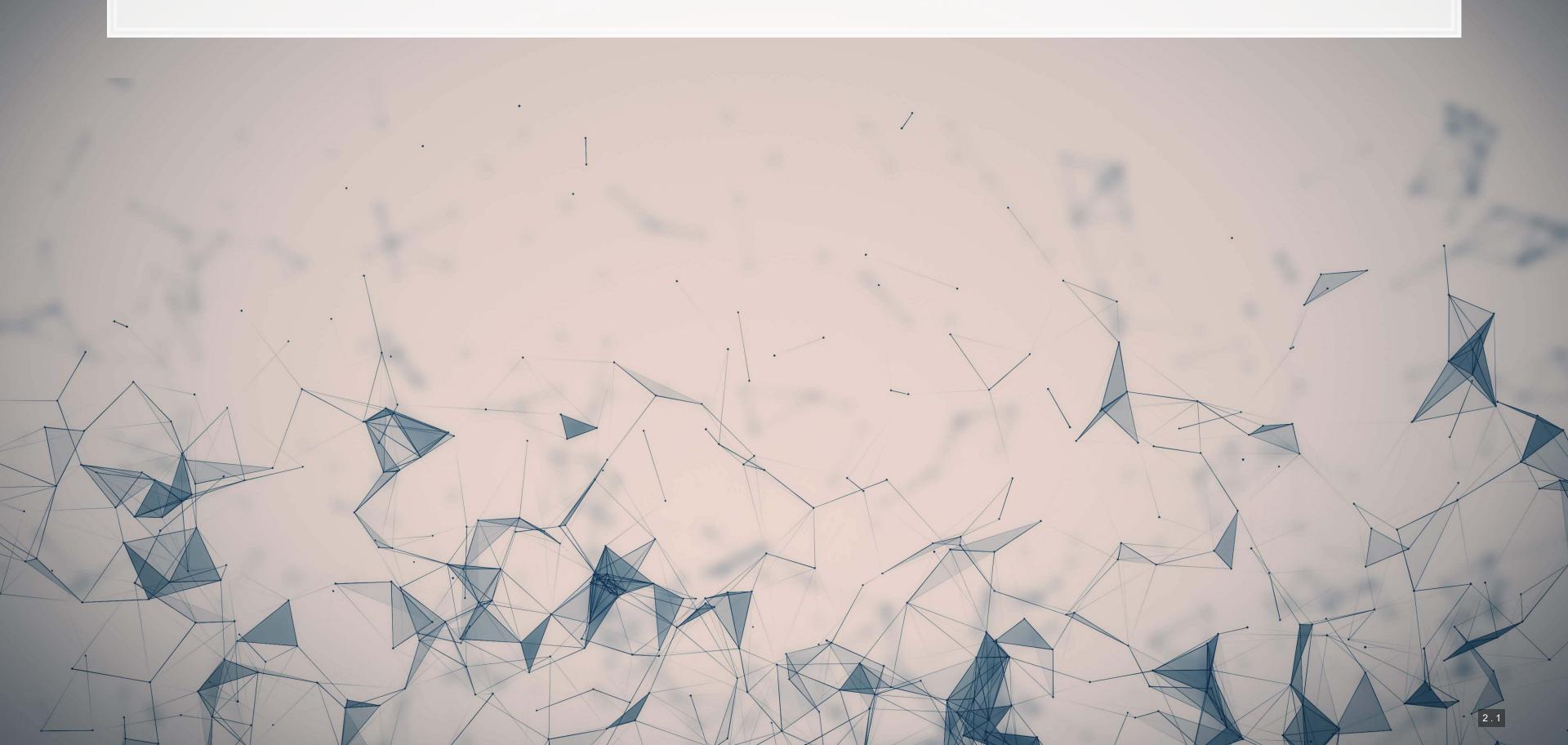
ML for SS: Classification

Session 2

Dr. Richard M. Crowley

rcrowley@smu.edu.sg http://rmc.link/

Overview



Papers

Paper 1: Purda and Skillicorn 2015

- A fairly approachable overview of ML methods in economics
- The points the paper makes are applicable broadly in any archival/empirical discipline

Paper 2: Chahuneau et al 2012

- An application of LASSO to a context most should be familiar with: restaurant menus
- Easy to motivate LASSO in this paper more variables than observations!

Technical Discussion: Classification

- SVM
- Tree-based algorithms

Python

- Using sklearn for SVM
- Using xgboost for XGBoost
- Using sklearn for hyperparameter tuning

R

- Using caret for SVM
- Using xgboost for XGBoost
- Using tidymodels and related packages for hyperparameter tuning

Python is generally a bit stronger for these topics.

There is a fully worked out solution for each language on my website, data is on eLearn.

Main application: Binary problem

- Idea: Using the same data as in Application 1, can we predict instances of intentional misreporting?
- Testing: Predicting 10-K/A irregularities using finance, textual style, and topics

Dependent Variable

Intentional misreporting as stated in 10-K/A filings

Independent Variables

- 17 Financial measures
- 20 Style characteristics
- 31 10-K discussion topics

This test mirrors a subset of Brown, Crowley and Elliott (2020 JAR)

Same problem and data as last week's binary problem

Main application: A Linear problem

- Idea: Discussion of risks, such as as foreign currency risks, operating risks, or legal risks should provide
 insight on the volatility of future outcomes for the firm.
- Testing: Predicting future stock return volatility based on 10-K filing discussion

Dependent Variable

Future stock return volatility

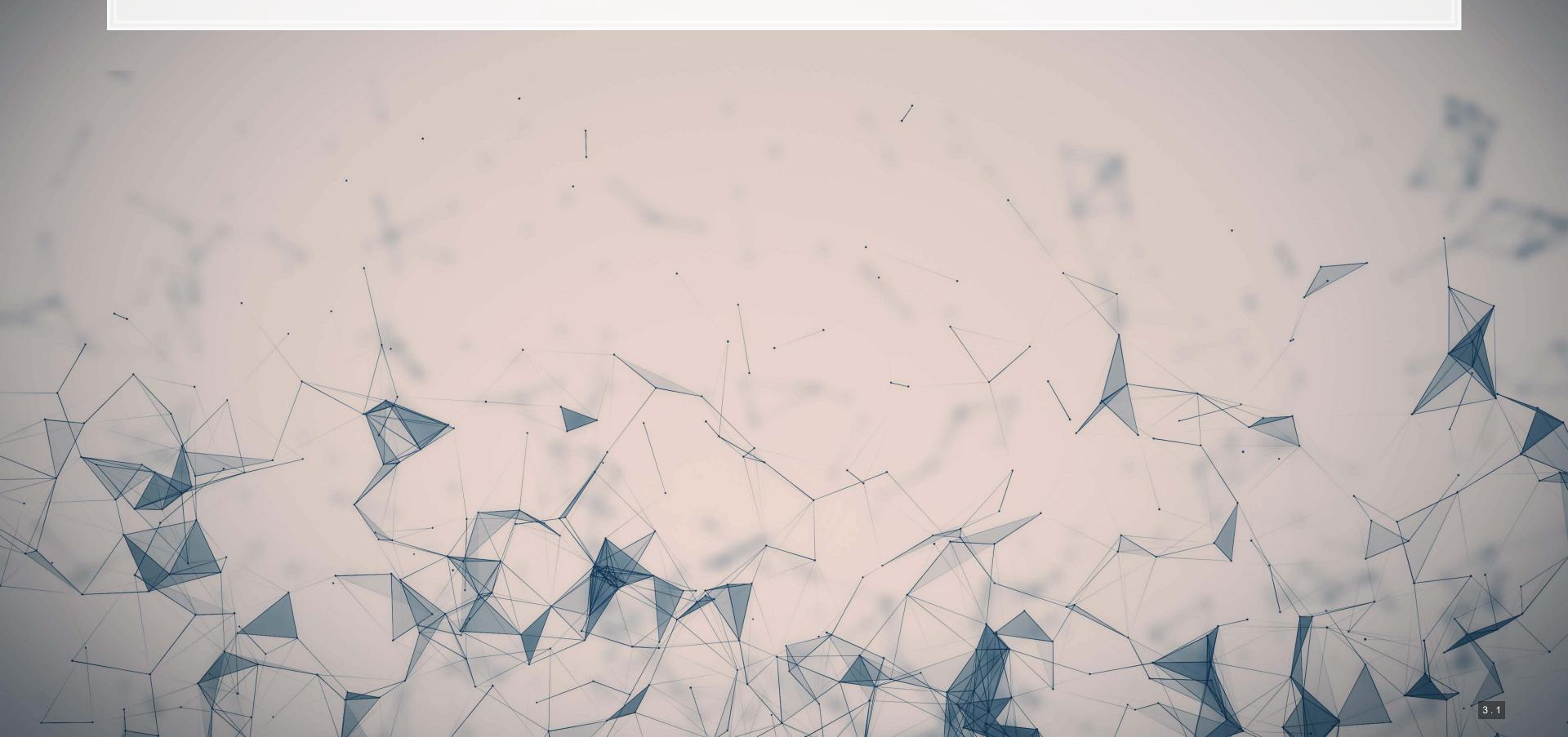
Independent Variables

 A set of 31 measures of what was discussed in a firm's annual report

This test mirrors Bao and Datta (2014 MS)

Same problem and data as last week's linear problem

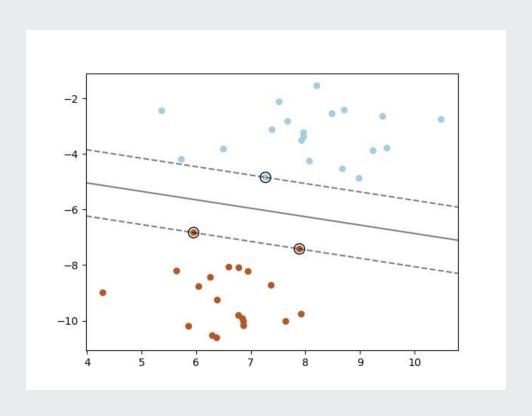
SVM: Support Vector Machine



What is SVM?

Simpler case: Binary Classification

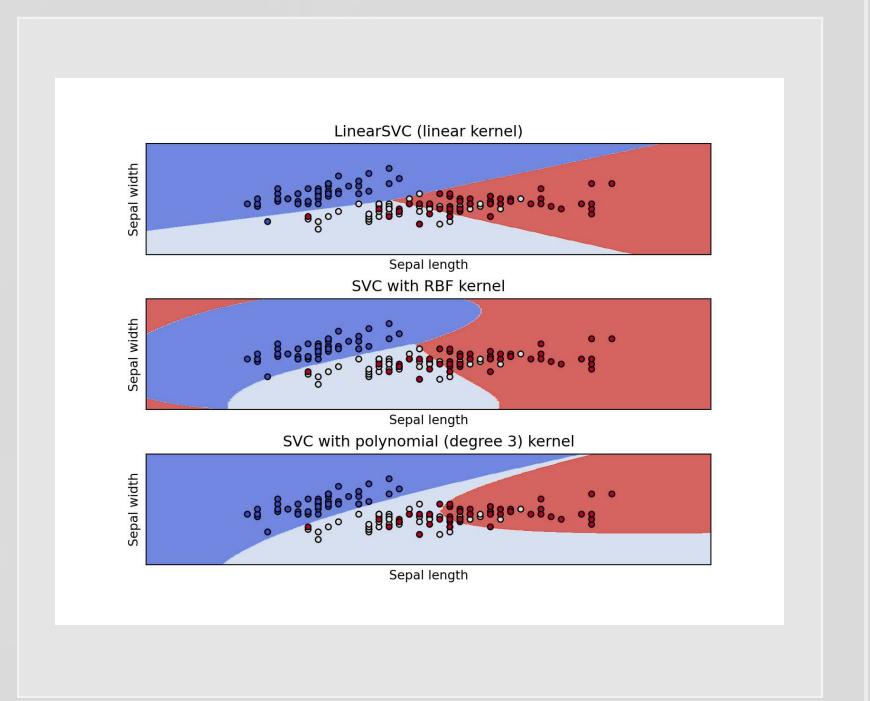
- SVM-type algorithms generally focus on separability under some tolerance for error
 - This is quite different from our regression approaches
 - Regression focuses on minimizing an error function
- Note how in this example the points that matter are those that are on the error boundaries
- The rest of the points aren't affecting the outcome much
 - You could shift them around on their respective side of the line with minimal impact



From the sklearn documentation

What are the benefits of SVM?

- 1. Non-linear kernels
 - SVM can be linear or non-linear
 - 3 examples to the right, adapted from the sklearn documentation
- 2. Different objective function than regression
 - Fits better with classification, conceptually
- 3. Can work with non-numeric data (text, images, graphs)



What are the costs of SVM?

- 1. Doesn't work well on noisy data
- 2. Can be slow to train on datasets with many observations
 - More than 10,000 observations leads to a lot of slow down for non-linear kernels
- 3. Difficult to interpret model when using a non-linear kernel
- 4. Can be difficult to pick an optimal kernel

Implementing SVM in python

- For this we will use sklearn again
- To keep things simple and interpretable, we will use linear kernels in these examples

Binary classification

- Fast linear model:
 - sklearn.svm.LinearSVC()
- General model:

0 0 0 0 0

sklearn.svm.SVC()

Regression

- Fast linear model:
 - sklearn.svm.LinearSVR()
- General model:
 - sklearn.svm.SVR()
- Both linear methods have a hyperparameter C which controls the amount of regularization (inversely)
 - We can tune this using sklearn as well!

00000

00000000000

Why are there two ways each to run a linear SVM model?

- The two ways use different backends
 - The LinearSV methods use a backend called liblinear
 - The SV methods use a backend called libsvm
- liblinear is faster but only supports linear kernels
 - Time to run is roughly linear in the number of observations
 - libsvm is fast on small samples, but time increase for additional observations is polynomial
- The results aren't quite the same across backends
 - liblinear uses a penalized intercept while libsvm does not
 - liblinear optimizes a "squared hinge" loss function while libsvm optimizes "hinge" loss

$$hinge(x,y) = \max(0,1-y\cdot f(x)), \quad y\in\{-1,+1\}, \quad f(x)\in\mathbb{R}$$

Both developed out of National Taiwan University, and both maintained by the same professor

Implementing LinearSVC for irregularity detection

- To train a simple linear SVM classifier, we can call svm.LinearSVC() pretty much the same way that we used linear_model.Lasso() earlier
 - Note: The dual=False option is to maintain efficiency when the number of observations is great than the number of variables

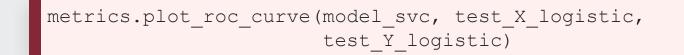
```
model_svc = svm.LinearSVC(C=1, dual=False)
model_svc.fit(train_X_logistic, train_Y_logistic)
```

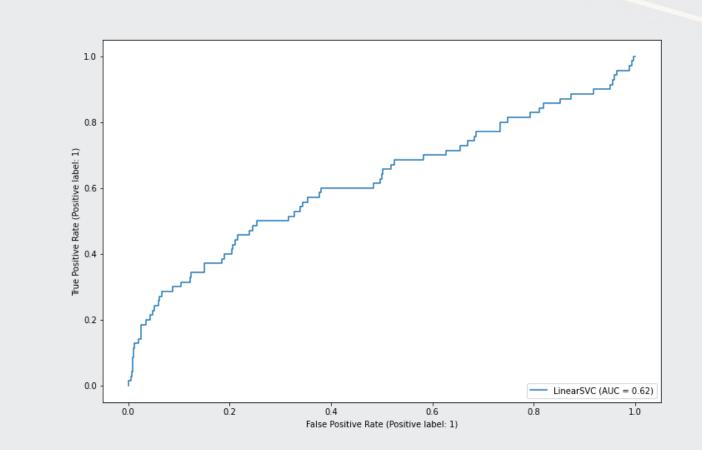

No regression table built in, but we can visualize it with coefplot ()

coefplot(vars_logistic, model_svc.coef_)

Visualizing LinearSVC for irregularity detection





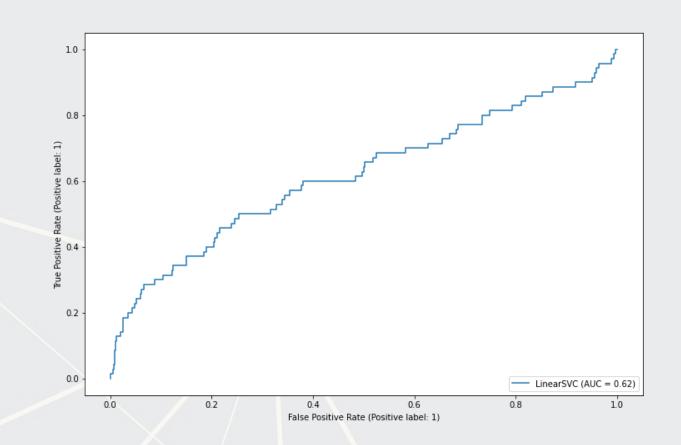


Optimizing the C parameter

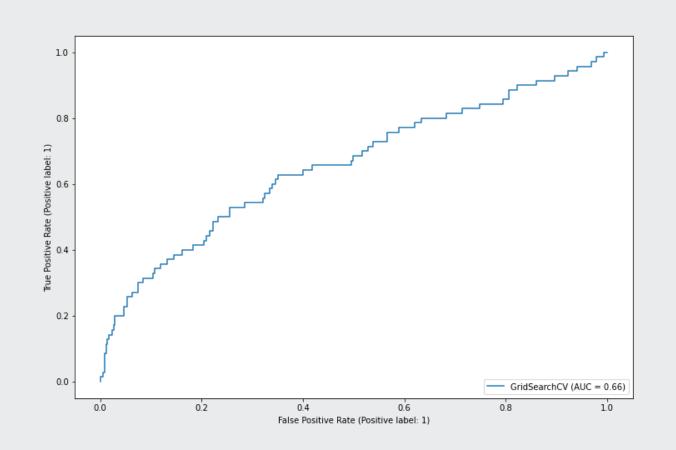
[1] "The best parameter is C=0.01 with a score of 0.99"

Comparison pre- vs post-optimization: ROC

Unoptimized

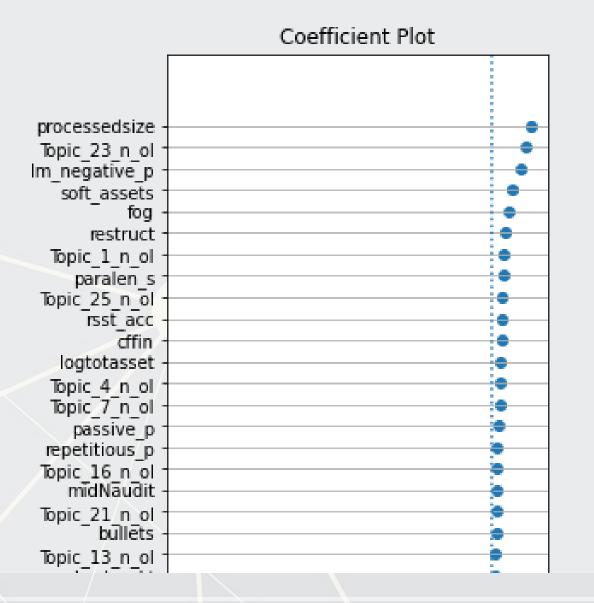


Optimized



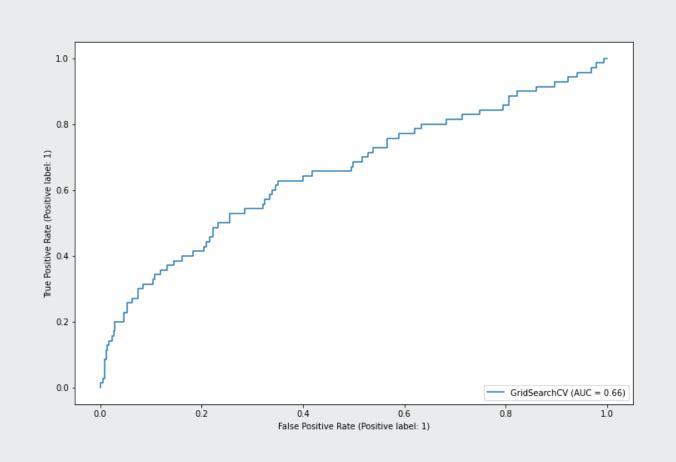
Comparison pre- vs post-optimization: Coefficients

coefplot(vars_logistic, model_svc.coef_)



Optimized

coefplot(vars_logistic, grid_svc.best_estimator_.coef_)



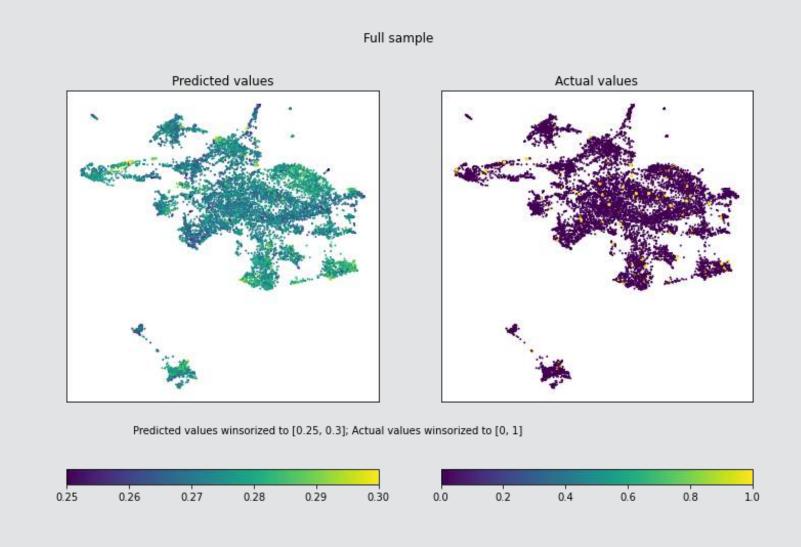
Visualizing with UMAP

What is UMAP?

- UMAP stands for Uniform Manifold Approximation and Projection for Dimension Reduction
 - From Leland, Healy and Melville (2018) (2k+ cites already)
- It is useful for dimensionality reduction, like PCA
 - We will use it to reduce 68 dimensions down to 2
- It is useful for plotting 2 dimensional representations of high dimensional data by maintaining local distance structures, like t-SNE
 - Unlike t-SNE, it is efficient to run

UMAP essentially uses Reimannian manifolds and tries to maintain geodesic distance around a point – it is well supported theoretically

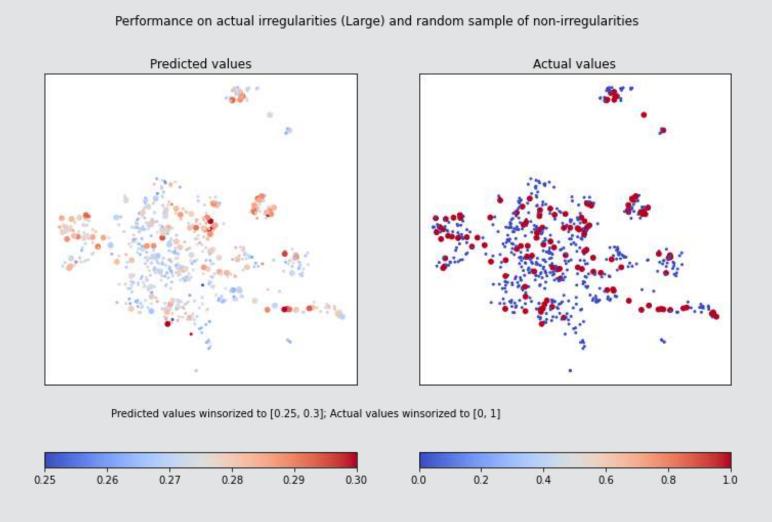
Visualizing what SVM is doing using UMAP



The data is really noisy

Visualizing what SVM is doing using UMAP

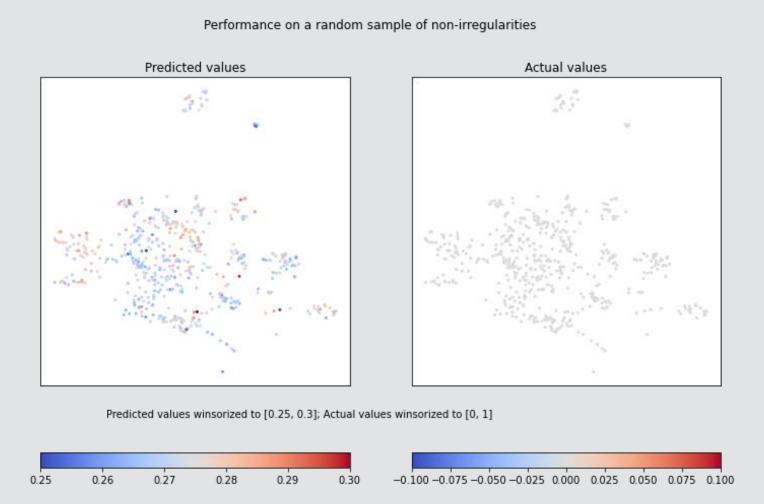
```
umap_compare_svm(train_X_logistic, train_Yhat_logistic, train_Y_logistic, clip=[[0.25, 0.3], [0, 1]], cmap='coolwarm', binary=
subset=((train_Y_logistic==1) | (np.random.rand(len(train_Y_logistic))<0.05)),
title="Performance on actual irregularities (Large) and random sample of non-irregularities")</pre>
```



Type I errors are pretty minimal – the algorithm is rarely very off

Visualizing what SVM is doing using UMAP

```
umap_compare_svm(train_X_logistic, train_Yhat_logistic, train_Y_logistic, clip=[[0.25, 0.3], [0, 1]], cmap='coolwarm', binary=subset=((train_Y_logistic==0) & (np.random.rand(len(train_Y_logistic))<0.05)), title="Performance on a random sample of non-irregularities")
```



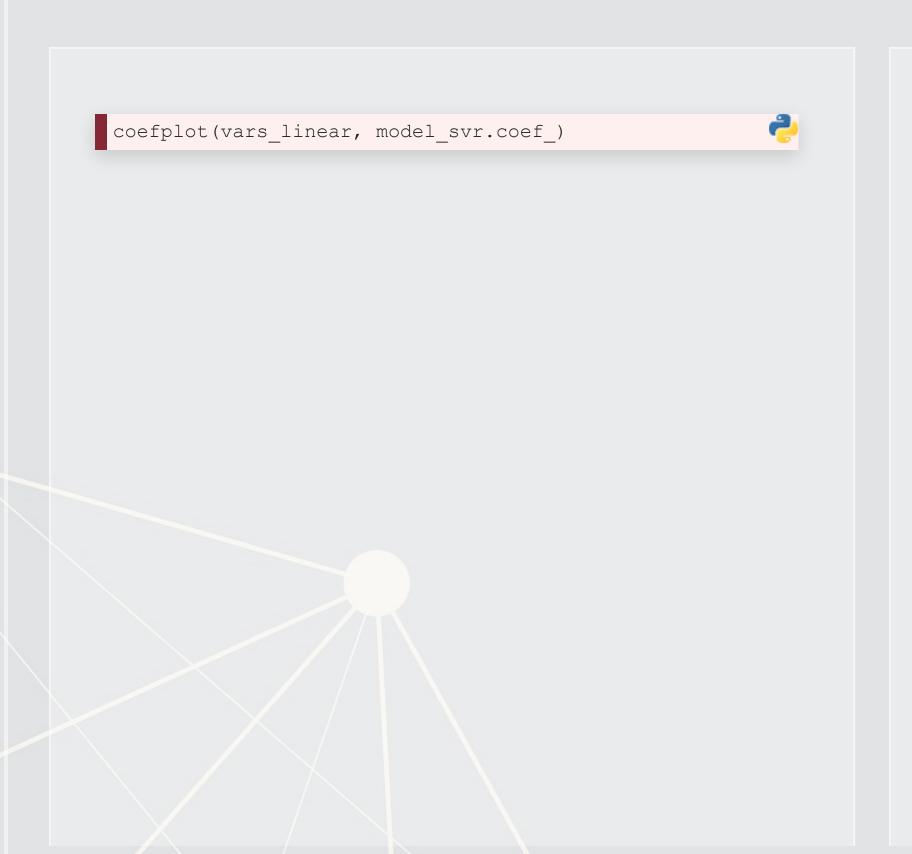
There are definitely some combinations of parameters that are consistently leading to Type II errors

SVM for regression: SVR

```
model_svr = svm.LinearSVR(C=1, dual=False,
    loss='squared_epsilon_insensitive')
model_svr.fit(train_X_linear, np.ravel(train_Y_linear))
```

[1] "The best parameter is C=0.0001 with a score of 0.

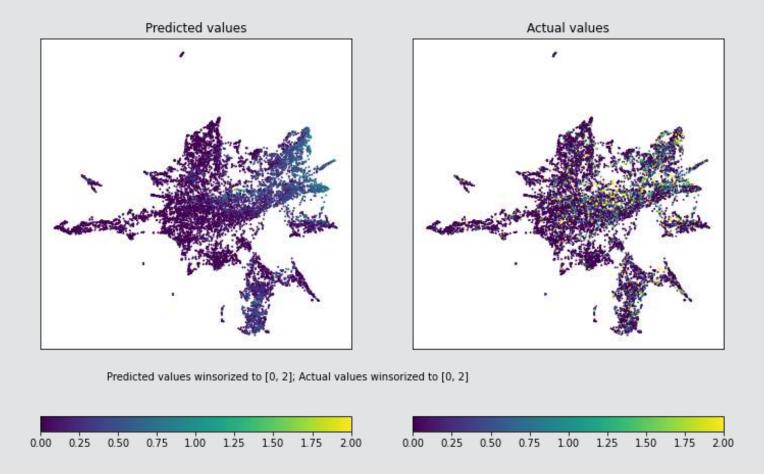
SVR coefficients



coefplot(vars_linear, grid_svr.best_estimator_.coef_)

Visualizing SVR with UMAP

train_Yhat_linear = model_svr.predict(train_X_linear)
umap_compare_svm(train_X_linear, train_Yhat_linear, train_Y_linear, clip=[[0, 2], [0, 2]])



Here we see some clusters that are indeed higher in volatility being picked up correctly by SVM

- We can use tidymodels to handle training of the model
 - It will offload the model computation to kernlab
- tidymodels is a collection of packages intended to serve as a spiritual successor to caret
- It is a collection of packages aimed at making ML workflows easier in R, much like what Scikit-learn does for python
 - parsnip, recipes, rsample, dials, yardstick, etc.
- It is still rough around the edges, but it is fairly functional

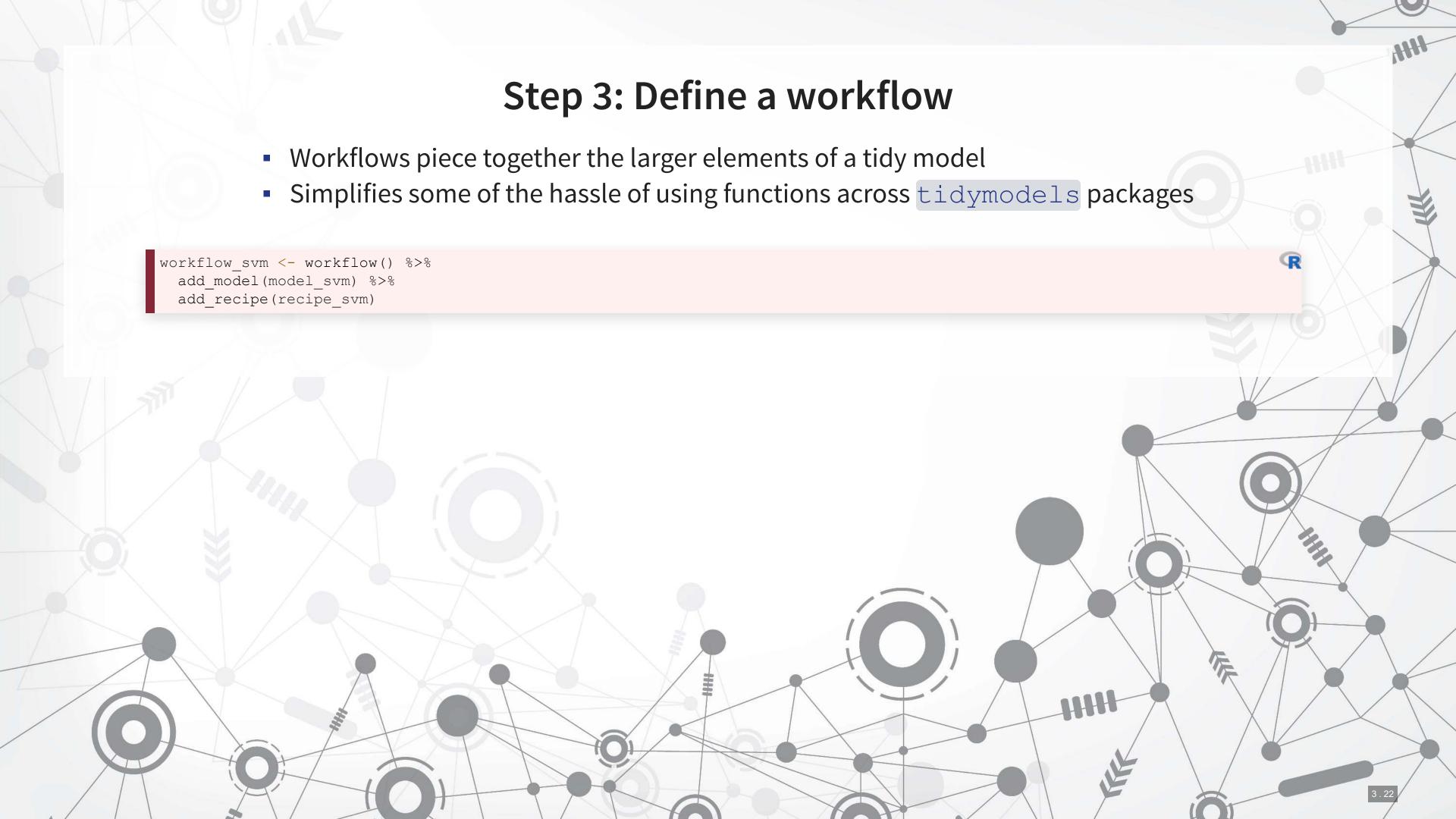
Step 1: Make a recipe for your data

- Recipes serve as a guide on how to preprocess your data
 - There are many possible steps
- This keeps preprocessing quick and transparent

Step 2: Define your ML model

- There are many built-in models in tidymodels
- For SVM, we will use svm linear
 - Note how we specify tune () to the cost parameter
 - This is how we tell it where the grid search will go later!
- Setting mode to classification ensures we use something like SVC rather than SVR
- We can change the backend package by setting a different engine, with minimal changes needed to the rest of our code!

```
model_svm <-
   svm_linear(cost = tune()) %>%
   set_mode("classification") %>%
   set_engine("kernlab")
```



Step 4: Tie up loose ends • We need to set a cross validation: vfold_cv() • We need to specify the metric to track: metric_set() • We need to set our grid search's grid: expand_grid() folds_svm <- vfold_cv(train, v=10) # from rsample metric_svm = metric_set(roc_auc) # from yardstick grid_svm <- expand_grid(cost = exp(seq(-10,0, length.out=10)))</pre>

Step 5: Run the model

We have everything we need to run the model

- tune_grid() will execute the workflow:
 - 1. Standardize our training data
 - 2. Run the model
 - 3. Apply 10-fold CV to it
 - 4. Track ROC AUC for each model run
- The resulting fitted model can then be analyzed

See which model was the best

```
## cost .metric .estimator mean n std_err .config

## 1 4.189421e-04 roc_auc binary 0.6369609 10 0.02587312 Preprocessor1_Model03

## 2 1.379128e-04 roc_auc binary 0.6157198 10 0.02662090 Preprocessor1_Model02

## 3 4.539993e-05 roc_auc binary 0.6060063 10 0.03195342 Preprocessor1_Model01

## 4 3.865920e-03 roc_auc binary 0.6053433 10 0.02400210 Preprocessor1_Model05

## 5 1.174363e-02 roc_auc binary 0.5987661 10 0.02568714 Preprocessor1_Model06
```

show_best(svm_fit_tuned, metric = "roc_auc")

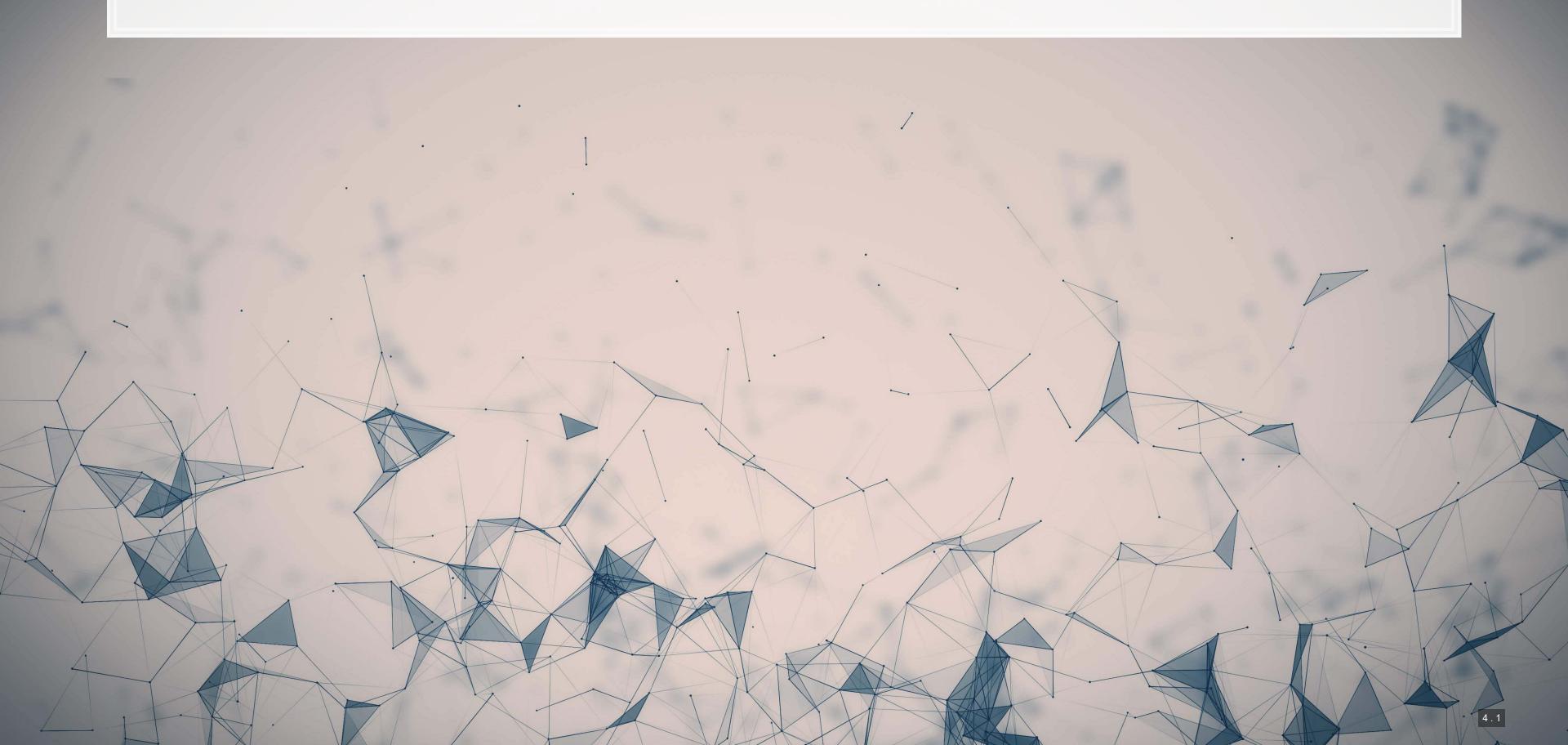
Step 6: Re-run the model with the full data

```
svm_final <- workflow_svm %>%
  finalize_workflow(
  select_best(svm_fit_tuned, "roc_auc")
) %>%
  fit(train)
```

You need to do this in order to be able to predict with the model

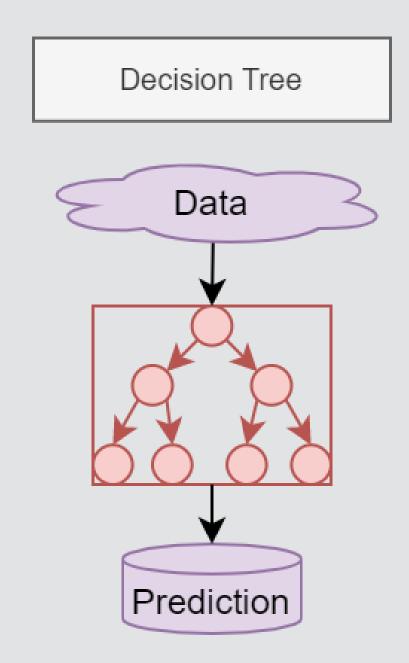
- The svm_final object can be used with the standard predict () function
 - The svm fit tuned object could not!

Tree-based models



Simplest model: Decision tree

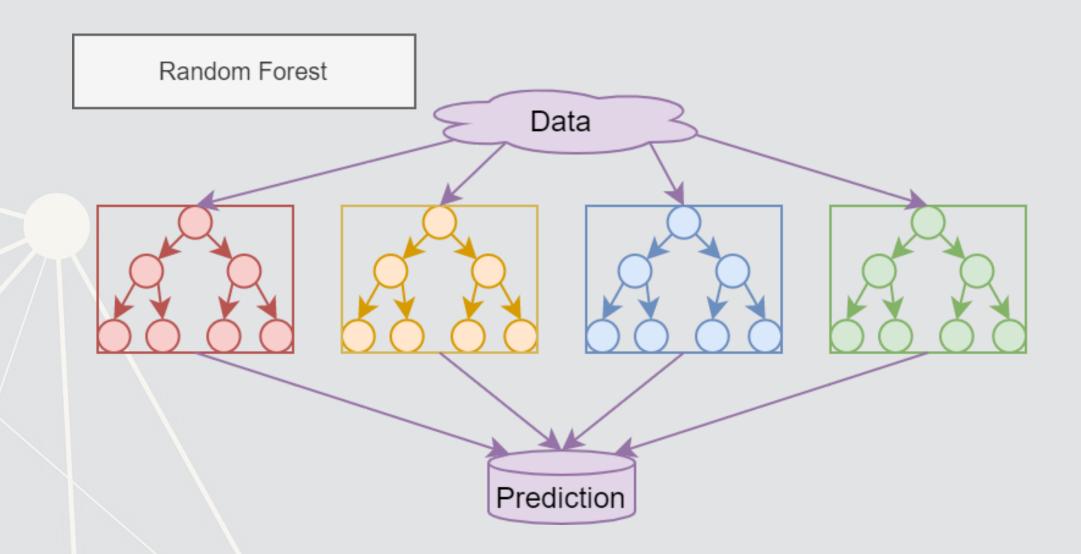
- A simple decision tree behaves as we saw in Mullainathan and Spiess (2017 JEP)
- It provides a set of conditions to traverse to go from data to the estimated output
- In order to capture a complex problem, many layers are needed



Simple model: Random Forest

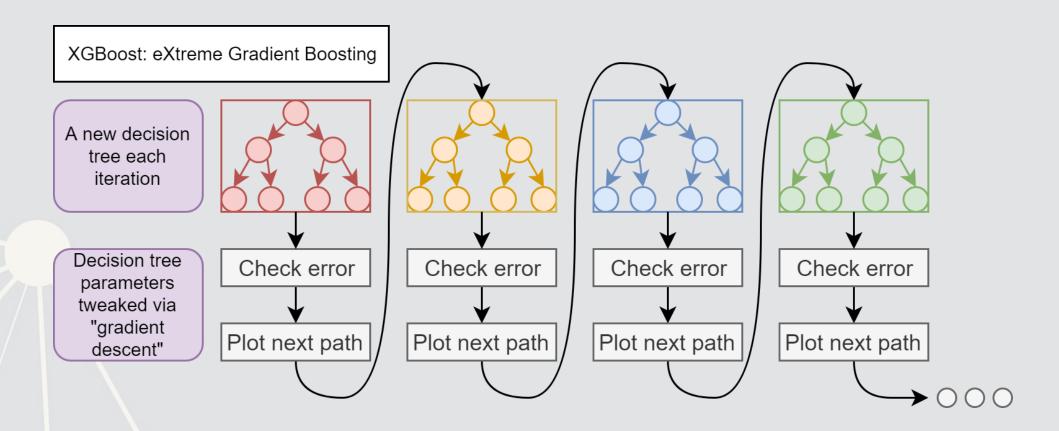
- 1 decision tree is OK, but...
 - There is a lot of error unless the tree is complex
 - Successive iterations of trees can be very different from one another

Run a bunch of decision trees with less depth each and average them (but don't give them all exactly the same data)



What is XGBoost

- eXtreme Gradient Boosting
- A simple explanation:
 - 1. Start with 1 or more decision trees & check error
 - 2. Make more decision trees & check error
 - 3. Use the difference in error to guess a another model
 - 4. Repeat #2 and #3 until the model's error is stable



XGBoost: Foundations

- XGBoost has its roots in AdaBoost (Adaptive Boosting)
 - Adaboost uses a sequence of weak learners to build a model
 - Combats against overfitting, and the sequence of individually weak models converges to be a strong learner
 - The convergence part is mathematically proven!
 - XGBoost isn't as theoretically founded as Adaboost
 - It trades off some mathematical rigor for flexibility and empirical performance

Benefits of XGBoost

- Tree based
 - Inherently non-parametric (no assumptions on data distribution)
- Non-linear but still somewhat interpretable
- Robust to noise
- Can handle missing or categorical variables (R implementation only)
- Robust to overfitting (somewhat)

As compared to other tree algorithms

- Implements gradient descent to sequentially grow trees
- Parallelizable (so it can be computed efficiently)
- Supports regularization

Drawbacks of XGBoost

So

many

hyperparameters.

- This makes it difficult to train a model well
 - But it is hard to beat a well trained XGBoost model with anything else we have discussed thus far
- It may technically be interpretable, but interpreting a big model is still difficult
- Like most tree-based methods, it struggles with extrapolation that is outside the bounds of its input data.

XGBoost parameters

```
param = {
    'booster': 'gbtree',
                               # default -- tree based
   'nthread': 8,
                                     # number of threads to use for parallel processing
    'objective': 'binary:logistic', # binary, output probabilities
    'eval metric': 'auc',
                                     # maximize ROC AUC
    'eta': 0.3,
                                   # shrinkage; [0, 1], default 0.3
    'max depth': 6, # maximum depth of each tree; default 6
    'gamma': 0.1,
                                     # set above 0 to prune trees, [0, inf], default 0
   'min_child_weight': 1,  # higher leads to more pruning of tress, [0, inf], default 1
'subsample': 0.8,  # Randomly subsample rows if in (0, 1), default 1
   'colsample_bytree': 0.8,  # Randomly subsample variables if in (0, 1), default 1
    'random state': 70
num round = 30
```

A lot of parameters – we can optimize all from eta to colsample_bytree and the number of rounds

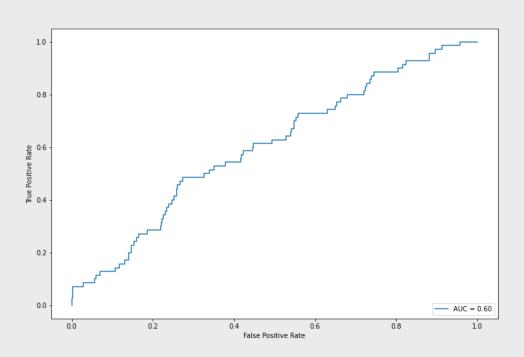
Running XGBoost

We use xgb.train() to fit the model

```
dtrain = xgb.DMatrix(train_X_logistic, label=train_Y_logistic, feature_names=vars_logistic)
dtest = xgb.DMatrix(test_X_logistic, label=test_Y_logistic, feature_names=vars_logistic)
model_xgb_logistic = xgb.train(param, dtrain, num_round)
```

print('AUC is 0.6040163976960199')

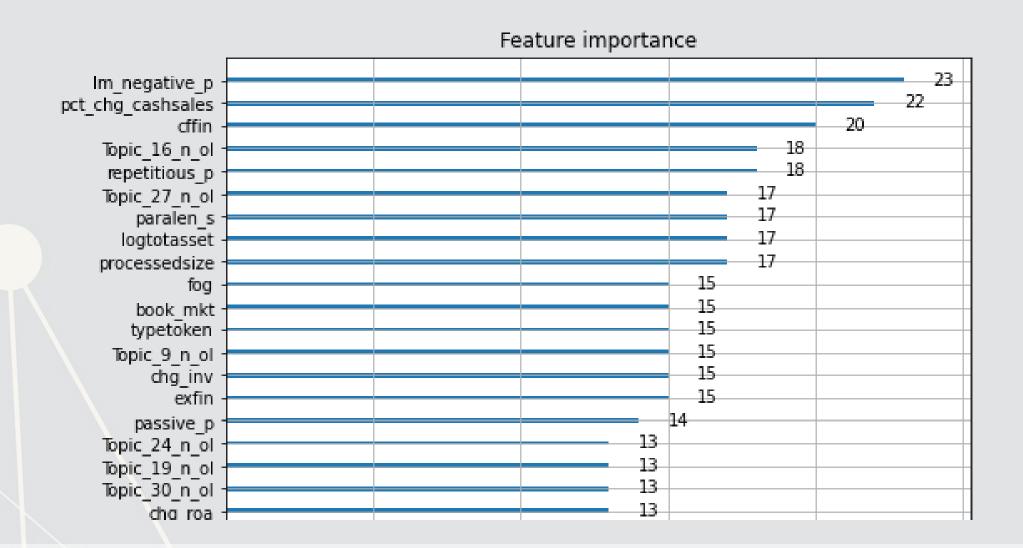
[1] "AUC is 0.6040163976960199"



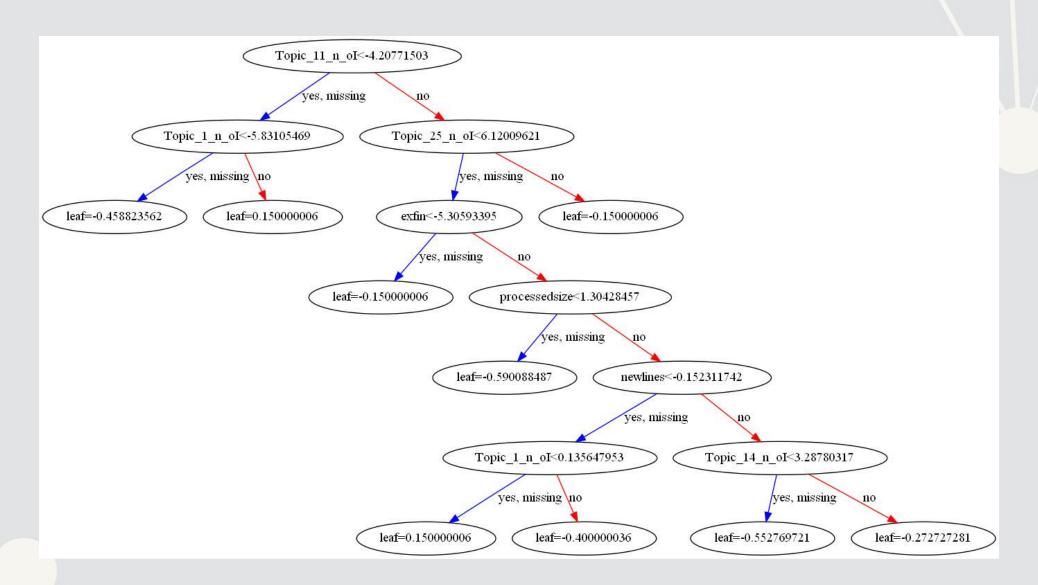
Analyzing the model: Importance plot

- The importance plot shows which variables have the greatest impact on the model
 - A higher number = more important
- In this case, we see a mix of sentiment, financial, topic, and grammatical measures in the top 5 measures

```
fig, ax = plt.subplots(figsize=(8,16))
xgb.plot_importance(model_xgb_logistic, ax=ax)
```

Analyzing the model: Seeing the trees



One of 30 trees in the model

What about optimizing all the parameters?

This can be done – details are in the python code file

Using R to run XGBoost

- The same package, xgboost works for this in R
 - The level of support across R and python is more or less the same

XGBoost in python

- Can solve numeric problems well
- Can do GPU computations for some models
- Can run larger-than-memory computations
 - Good for big data sets!

XGBoost in R

- Can solve numeric problems well
- Can also handle categorical inputs

• Use tidymodels just like we did for SVM, but specify tune () for each parameter you want to tune

Running CV XGBoost in R

Wrap-up

SVM: Support Vector Machine

- Good for classification
- Can be good for regression in some contexts
- Key: Optimizes separability under some tolerance for error

Tree models

- Strong classification performance
- Can handle sparsity well
- A somewhat interpretable yet non-linear class of models

Packages used for these slides

Python

- matplotlib
- numpy
- pandas
- scikit-learn
- xgboost

umap-learn

000000

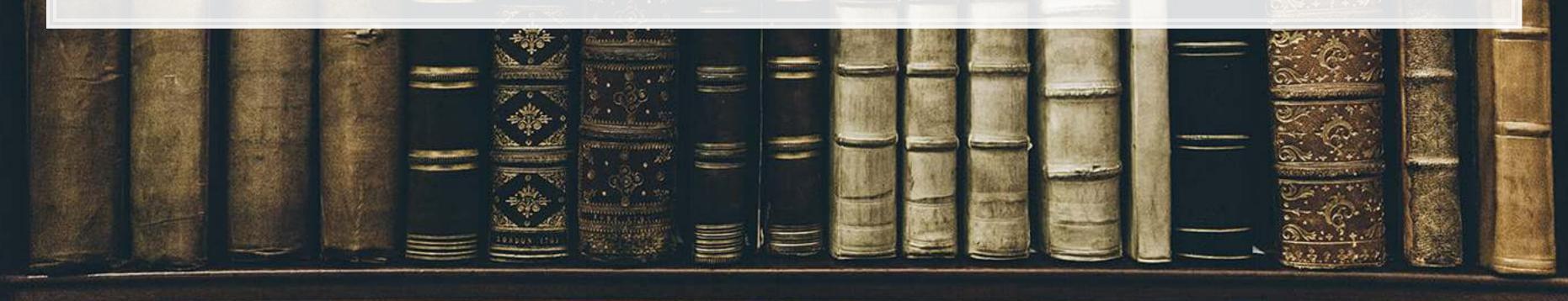
R

- caret
- kableExtra
- kernlab
- knitr
- reticulate
- revealjs
- ROCR
- tidymodels
- tidyverse
- xgboost

0

References

- Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794. 2016.
- Deryugina, Tatyana, Garth Heutel, Nolan H. Miller, David Molitor, and Julian Reif. "The mortality and medical costs of air pollution: Evidence from changes in wind direction." American Economic Review 109, no. 12 (2019): 4178-4219.
- Mullainathan, Sendhil, and Jann Spiess. "Machine learning: an applied econometric approach." Journal of Economic Perspectives 31, no. 2 (2017): 87-106.
- Purda, Lynnette, and David Skillicorn. "Accounting variables, deception, and a bag of words: Assessing the tools of fraud detection." Contemporary Accounting Research 32, no. 3 (2015): 1193-1223.



Custom code

```
# Replication of R's coefplot function for use with sklearn's linear and logistic LASSO
def coefplot(names, coef, title=None):
   # Make sure coef is list, cast to list if needed.
   if isinstance(coef, np.ndarray):
       if len(coef.shape) > 1:
           coef = list(coef[0])
       else:
           coef = list(coef)
   # Drop unneeded vars
   data = []
   for i in range(0, len(coef)):
       if coef[i] != 0:
           data.append([names[i], coef[i]])
   data.sort(key=lambda x: x[1])
   # Add in a key for the plot axis
   data = [data[i] + [i+1] for i in range(0,len(data))]
   fig, ax = plt.subplots(figsize=(4,0.25*len(data)))
   ax.scatter([i[1] for i in data], [i[2] for i in data])
   ax.grid(axis='y')
   ax.set(xlabel="Fitted value", ylabel="Residual", title=(title if title is not None else "Coefficient Plot"))
   ax.axvline(x=0, linestyle='dotted')
   ax.set_yticks([i[2] for i in data])
   ax.set_yticklabels([i[0] for i in data])
   return ax
```