_X, train_Y), (test_X, test_Y) = keras.datasets.mnist.load_data()

train_X = train_X.astype("float32") / 255

test_X = test_X.astype("float32") / 255

train_X = np.expand_dims(train_X, -1)

test_X = np.expand_dims(test_X, -1)

train_Y = keras.utils.to_categorical(train_Y, 10)

test_Y = keras.utils.to_categorical(test_Y, 10)

print('Train, X:%s, Y:%s' % (train_X.shape, train_Y.shape))

print('Test, X:%s, Y:%s' % (test_X.shape, test_Y.shape))

Train, X:(60000, 28, 28, 1), Y:(60000, 10)
Test, X:(10000, 28, 28, 1), Y:(10000, 10)

3 . 3

https://numpy.org/doc/stable/reference/generated/numpy.expand_dims.html

Build the model

▪ Here we use layers for the convolution

▪ The layers downsample (shrink) the data

▪ The layer reshapes the output to a vector

▪ Relu is essentially the same as a call option payoff (“hockey stick”)

▪ Softmax is to output the class with the highest weight (argmax)

Conv2D()

MaxPooling2D()

Flatten()

Parameters for the model

num_classes = 10

input_shape = (28, 28, 1)

model_cnn = keras.Sequential(

 [

 keras.layers.InputLayer(input_shape=input_shape),

 keras.layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),

 keras.layers.MaxPooling2D(pool_size=(2, 2)),

 keras.layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),

 keras.layers.MaxPooling2D(pool_size=(2, 2)),

 keras.layers.Flatten(),

 keras.layers.Dropout(0.5),

 keras.layers.Dense(num_classes, activation="softmax"),

]

)

model_cnn.summary()

3 . 4

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Flatten

Build the model

Model: "sequential_4"

Layer (type) Output Shape Param #
===
conv2d_2 (Conv2D) (None, 26, 26, 32) 320

max_pooling2d_2 (MaxPooling2 (None, 13, 13, 32) 0

conv2d_3 (Conv2D) (None, 11, 11, 64) 18496

max_pooling2d_3 (MaxPooling2 (None, 5, 5, 64) 0

flatten_1 (Flatten) (None, 1600) 0

dropout_2 (Dropout) (None, 1600) 0

dense_5 (Dense) (None, 10) 16010
===
Total params: 34,826
Trainable params: 34,826
Non-trainable params: 0

3 . 5

Fit the model and evaluate

▪ Fitting and evaluating is the same as before

batch_size = 128

epochs = 10

model_cnn.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

model_cnn.fit(train_X, train_Y, batch_size=batch_size, epochs=epochs, validation_split=0.1)

score = model_cnn.evaluate(test_X, test_Y, verbose=0)

print("Test loss:", score[0])

print("Test accuracy:", score[1])

Test loss: 0.0291274506598711
Test accuracy: 0.9897000193595886

3 . 6

What does the model get right?

3 . 7

What does the model get wrong?

3 . 8

Explaining a CNN

4 . 1

SHAP and TensorFlow

▪ Recall that Wich, Bauer and Groh (2020 WOAH) used to analyze a neural

network

▪ We can do the same!

▪ First, feed SHAP the model and some sample images

▪ Then we will select 1 of each digit that the CNN got correct and incorrect

shap.DeepExplainer()

images = np.random.randint(0, train_X.shape[0], size=25)

e = shap.DeepExplainer(model_cnn, train_X[images])

correct = [np.where((np.argmax(model_cnn.predict(test_X), axis=-1) == np.argmax(test_Y, axis=-1)) & \

 (np.argmax(test_Y, axis=-1) == i))[0][0] for i in range(0, 10)]

incorrect = [np.where((np.argmax(model_cnn.predict(test_X), axis=-1) != np.argmax(test_Y, axis=-1)) & \

 (np.argmax(test_Y, axis=-1) == i))[0][0] for i in range(0, 10)]

4 . 2

https://shap.readthedocs.io/en/latest/example_notebooks/image_examples/image_classification/Front%20Page%20DeepExplainer%20MNIST%20Example.html

SHAP for correct images

shap_values = e.shap_values(test_X[correct])

shap.image_plot(shap_values, -test_X[correct])

4 . 3

SHAP for incorrect images

shap_values = e.shap_values(test_X[incorrect])

shap.image_plot(shap_values, -test_X[incorrect])

4 . 4

Recent attempts at explaining CNNs

▪ Google & Stanford’s “Automated Concept-based Explanation”

4 . 5

https://venturebeat.com/2019/10/14/googles-ai-explains-how-image-classifiers-made-their-decisions/

Working with pretrained models

5 . 1

Where can I find pretrained models?

▪ There are many pretrained models on

▪ There are also models contained in the TensorFlow Github page:

▪

▪

▪ Google Brain also maintains a collection of models in

▪ PyTorch has

▪ Hugging Face maintains a

▪ ONNX maintains a collection of

TensorFlow Hub

Research models

Community models

trax

Other platforms also maintain model collections

PyTorch Hub

large collection of text models

framework-agnostic models

We will look at TensorFlow Hub today

5 . 2

https://tfhub.dev/
https://github.com/tensorflow/models/tree/master/research
https://github.com/tensorflow/models/tree/master/community
https://github.com/google/trax
https://pytorch.org/hub/
https://huggingface.co/models
https://github.com/onnx/models

MNIST off-the-shelf

▪ The model we will be using is GAN-based MNIST classifier

▪

▪ Use to load in a model

▪ Apply it to our testing data, same as before

▪ Just apply the model to our data

tfgan/eval/mnist/logits

hub.load()

model_tfgan = hub.load("https://tfhub.dev/tensorflow/tfgan/eval/mnist/logits/1")

logits = model_tfgan(test_X).numpy()

Check accuracy

sum(np.argmax(logits,-1) == np.argmax(test_Y, -1))

9822

5 . 3

https://tfhub.dev/tensorflow/tfgan/eval/mnist/logits/1
https://www.tensorflow.org/hub/api_docs/python/hub/load

Examine incorrect answers

5 . 4

Object detection off-the-shelf

6 . 1

COCO Classification problem

▪ There are a lot of options for this

▪ We will use a model trained on from CenterNet

▪

▪ This can detect 80 different object types, including people

COCO

centernet/hourglass_512x512

Full list of object types

labels = load_COCO_labelmap()

print(list(labels.values()))

['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter',
'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase',
'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle',
'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven',
'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
'teddy bear', 'hair drier', 'toothbrush']

6 . 2

https://cocodataset.org/#home
https://tfhub.dev/tensorflow/centernet/hourglass_512x512/1

What is Centernet/Hourglass?

▪ Centernet is an approach that’s intended to be used for drawing bounding boxes around objects

▪ From Zhou, Wang, and Krähenbühl (2019)

▪ The second stage in the classification problem for computer vision:

1. Detect objects

2. Locate them in the image

▪ Hourglass is a neural network structure based on CNNs

6 . 3

Using the model

centernet = hub.load('https://tfhub.dev/tensorflow/centernet/hourglass_512x512/1')

image1, image1_np = load_image('../Data/S6_1.jpeg')

image2, image2_np = load_image('https://pbs.twimg.com/media/E8ZIIKGXIAAipIh?format=jpg&name=small')

6 . 4

Applying the model

▪ We apply the model to the numpy matrix representation of the image

▪ result is just a numpy version of results

▪ This contains four types of information

results = centernet(image1_np)

result = {key:value.numpy() for key,value in results.items()}

print(result.keys())

dict_keys(['detection_scores', 'num_detections', 'detection_boxes', 'detection_classes'])

6 . 5

Applying the model

▪ The below functions are defined out of convenience

▪ The first function reports the top objects detected, based on weights assigned by the model

▪ The second function reports the highest probability that a person was included in the image as well as an

aggregate probability measure

def top_k_objects(result, k=3):

 top_scores = result['detection_scores'][0][0:k]

 top_ids = [labels[str(int(i))] for i in result['detection_classes'][0]][0:k]

 for row in zip(top_scores, top_ids):

 print('Object: ' + row[1] + ', score: ' + str(row[0]))

def prob_person(result):

 id_person = 1

 if len(np.where(result['detection_classes'][0] == 1)[0]):

 top_person_loc = np.where(result['detection_classes'][0] == 1)[0][0]

 people = np.where(result['detection_classes'][0] == 1)[0]

 max_prob = result['detection_scores'][0][top_person_loc]

 implied_prob = 1-np.prod(1-result['detection_scores'][0][people])

 print('Maximum probability of an object in the photo being a person: ' + str(max_prob) +\

 '\nProbability of at least 1 person: ' + str(implied_prob))

 else:

 print('No person found')

6 . 6

Analyzing the first image

top_k_objects(result, 3)

Object: tie, score: 0.56596684
Object: person, score: 0.45707893
Object: tv, score: 0.3345726

prob_person(result)

Maximum probability of an object in the photo being a p
Probability of at least 1 person: 0.5256033539772034

6 . 7

Applying to the second image

results = centernet(image2_np)

result = {key:value.numpy() for key,value in results.items()}

top_k_objects(result, 3)

Object: book, score: 0.7087656
Object: tv, score: 0.10406752
Object: book, score: 0.07747121

prob_person(result)

No person found

6 . 8

Video data

7 . 1

Working with video

▪ Video data is challenging – very storage intensive

▪ Ex.: Uber’s self driving cars would generate >100GB of data per hour per car

▪ Video data is very promising

▪ Think of how many task involve vision!

▪ Driving

▪ Photography

▪ Warehouse auditing…

▪ At the end of the day though, video is just a sequence of images

7 . 2

One method for video

▪ You

▪ Only

▪

▪ Once

YOLOv3

7 . 3

Video unavailable

Watch on YouTube

Video link

7 . 4

http://www.youtube.com/watch?v=MPU2HistivI
https://www.youtube.com/
https://www.youtube.com/watch?v=MPU2HistivI&feature=youtu.be

What does YOLO do?

▪ It spots objects in videos and labels them

▪ It also figures out a bounding box – a box containing the object inside the video frame

▪ It can spot overlapping objects

▪ It can spot multiple of the same or different object types

▪ The baseline model (using the COCO dataset) can detect 80 different object types

▪ There are other datasets with more objects

7 . 5

How does Yolo do it? Map of Tiny YOLO

Yolo model and graphing tool from lutzroeder/netron

7 . 6

https://github.com/lutzroeder/netron

How does Yolo do it?

Diagram from by Ayoosh KathuriaWhat’s new in YOLO v3

7 . 7

https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b

Where to get video data

▪ One extensive source is

▪ 6.1M videos, 3-10 minutes each

▪ Each video has >1,000 views

▪ 350,000 hours of video

▪ 237,000 labeled 5 second segments

▪ 1.3B video features that are machine labeled

▪ 1.3B audio features that are machine labeled

Youtube-8M

7 . 8

https://research.google.com/youtube8m/

Object detection in practice

▪ An algorithm like YOLO v3 is somewhat tricky to run

▪ Preparing the algorithm takes a long time

▪ The final output, though, can run on much cheaper hardware

▪ These algorithms just recently became feasible so their impact has yet to be felt so strongly

Think about how facial recognition showed up everywhere for images over the past few

years

7 . 9

A word on ethics of object detection

From Redmon and Farhadi (2018) [The YOLO v3 paper]

7 . 10

Combining images and text

8 . 1

Large language models + Images

▪ Multiple impactful models were released since 2021 that merge text and image processing into a single

model

▪ CLIP: Contrastive Language-Image Pre-training

▪ Pairs images with captions

▪ Stable Diffusion

▪ Image generation from text

These work by embedding images and text into the same embedding space

8 . 2

CLIP

▪ Code for this is available at: rmc.link/colab_clip

8 . 3

https://rmc.link/colab_clip

“A photo of the Singapore skyline including Marina

Bay Sands”

“Singapore Management University”

Stable diffusion: Content

▪ Code to implement as a Telegram bot: https://github.com/rmcrowley2000/StableDiffBot

8 . 4

https://github.com/rmcrowley2000/StableDiffBot

“Lithograph of a camel eating a pear” “A cartoon icon of a dog getting a hair cut.”

Stable diffusion: Style

▪ Code to implement as a Telegram bot: https://github.com/rmcrowley2000/StableDiffBot

8 . 5

https://github.com/rmcrowley2000/StableDiffBot

“Sustainability data” “A cavapoo enjoying a nice warm cup of tea”

Stable diffusion: Problems

▪ Code to implement as a Telegram bot: https://github.com/rmcrowley2000/StableDiffBot

8 . 6

https://github.com/rmcrowley2000/StableDiffBot

Stable diffusion: Compexity

▪ Code to implement as a Telegram bot:

“Tiny cute isometric living room in a cutaway box, so� smooth lighting, so� colors, purple and blue color

scheme, so� colors, 100mm lens, 3d blender render”

https://github.com/rmcrowley2000/StableDiffBot

8 . 7

https://github.com/rmcrowley2000/StableDiffBot

Conclusion

9 . 1

Wrap-up

▪ Useful for clustering our classifying images

▪ Opens up a lot of possibilities

▪ Such as looking at whether a person is wearing a mask or not (related to HW3)

▪ Opens up more empirical possibilities and new ways to use image data

Neural networks can accurate classify entire images

Neural networks can accurately classify or detect objects included in images

Neural networks can combine text and images into a measure

9 . 2

What remains

▪ Assignment 2

▪ New due date: November 17th

▪ You are welcome to submit earlier

▪ Assignment 3

▪ Shorter than the other assignments

▪ Focuses on image detection and classification

▪ It’s all done on Colab so that you don’t need to worry about getting pytorch to work locally

▪ Due: December 6th

▪ Proposal

▪ Due: December 6th

Can’t extend past December 6th due to grade deadlines

9 . 3

Packages used for these slides

Python

▪ matplotlib

▪ numpy

▪ pandas

▪ PIL

▪ requests

▪ seaborn

▪ shap

▪ tensorflow

▪ tensorflow_gan

▪ tensorflow_hub

▪ transformers

9 . 4

References

▪ Aubry, Mathieu, Roman Kraeussl, Gustavo Manso, and Christophe Spaenjers. “Biased auctioneers.” Journal

of Finance, Forthcoming (2022).

▪ Liu, Liu, Daria Dzyabura, and Natalie Mizik. “Visual listening in: Extracting brand image portrayed on social

media.” Marketing Science 39, no. 4 (2020): 669-686.

▪ Redmon, Joseph, and Ali Farhadi. “YOLOv3: An Incremental Improvement.” arXiv, April 8, 2018.

.

▪ Yasrab, Robail, Naijie Gu, and Xiaoci Zhang. “An encoder-decoder based convolution neural network (CNN)

for future advanced driver assistance system (ADAS).” Applied Sciences 7, no. 4 (2017): 312.

▪ Zhang, Shunyuan, Dokyun DK Lee, Param Vir Singh, and Kannan Srinivasan. “How much is an image worth?

Airbnb property demand estimation leveraging large scale image analytics.” Airbnb Property Demand

Estimation Leveraging Large Scale Image Analytics (May 25, 2021) (2021).

▪ Zhou, Xingyi, Dequan Wang, and Philipp Krähenbühl. “Objects as points.” arXiv preprint arXiv:1904.07850

(2019).

http://arxiv.org/abs/1804.02767

9 . 5

http://arxiv.org/abs/1804.02767

