
ML for SS: Basic NLP and Sentiment

Session 4

Dr. Richard M. Crowley
 rcrowley@smu.edu.sg

http://rmc.link/

1

mailto:rcrowley@smu.edu.sg
http://rmc.link/

Overview

2 . 1

Papers

▪ One of the most influential papers on sentiment in finance, accounting, and business

▪ A rigorous implementation of dictionary methods

▪ A seminal paper demonstrating traditional supervised sentiment classification

▪ A supervised text classification approach using textbooks and news articles to supervise

Paper 1: Loughran and McDonald (2011 JF)

Paper 2: Antweiler and Frank (2005 JF)

Paper 3: Hassan, Hollander, Van Lent and Tahoun (2019 QJE)

2 . 2

Python

▪ Working with text

▪ Pattern matching (regex)

▪ Parsing text

▪ Dictionary sentiment

▪ Hassan et al. (2019 QJE) measure

R

▪ Use for most things

▪ Introduces a approach to text

▪ Use for pattern matching

▪ Use for simple measures

▪ Sentiment

▪ Readability

Technical Discussion: Basic text analytics

tidytext

dplyr

stringr

quanteda

Python is generally a bit stronger for these topics, unless your data is clean and fairly

small.

There is a fully worked out solution for using python, data and dictionaries are on eLearn.

2 . 3

https://github.com/juliasilge/tidytext
https://dplyr.tidyverse.org/index.html
https://stringr.tidyverse.org/
https://quanteda.io/

Main application: Analyzing Wall Street Journal articles

▪ On eLearn you will find a full issue of the WSJ in text format

1. Regular expressions

2. Loughran and McDonald 2011 JF sentiment

3. Hassan et al. 2019 QJE supervised classification

We will not do any specific text-based analyses today, but we will do some simple

measure construction

2 . 4

Getting started with text

3 . 1

Special characters in python

▪ \t is tab

▪ \r is newline (files from Macs)

▪ \r\n is newline (files from Windows)

▪ \n is newline (files from *nix-based systems)

▪ This is the usual convention used in data sets

▪ \' is an explicit single quote – it always works

▪ E.g., '\'Single\'' works, though so would "'Single'"

▪ \" is an explicit double quote – it always works

▪ E.g., "\"Double\"" works, though so would '"Double"'

▪ \\ is a backslash

▪ Since \ is used to denote special characters, it would be ambiguous to allow a single backslash

In some contexts, the following are also special: . ^ $ * + ? {} [] | ()

3 . 2

Defining a string

▪ Use single quotes

▪ Use double quotes

print('This is a string')

This is a string

print("This is also a string")

This is also a string

3 . 3

Defining a string

▪ Multi-line strings: Triple quoting with either ''' or """

▪ Multi-line strings: use a \n instead

print("""This is a multi-line

string since it has triple quotes""")

This is a multi-line
string since it has triple quotes

print('This is also two lines\nsince it has a newline')

This is also two lines
since it has a newline

3 . 4

Commonly used text functions

▪ Extract text using square brackets

WSJ "About Us" description from: https://www.wsj.com/about-us

text = "The Wall Street Journal was founded in July 1889. Ever since, the Journal has led the way in chronicling the rise of i

print(text[0:100])

The Wall Street Journal was founded in July 1889. Ever since, the Journal has led the way in chronic

3 . 5

Commonly used text functions

▪ Convert anything to a string with str()

▪ Combining text with +

x = 72

x_string = str(x)

x_string

'72'

'Hello' + ' ' + 'world'

'Hello world'

3 . 6

Commonly used text functions

▪ Casing text with .lower(), .upper(), and .title()

print('soon TO be UPPERCASE'.upper())

SOON TO BE UPPERCASE

print('SOON tO be lowercase'.lower())

soon to be lowercase

print('soon to be titlecase'.title())

Soon To Be Titlecase

3 . 7

Commonly used text functions

▪ Checking if text contains something particular

x = 'What is in this string?'

[x.startswith('What'), x.startswith('this')]

[True, False]

[x.endswith('string?'), x.endswith('string')]

[True, False]

['this' in x, 'ing' in x, 'zzz' in x]

[True, True, False]

In python, in is an operator much like > or <. It indicates if the LHS is contained in the

RHS, working on strings or lists!

3 . 8

Commonly used text functions

▪ Finding where the content is

▪ ‘.find()’ returns -1 if your query isn’t found

▪ ‘.index()’ works the same as .find(), except it gives an error if your query isn’t found

x = 'What is in this string?'

[x.find('this'), x.find('ing'), x.find('zzz')]

[11, 19, -1]

for y in ['this', 'ing', 'zzz']:

 try:

 print(x.index(y))

 except:

 print('Error!')

11
19
Error!

3 . 9

Commonly used text functions

▪ Counting the number of occurrences of a word or phrase

▪ Can only check 1 phrase at a time

▪ There are more efficient ways to check this for a list of words

print(text.count('Journal'))

3

3 . 10

Commonly used text functions

▪ Splitting strings

▪ Joining strings together

x = '1,2,3,4,5'.split(',')

print(x)

['1', '2', '3', '4', '5']

print(' & '.join(x))

1 & 2 & 3 & 4 & 5

Joining strings is very useful when working with a list of data

3 . 11

Commonly used text functions

▪ Replacing string content

x = 'I like mee goreng with mutton and mee goreng with chicken'

print(x.replace('mee', 'nasi'))

I like nasi goreng with mutton and nasi goreng with chicken

print(x.replace('mee', 'nasi', 1))

I like nasi goreng with mutton and mee goreng with chicken

.replace() has two required arguments (what to replace, replacement), and an

optional argument (how many times to replace, default: infinite)

3 . 12

Commonly used text functions

▪ Removing blank content

▪ Nice functions for keeping text clean

▪ Padding strings

▪ This is particularly useful when working with databases that zero-pad keys

x = ' this is awkwardly padded '

print([x.strip(), x.lstrip(), x.rstrip()])

['this is awkwardly padded', 'this is awkwardly padded ', ' this is awkwardly padded']

gvkey = 1024

gvkey = str(gvkey).zfill(6)

print(gvkey)

001024

3 . 13

Commonly used text functions

12. Checking if strings are a certain type

▪ If you want a match on an explicit set of characters, using a regular expression is likely more intuitive

output = '\t'.join(['input', 'alnum', 'alpha', 'decimal', 'digit', 'numeric', 'ascii'])

for x in ['ABC123', 'AAABBB', '12345', '12345²', '12345½', '123.1', '£12.0']:

 output += '\n' + '\t'.join(map(str,[x, x.isalnum(), x.isalpha(), x.isdecimal(), x.isdigit(), x.isnumeric(), x.isascii()]))

print(output)

input alnum alpha decimal digit numeric ascii
ABC123 True False False False False True
AAABBB True True False False False True
12345 True False True True True True
12345² True False False True True False
12345½ True False False False True False
123.1 False False False False False True
£12.0 False False False False False False

3 . 14

Importing a single text file

▪ Guarantees the file gets closed properly

▪ A bit more readable than other approaches

▪ This is the preferred approach when possible

with open('../../Data/S4_WSJ_2013.09.09.txt', 'rt') as f:

 text = f.read()

3 . 15

Cleaning text

▪ The text we have imported is not so clean

▪ We can use a for loop and conditional statements to clean the files

▪ Code is in the jupyter notebook

▪ Also helpful is to import the file line-by-line rather than as 1 string

with open('../../Data/S4_WSJ_2013.09.09.txt', 'rt') as f:

 text2 = f.readlines()

3 . 16

Addendum: Using R

▪ The function from ’s package works well.

▪ For string manipulation, I recommend using the library

▪ The functions have more readable syntax and are -friendly

read_file() tidyverse readr

library(tidyverse)

Read text from a .txt file using read_file()

doc <- read_file("../../Data/S4_WSJ_2013.09.09.txt")

str_wrap is from stringr from tidyverse

cat(str_wrap(substring(doc,1,500), 80))

Document 1 of 119 Business and Finance Author: Anonymous Abstract: A U.S.
appeals court will hear oral arguments today in a suit by Verizon challenging
FCC "net-neutrality" rules. --- Full text: Hedge funds are cutting their
standard fees of 2% of assets under management and 20% of profits amid pressure
from investors. --- A team of Ares and CPP Investment Board are in the final
stages of talks to buy luxury retailer Neiman Marcus for around $6 billion. ---
Federal regulators pla

stringr

dplyr

3 . 17

https://www.rdocumentation.org/packages/readr/versions/1.3.1/topics/read_file
https://www.tidyverse.org/
https://readr.tidyverse.org/
https://stringr.tidyverse.org/
https://dplyr.tidyverse.org/index.html

Regular expressions

4 . 1

A motivating example

▪ Quotes follow a pattern: a double quote, some text, and another double quote

Suppose you want to find all quotes in a document

x=re.findall('(?m)\".+?\"', articles[1])

print(x)

['"Anna Karenina"', '"All happy families are alike."', '"Why two more now, and in the same year? I have no idea,"', '"The D

4 . 2

Breaking down the example

▪ (?m) allows output to span multiple lines

▪ \" is a literal double quote

▪ . represents any text

▪ + is used to indicate that we want at least 1 of the pattern immediately preceding the +

▪ Regular expressions are greedy by default, meaning they will choose the longest matching text

▪ ? forces the preceding command to not be greedy, preferring the shortest match that works for the full

pattern

▪ \" is another literal double quote

4 . 3

Calling regexes

▪ 3 most useful functions to call regexes

1.

▪ Finds all occurrences of your pattern and provides them back in a list

▪ If you just want the count, apply len() to the list

2.

▪ Use this for complex substitutions that are too much for .replace()

3.

▪ Use this for complex splits that are too much for .split()

re.findall()

re.sub()

re.split()

4 . 4

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html

Useful components

▪ . matches anything

▪ \w matches all characters that could be in a word

▪ Except - and including _

▪ \S matches any non-whitespace characters

▪ \s matches any whitespace characters

▪ \b matches the start or end of a word

▪ It is the boundary between \S and \s

▪ Useful for matching whole words

▪ \B matches anything except the end of a word

▪ ^ or \A match the beginning of a string

▪ Note: in multiline mode, ^ becomes the beginning of a line

▪ $ or \Z match the end of a string

▪ Note: in multiline mode, $ becomes the end of a line

4 . 5

Useful patterns

▪ [] matches anything inside of it, like an “or” for regex

▪ [^] matches anything except for what is inside it

▪ Quantity specification (they always try to get the most text possible)

▪ x? looks for 0 or 1 of x

▪ x* looks for 0 or more of x

▪ x+ looks for 1 or more of x

▪ x{n} looks for n (a number) of x

▪ x{n, } looks for at least n of x

▪ x{n,m} looks for at least n and at most m of x

▪ To make any of the above non-greedy, append a ? to them, like x+?

4 . 6

Complex patterns: Groups

▪ () can be used to make groups

▪ You can call for explicit matches of groups using a slash number:

▪ ([0-9]).+\\1 Will match a number, followed by anything up until it hits that number again

▪ By default, groups are capturing, meaning that the regex will only return the group text

▪ There are two solutions:

1. Put a group around the whole regex

2. If you don’t need to reference the group, use a non-capturing group with (?:)

re.findall('([0-9]).+\\1', '12asda2asd')

['2']

re.findall('(([0-9]).+\\2)', '12asda2asd')

[('2asda2', '2')]

re.findall('(?:12|sd)a', '12asda2asd')

['12a', 'sda']

4 . 7

Complex patterns: Looking assertions

▪ Sometimes you want text that was preceded or followed by something, but don’t want that something in the

output

▪ (?=...) provides a lookahead where the ... must be next in the string, but won’t output

▪ (?!...) provides a negative lookahead; if the ... is next in the string, the match won’t count

▪ (?<=...) provides a lookbehind, while (?<!...) provides a negative lookbehind

re.findall('(?<=\.)[0-9]+', '1 2.3 4. 5 6.78')

['3', '78']

4 . 8

Positives

▪ Very flexible, can match almost any pattern

▪ E.g., finding the MD&A of a 10-K

▪ Allows us to find text directly rather than just

indices

▪ Built in to python already

Negatives

▪ Regexes can be quite slow to run

▪ Complex regexes are hard to read

Pros and cons of regexes

4 . 9

Extra info

▪ Regexes can run in other modes rather than just the default

▪ These can be passed using the re flags parameter, or by using shorthand in your regex itself

▪ Ignore case with re.IGNORECASE or (?i)

▪ Convert UTF to ASCII for matching with re.ASCII or (?a)

▪ Run regexes across multiple lines using re.MULTILINE or (?m)

▪ Make . match newlines using re.DOTALL or (?s)

▪ Write better documented regular expressions using re.VERBOSE or (?x)

Full documentation here

4 . 10

https://docs.python.org/3/library/re.html

Addendum: Using R

▪ The same library from earlier handles these well as well

▪ Note that while the overall pattern structure is the same in R…

▪ The special characters are o�en different

▪ There’s a

▪

stringr

nice cheat sheet here

More detailed documentation here

4 . 11

https://stringr.tidyverse.org/
https://github.com/rstudio/cheatsheets/raw/master/strings.pdf
https://cran.r-project.org/web/packages/stringr/vignettes/regular-expressions.html

Sentiment using dictionaries

5 . 1

Dictionaries

▪ Dictionaries in computing are just lists of words

▪ Usually these are words that are used to match to some concept

▪ E.g., the Loughran and McDonald 2011 dictionaries are for Annual report text

with open('../../Data/S4_LM_Neg.csv', 'rt') as f:

 LM_neg = [x.strip().lower() for x in f.readlines()]

print(LM_neg[0:5])

['abandon', 'abandoned', 'abandoning', 'abandonment', 'abandonments']

with open('../../Data/S4_LM_Pos.csv', 'rt') as f:

 LM_pos = [x.strip().lower() for x in f.readlines()]

print(LM_pos[0:5])

['able', 'abundance', 'abundant', 'acclaimed', 'accomplish']

5 . 2

Applying a dictionary

▪ To apply a dictionary, we need to tokenize our text

▪ Tokenize: Split into discrete chunks; words in this case

▪ 3 approaches:

1. Use regular expressions to extract words

2. Use NLTK’s tokenizer

3. Use SpaCy’s NLP pipeline, which includes tokenizing in it

For this example, the code uses NLTK

article_tokens = [nltk.tokenize.word_tokenize(article) for article in articles]

5 . 3

Stopwords

▪ Stopwords – words we remove because they have little content

▪ the, a, an, and, …

▪ NLTK has word lists for many languages

▪ For our uses, we need to add some extra entries (punctuation) and remove negation terms

If you get an error that you are missing 'stopwords', run: nltk.download('stopwords')

stop_words = set(nltk.corpus.stopwords.words("english"))

stop_words.remove('no')

stop_words.remove('not')

punct = {'.', ',', ';', '"', '\'', '-', '--', '---', '``', '\'\'', '%', '\'s'}

stop_words = stop_words | punct

5 . 4

Counting text – BoW

filtered_tokens = []

for tokens in article_tokens:

 filtered_tokens.append([t.lower() for t in tokens if t.lower() not in stop_words])

filtered_counts = [Counter(tokens) for tokens in filtered_tokens]

neg = []

for counts in filtered_counts:

 temp = 0

 for w in LM_neg:

 temp += counts[w]

 neg.append(temp)

The is from collections (built in to Python)Counter()

5 . 5

https://docs.python.org/3/library/collections.html

Counting text – non-BoW

▪ To handle negation, we need to iterate through every word, or we would need to switch to n-grams for

tokens

▪ We will also need to count the total number of words per article for our sentiment measure

pos = []

for tokens in filtered_tokens:

 prior_token = ''

 temp = 0

 for token in tokens:

 if token in LM_pos and prior_token != ['no', 'not']:

 temp += 1

 prior_token = token

 pos.append(temp)

words = [sum(counts.values()) for counts in filtered_counts]

5 . 6

Calculating sentiment

df = pd.DataFrame(zip(words, pos, neg), columns=['words', 'pos', 'neg'])

df['sentiment'] = (df.pos - df.neg) / df.words

df

Unnamed: 0 words pos neg sentiment
0 0 132 2 3 -0.007576
1 1 608 8 14 -0.009868
2 2 1841 21 137 -0.063009
3 3 736 10 15 -0.006793
4 4 141 2 5 -0.021277
..
113 113 239 6 3 0.012552
114 114 493 9 6 0.006085
115 115 414 5 16 -0.026570
116 116 366 3 3 0.000000
117 117 571 9 11 -0.003503

[118 rows x 5 columns]

5 . 7

Supervised text classification

6 . 1

The Hassan et al. (2019 QJE) approach

▪ Just like how we can used data about a phenomenon to supervise algorithm construction with numeric data

(i.e., regression), Hassan et al. (2019 QJE) suggests a similar idea based on using text to supervise text.

▪ The methodology requires 3 sets of textual information:

1. Data that you want to analyze

2. Data that represents the information you want to quantify the extent of

3. Data that represents the rest of the information, e.g., what you don’t want to quantify

▪ The method is mentioned in the computer science literature in Song and Wu (2008) and Schütze et al. (2008)

There is a simple requirement here: what you want and what the baseline text in your file

is must be sufficiently different

6 . 2

The study

▪ Data:

1. Conference call transcripts from 2002 to 2016

2. Political text: American Politics Today (Bianco and Canon); articles from NYT, USA Today, WSJ,

Washington Post on “domestic politics”

3. Nonpolitical text: Financial Accounting (Libby, Libby and Short); articles from NYT, USA Today, WSJ,

Washington Post on “performance,” “ownership changes,” and “corporate actions;” the Santa Barbara

Corpus of Spoken American English (excluding politics-related episodes)

Goal: measure political risk

A lot of baseline data is needed! But why?

6 . 3

Other work needed

1. Cleaning up the data

▪ Removing a lot of bi-grams based on part-of-speech tags that are unlikely to be relevant

▪ Removing Bi-grams with: i, ve, youve, weve, im, youre, were, id, youd, wed, thats

▪ Removing “princeton university”

2. Removing 3 synonyms for risk due to contextual differences: questions, question, venture

6 . 4

What do they do with the data?

▪ They construct a list of bi-grams (2 word phrases) such that

▪ Each bi-gram appears in the political baseline

▪ Each bi-gram never appears in the nonpolitical baseline

▪ They will weight words accordingly

▪ They will measure risk by using these weights paired with phrases where a synonym for risk is nearby.

1. More complete than a dictionary approach

2. Very clean approach given that political discussion should be fairly different from other discussion in annual

reports

3. Generally applicable for any easy to pick out discussion

▪ So long as you can find training data

Benefits of the method

6 . 5

What do we need to know to implement it?

1. How to chunk text into bi-grams

2. How to tokenize text

▪ Use NLTK ✓

▪ Or use Spacy (we’ll see this next session)

▪ Spacy is more accurate, so the code will use this

3. How to count words or phrases

▪ Use a ✓Counter()

Optional advanced stuff: You can vectorize most of the calculation and just use matrix

algebra with numpy

6 . 6

https://docs.python.org/3/library/collections.html
https://numpy.org/doc/stable/index.html

Workflow

▪ Set up blacklists

▪ Define the main function for cleaning

word_blacklist = "i i've you've we've i'm you're we're i'd you'd we'd that's".split(' ')

pattern_blacklist = ["PRP|PRP", "IN|IN", "RB|RB", "WRB|RB", "IN|RB", "RB|IN",

 "IN|WRB", "WRB|IN", "DT|IN", "IN|DT", "RB|WRB", "RB|DT",

 "DT|RB", "WRB|DT", "DT|WRB", "SYM|SYM"]

gram_blacklist = 'princeton|university'

def grammer(doc, n, processed_patterns, word_blacklist, gram_blacklist, lower=True, stopword=True):

 if not stopword:

 grams = textacy.extract.ngrams(doc, n=n, filter_stops=False, filter_nums=True)

 else:

 grams = textacy.extract.ngrams(doc, n=n, filter_stops=True, filter_nums=True)

 ngrams = Counter()

 for gram in grams:

 pos = '|'.join([word.tag_ for word in gram])

 if not lower:

 text = '|'.join([word.text for word in gram])

 else:

 text = '|'.join([word.text for word in gram]).lower()

 if pos not in processed_patterns:

 if not np.any([word.text in word_blacklist for word in gram]):

 if text not in gram_blacklist:

 ngrams[text] += 1

 return ngrams

6 . 7

Process a document

▪ We’ll use the data from earlier

install the spacy language model with `python -m spacy download en_core_web_sm`

nlp = spacy.load('en_core_web_sm', disable=['parser', 'ner'])

nlp.max_length = 10000000

documents = list(nlp.pipe(articles))

grams = [grammer(document, n=2, processed_patterns=pattern_blacklist,

 word_blacklist=word_blacklist,

 gram_blacklist=gram_blacklist) for document in documents]

Intermediary measures

gram_counts = [sum(gram.values()) for gram in grams]

gram_sets = [set(gram) for gram in grams]

6 . 8

What is this set()?

▪ Sets in python are an interesting and rather useful structure

▪ Like lists, they contain a bunch of objects, such as text in our case

▪ Unlike lists, they do not have an order and cannot contain duplicates

▪ Also unlike lists, they are very fast to query

▪ E.g., if you ask if something is in a very large set, the response is quick

▪ We can apply set functions to them!

▪ set1 & set2 represents the intersection of the two sets

▪ Much faster than [i for i in list1 if i in list2]

▪ set1 | set2 represents the union

6 . 9

Applying a hypothetical dictionary

▪ The hypothetical weighted dictionary:

▪ Use set intersection to quickly get the overlap

▪ Determine the aggregate weight of the overlapping text

weights = {'earnings|foreign':0.5, 'currency|foreign':0.4, 'foreign|currencies':0.35, 'foreign|subsidiary':0.3,

 'foreign|currency':0.25, 'foreign|investment':0.2, 'foreign|holdings':0.2, 'foreign|borrowing':0.1,

 'overseas|sales':0.1, 'foreign|investors':0.05}

weight_set = set(weights)

foreign_weight = []

for i in range(0, len(grams)):

 shared_keys = list(gram_sets[i] & weight_set)

 ns = len(shared_keys)

 v_weights = np.empty(ns)

 v_counts = np.empty(ns)

 c = 0

 for key in shared_keys:

 v_weights[c] = weights[key]

 v_counts[c] = grams[i][key]

 c += 1

 spec_weight = np.dot(v_weights, v_counts)

 measure = spec_weight / gram_counts[i] if gram_counts[i] > 0 else 0

 foreign_weight.append(measure)

6 . 10

Finalize the measure

▪ Note that this exercise shows you how to calculate a simpler score, not the risk score from Hassan et al. (2019

QJE)

▪ For the risk score, you need to replace the counts by a count of times the bi-gram was within 10 words of a

risk word

▪ You also need to filter bigrams against a baseline document or documents

df['foreign'] = foreign_weight

df.sort_values(by='foreign', ascending=False)

Unnamed: 0 words pos neg sentiment foreign
9 9 507 4 25 -0.041420 0.002941
17 17 158 9 4 0.031646 0.001695
93 93 202 6 2 0.019802 0.000617
89 89 656 10 21 -0.016768 0.000209
87 87 223 11 14 -0.013453 0.000000
..
36 36 131 2 3 -0.007634 0.000000
35 35 179 1 21 -0.111732 0.000000
34 34 57 2 1 0.017544 0.000000
33 33 68 1 3 -0.029412 0.000000
117 117 571 9 11 -0.003503 0.000000

[118 rows x 6 columns]

6 . 11

Conclusion

7 . 1

Wrap-up

▪ Can treat it as a big string

▪ Can treat it line-by-line

▪ Can work with it word-by-word or gram-by-gram

▪ It’s all very flexible

1. A survey to see what your thoughts are on the delivery method of the course

▪ Helps with adjusting the course over the next sessions

2. Assignment 1

Text is pretty easy to work with in python

Many measures are pretty easy to calculate

Some upcoming things

7 . 2

Python

▪ nltk

▪ numpy

▪ pandas

▪ spacy

▪ textacy

R

▪ knitr

▪ reticulate

▪ revealjs

Packages used for these slides

7 . 3

References

▪ Antweiler, Werner, and Murray Z. Frank. “Is all that talk just noise? The information content of internet stock

message boards.” The Journal of finance 59, no. 3 (2004): 1259-1294.

▪ Hassan, Tarek A., Stephan Hollander, Laurence Van Lent, and Ahmed Tahoun. “Firm-level political risk:

Measurement and effects.” The Quarterly Journal of Economics 134, no. 4 (2019): 2135-2202.

▪ Loughran, T. and McDonald, B., 2011. When is a liability not a liability? Textual analysis, dictionaries, and 10-

Ks.The Journal of Finance, 66(1), pp.35-65.

▪ Schütze, Hinrich, Christopher D. Manning, and Prabhakar Raghavan. Introduction to information retrieval.

Vol. 39. Cambridge: Cambridge University Press, 2008.

▪ Song, Min, and Yi-Fang Brook Wu, eds. Handbook of research on text and web mining technologies. IGI

global, 2008.

7 . 4

