
ML for SS: Embeddings and topic

modeling

Session 6

Dr. Richard M. Crowley
 rcrowley@smu.edu.sg

http://rmc.link/

1

mailto:rcrowley@smu.edu.sg
http://rmc.link/

Overview

2 . 1

Papers

▪ This is a nicely motivated paper in terms of its usage of LDA

▪ Needed to answer the research question

▪ Demonstrates an interesting variant of LDA that can help with identifying differences in information across

groups or conditions

▪ Demonstrates a usage of embedding methods at the sentence level

▪ Uses this to examine sentiment (e.g., in Loughran and McDonald 2011) in a fine-grained manner

Huang et al. (2018 MS)

Roberts et al. (2014 AJPS)

Crowley and Wong (2022 working)

2 . 2

Python

▪ LDA

▪ is the easiest to use in general

▪ Installation is not always straightforward

▪ Word2Vec

▪ is again quite easy to use

▪ is another good option

▪ is also an option

▪ USE

▪ is the best choice

R

▪ LDA

▪ can do a lot more than just standard LDA

▪ and both play nicely

with

▪ gives an interface to the venerable

, capable of more

advanced topic modeling

▪ Word2vec

▪ See the word2vec and rword2vec

packages

Technical Discussion

gensim

gensim

fastText

Tensorflow

Tensorflow

stm

lda topicmodels

quanteda

mallet

MALLET Java package

Both R and python are good for LDA. Python is better for embedding methods. R is the

only option for STM.

2 . 3

https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://fasttext.cc/
https://www.tensorflow.org/tutorials/text/word2vec
https://tfhub.dev/google/universal-sentence-encoder/4
https://www.structuraltopicmodel.com/
https://cran.r-project.org/web/packages/lda/index.html
https://cran.r-project.org/web/packages/topicmodels/index.html
https://quanteda.io/
https://github.com/mimno/RMallet
http://mallet.cs.umass.edu/

Main application: Analyzing Wall Street Journal articles

▪ On eLearn you will find a full issue of the WSJ in text format

▪ Apply a topic model to the documents

▪ Analyze the documents using an STM

Tasks

We will also explore embedding methods more generally

2 . 4

How I work [on ML-based projects]

3 . 1

High level overview: Process

1. Idea generation

2. Prototyping

▪ Testing out different approaches to measurement or data collection

3. Data collection

▪ Implement in an automated fashion

▪ Note that sometimes you need to update the data in the review process.

4. Implementation

▪ Run/train the desired algorithm on the collected data

▪ Again, best to keep this automated

5. Data manipulation

▪ Build a data set with the implementation’s output + standard measures

▪ Automate this too

6. Econometrics

▪ Keep automating

7. Writing

3 . 2

Hardware

▪ Data stored in RAID 1 arrays (redundant disks)

and duplicated across machines

▪ Use HDDs for large amounts of data, SSDs for

small amounts (<2TB) or temporary storage

▪ The more CPU cores, the better (so long as

memory scales to match)

▪ Large memory amount for text analytics

▪ 64-128GB is good for most tasks

▪ 512GB for large matrix problems

▪ Nvidia GPU for neural network training and

inference

▪ 10-100x speedup for most algorithms

▪ Nvidia is needed for CUDA

▪ CUDA is needed for most ML libraries

So�ware

▪ Python via miniconda for data collection and

processing

▪ Pycharm and JupyterLab for GUIs

▪ R for data manipulation, econometrics, and

visualization

▪ RStudio for GUI

▪ Stata for econometrics

▪ s�p for data transfer

▪ Nomachine for remote access

High level overview: Tools

I run everything under Linux – a bit more

stable for long computations and

better multithreading in python

3 . 3

Working with python

▪ Preferred distribution: miniconda

▪ Anaconda without the GUI frontend

▪ Why?

▪ Command line simplicity of pip

▪ Solid collection of packages when including conda-forge

▪ Significantly easier installs of more complex so�ware

▪ E.g., Tensorflow + CUDA + cuDNN as a one-liner

▪ Handles virtual environments

▪ pip + virtualenv is fairly flaky when you need specific installs across python versions on Linux

▪ It’s a bit better on Windows

▪ In the past I managed virtualenvs with poetry, but since summer 2021 that is no longer reliable

Why not base python?

3 . 4

Base miniconda setup

1. Install from

2. Install to a custom folder where you have sufficient storage

▪ E.g., I use /media/Data/Anaconda/ on Linux or D:\Anaconda on Windows

3. Install mamba (faster package resolution): conda install -c conda-forge mamba

4. Install JupyterLab: mamba install -c conda-forge jupyterlab

5. Install the kernel module: mamba install -c conda-forge nb_conda_kernels

▪ Lets you access all your anaconda virtual environments from the same JupyterLab instance

6. Install pip: mamba install pip

▪ Conda + conda-forge doesn’t have every package

7. Add conda-forge to the default channel list: conda config --add channels conda-forge

https://docs.conda.io/en/latest/miniconda.html

Make separate projects using mamba create -n $name python=$version

mamba pip ipykernel $other_packages_here

3 . 5

https://docs.conda.io/en/latest/miniconda.html

Miniconda for this class

▪ Also need to install graphviz:

mamba create -n MLSS python=3.9 mamba pip ipykernel ipywidgets numpy pandas statsmodels scikit-learn nltk scipy spacy textacy

 xgboost matplotlib seaborn umap-learn requests graphviz python-graphviz shap pillow tensorflow tensorflow-hub wasabi==0.9.1

 gensim pyLDAvis keras-preprocessing doubleml pydot

conda activate MLSS

conda install mkl-service

conda install -c powerai tensorflow-gan

python -m spacy download en_core_web_sm

conda deactivate

https://graphviz.org/

3 . 6

https://graphviz.org/

Miniconda for Crowley and Wong (2022)

Base environment

mamba create -n R017 python=3.9 mamba pip ipykernel spacy textacy numpy scikit-learn h5py dask dask-ml nltk cython

mamba install opencv psutil

conda activate R017

conda install mkl-service

python -m spacy download en_core_web_sm

conda deactivate

10-K downloader and parser

mamba create -n S001 python=3.9 mamba pip ipykernel spacy textacy numpy scikit-learn h5py dask dask-ml nltk cython

conda activate S001

conda install mkl-service

python -m spacy download en_core_web_sm

conda deactivate

FinBERT

mamba create -n T017 python=3.9 mamba pip ipykernel cython h5py sentencepiece python_abi numpy pandas pytz

conda activate T017

mamba install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch

mamba install -c huggingface transformers==4.14.1 tokenizers==0.10.3 huggingface_hub

conda install mkl-service

conda deactivate

sudo apt-get install git-lfs

3 . 7

▪ Clean, readable, moderately efficient

▪ Based around a pipe operator %>%

▪ Computationally efficient and SQL-like

▪ Overloads [with new syntax

Working with R

▪ R doesn’t have as robust of virtual environments as python

▪ renv might work well enough these days though

▪ Instead, I tend to keep track of dependencies in the scripts themselves

▪ Especially if it isn’t from CRAN

▪ I.e., just leave a comment with the install procedure in the script

Coding paradigms

tidyverse

df <- df %>%

 group_by('gvkey') %>%

 mutate(obs=n()) %>%

 ungroup()

data.table

df[, obs := .N, by='gvkey']

3 . 8

https://www.tidyverse.org/
https://github.com/Rdatatable/data.table/wiki

Working with R

▪ Tidyverse syntax is great for data manipulation

▪ Leaves an easy to understand list of transformations in the code

▪ E.g.: Compiling data output from python scripts and from databases into 1 file for analysis

▪ Data.table is great for:

▪ Time consuming computations

▪ Computations on large datasets

▪ Lower memory usage than base R, tidyverse, or pandas (python)

▪ E.g.: Computing pairwise distances in matched observations across a 20M row dataset

▪ R includes matrix algebra in the base install

▪ R supports MKL for more efficient CPU usage

3 . 9

Econometrics

▪ R

▪ Strong programming tools and consistent syntax

▪ All standard econometric tools are included or available through CRAN

▪ Some libraries are efficiently multithreaded

▪ Some implementations of algorithms are significantly faster

▪ E.g., HDFE through is 10-50x faster than Stata

▪ Some newer methods are only in R (or R and python both)

▪ Stata

▪ The language itself is lacking, so custom functions are tricky

▪ All standard econometric tools are included or available through ssc

▪ E.g., reghdfe, ppmlhdfe, egen, unique, outreg2

▪ Many specialized econometric tools are also included

▪ As of more recent versions, it supports having multiple data frames in memory

▪ Efficient multithreading is paywalled

fixest

3 . 10

https://lrberge.github.io/fixest/

How did I do this paper?

1. Idea generation: Came out of discussion with Franco when visiting Rotman

2. Prototyping: Tried a variety of approaches based on LDA, word vectors, and dependency parsers before

settling on OpenIE

▪ OpenIE was the only algorithm that really captured the context of the words

3. Data collection: python script to download and parse 10-K filings

4. Implementation:

▪ OpenIE in Java with ~120GB RAM allocated

▪ Masking and filtering code in python, multithreaded

▪ USE in python (Tensorflow) on GPU

▪ MiniBatch K-means in python (scikit-learn)

▪ Instruments by coding Google Apps Script from python (auto-generate forms)

5. Data manipulation: R to add everything into a giant data-frame, mostly using data.table

6. Econometrics: In R

▪ OLS is just implemented in Base R; CV LASSO in ; Double LASSO in

▪ Some simulation in R: Coded in a tight loop using and

7. Writing

glmnet hdm

doParallel foreach

3 . 11

https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/hdm/index.html
https://cran.r-project.org/web/packages/doParallel/index.html
https://cran.r-project.org/web/packages/foreach/vignettes/foreach.html

Tips on computation

1. If you are working with csv files, gzip them. Python and R both work well with them

2. Data bigger than your RAM? Use HDF5 – SAS-like functionality usable from R and python

3. Always keep documentation for your code, including the order to run everything

4. Python specific

▪ Multithreading in python is worth the extra work if the process will take hours

▪ Numpy arrays are nearly always faster if you are doing math on lists.

▪ If you can write your problem as matrix algebra, implement it as such in numpy.

▪ Matrices are extraordinarily efficient.

▪ Many python libraries use C code under the hood. These are significantly faster than pure python

libraries. You can compile your own C code libraries using python code using Cython

5. R specific

▪ Learn both tidyverse and data.table, and use data.table for slower tasks or those that use a lot of RAM

▪ Matrix algebra is, again, the most efficient approach.

▪ Need to calculate CAPM-based returns? You use a linear regression. Linear regression is solvable in

closed form with matrix algebra

6. Stata specific

▪ You can run multiple copies of Stata side-by-side to max out your CPU :)

3 . 12

Embeddings

4 . 1

What are “vector space models”

▪ Different ways of converting some abstract information into numeric information

▪ Focus on maintaining some of the underlying structure of the abstract information

▪ Examples (from smallest to largest input):

▪ Word vectors:

▪

▪

▪ Paragraph/document vectors:

▪

▪ Sentence vectors:

▪

▪ Topic vectors:

▪

Word2vec

GloVe

Doc2Vec

Universal Sentence Encoder

Latent Dirichlet Allocation (LDA)

4 . 2

https://www.tensorflow.org/tutorials/representation/word2vec
https://nlp.stanford.edu/projects/glove/
https://medium.com/scaleabout/a-gentle-introduction-to-doc2vec-db3e8c0cce5
https://tfhub.dev/google/universal-sentence-encoder/2
https://ai.stanford.edu/~ang/papers/jair03-lda.pdf

Word vectors

▪ Instead of coding individual words, encode word meaning

▪ The idea:

▪ Our old way (encode words as IDs from 1 to N) doesn’t understand relationships such as:

▪ Spatial relations

▪ Grammatical relations (weakly when using stemming)

▪ Social relationships

▪ etc.

Word vectors try to encapsulate all of the above implicitly, through by encoding words as

a vector based on how features manifest themselves in text

4 . 3

Word vectors: Simple example

words f_animal f_people f_location

dog 0.5 0.3 -0.3

cat 0.5 0.1 -0.3

Bill 0.1 0.9 -0.4

turkey 0.5 -0.2 -0.3

Turkey -0.5 0.1 0.7

Singapore -0.5 0.1 0.8

▪ The above is a simplified illustrative example

▪ Notice how we can tell apart different animals based on their relationship with people

▪ Notice how we can distinguish turkey (the animal) from Turkey (the country) as well

4 . 4

What it retains: word2vec

Relations are retained as vectors between points (distance + direction)

4 . 5

https://www.tensorflow.org/tutorials/representation/word2vec#visualizing_the_learned_embeddings

What it retains: GloVe

4 . 6

https://nlp.stanford.edu/projects/glove/

How does word order work?

Infer a word’s meaning from the words around it

Refered to as CBOW (continuous bag of words)

4 . 7

How else can word order work?

Infer a word’s meaning by generating words around it

Refered to as the Skip-gram model

4 . 8

An example of using word2vec

▪ In Brown, Crowley and Elliott (2020 JAR), word2vec was used to provide assurance that the LDA model works

reasonably well on annual reports

1. We trained a word2vec model on random issues of the Wall Street Journal (247.8M words)

2. The resulting model “understood” words in the context of the WSJ

3. We then ran a psychology experiment (word intrusion task) on the algorithm

▪ Each question consisted of 3 words from 1 topic and 1 intruded from another random topic

▪ Ex.:

▪ Laser, Drug, Viral, Therapeutic

▪ Supply, Steel, Capacity, Losses

▪ Relief, Louisiana, Cargo, Assisted

The task is to find which word doesn’t belong

4 . 9

Results

4 . 10

Loading in word2vec with Gensim

▪ The package comes with the ability to download word2vec and GloVe vectors from a repository

▪ The code below would allow you to download a model trained on Google News

▪ In this model, each word is represented as a 300-dimensional vector

▪ The model will be stored in ~/gensim_models/

▪ ~ represents your user directory

▪ You can safely delete this directory a�er you are done using it

gensim

import gensim

import gensim.downloader

base_w2v = gensim.downloader.load('word2vec-google-news-300')

Note: The model it downloads is 1.7GB

4 . 11

https://radimrehurek.com/gensim/

Examining word2vec: Odd one out

base_w2v.doesnt_match(['Queen', 'King', 'Prince', 'Peasant'])

'Peasant'

base_w2v.doesnt_match(['Singapore', 'Malyasia', 'Indonesia', 'Germany'])

'Germany'

base_w2v.doesnt_match(['Euro', 'USD', 'RMB', 'computer'])

'computer'

base_w2v.doesnt_match(['mee goreng', 'char kway teoh', 'laksa', 'hamburger'])

'hamburger'

4 . 12

Examining word2vec: Closest words

base_w2v.most_similar(['Earnings'])

('Pro_Forma_EPS', 0.6441532373428345) ('Diluted_EPS', 0.636042058467865)
('Goodwill_Impairment', 0.6357625126838684) ('Tax_Expense', 0.6289322376251221)
('Reconciling_Items', 0.6285154819488525) ('Restructuring_Charges', 0.6268271207809448)
('Backs_FY##', 0.6254147291183472) ('Raises_FY##_EPS', 0.6230234503746033)
('Restructuring_Charge', 0.6216667294502258) ('FFO_Per_Share', 0.6207219958305359)

base_w2v.most_similar('IASB')

('Accounting_Standards_Board', 0.7211726307868958) ('FASB', 0.6697319149971008)
('IAASB', 0.6319378614425659) ('IAS##', 0.6150702834129333)
('FASB_IASB', 0.593984842300415) ('Exposure_Draft', 0.5892050266265869)
('Board_IASB', 0.5818656086921692) ('IFRS', 0.5813880562782288)
('GNAIE', 0.5802473425865173) ('Solvency_II', 0.574397087097168)

4 . 13

Examining word2vec: Closest words

base_w2v.most_similar(['KPMG'])

('PwC', 0.8044512867927551) ('PricewaterhouseCoopers', 0.8032213449478149)
('Deloitte', 0.7856791019439697) ('Grant_Thornton', 0.7815379500389099)
('PriceWaterhouseCoopers', 0.7609084248542786) ('KMPG', 0.7575340270996094)
('PricewaterhouseCoopers_PwC', 0.7438496351242065) ('Pricewaterhouse_Coopers', 0.7163813710212708)
('Delloitte', 0.7009097337722778) ('KPMG_LLP', 0.7008424401283264)

base_w2v.most_similar(['Arthur_Andersen'])

('Arthur_Andersen_LLP', 0.7720072269439697) ('Peat_Marwick', 0.6542829275131226)
('Price_Waterhouse', 0.6524070501327515) ('KPMG_Peat_Marwick', 0.6093755960464478)
('Peat_Marwick_Mitchell', 0.6006763577461243) ('&_Lybrand', 0.5949062705039978)
('Arthur_Andersen_accounting', 0.559570848941803) ('auditor_Arthur_Andersen', 0.5569155812263489)
('KPMG', 0.5496521592140198) ('Price_Waterhouse_LLP', 0.5493941903114319)

4 . 14

Examining word2vec: Analogies

▪ Mathematically:

man : King :: woman : ?

base_w2v.most_similar(positive=['King', 'woman'], negative=['man'])

('Queen', 0.5515626668930054) ('Oprah_BFF_Gayle', 0.47597548365592957)
('Geoffrey_Rush_Exit', 0.46460166573524475) ('Princess', 0.4533674716949463)
('Yvonne_Stickney', 0.4507041573524475) ('L._Bonauto', 0.4422135353088379)
('gal_pal_Gayle', 0.4408389925956726) ('Alveda_C.', 0.4402790665626526)
('Tupou_V.', 0.4373864233493805) ('K._Letourneau', 0.4351031482219696)

4 . 15

The sleight of hand behind this

▪ Word2Vec implementations usually bar a word in the analogy from being an output

▪ E.g., it will never report man : King :: woman : King

▪ But this is actually the mathematical answer

analogy = base_w2v['King'] + base_w2v['woman'] + base_w2v['man']

analogy = analogy / np.linalg.norm(analogy)

print('King', np.linalg.norm(analogy - base_w2v['King']))

King 1.9888592

print('Queen', np.linalg.norm(analogy - base_w2v['Queen']))

Queen 2.7364814

4 . 16

It’s still pretty good though!

▪ Note that since word2vec’s original answer was Queen, this implies it was second best

▪ If Queen is the closest word to King, then this would be mathematically uninteresting

▪ It’s actually 7th though!

base_w2v.most_similar('King')

[('Jackson', 0.5326348543167114), ('Prince', 0.5306329727172852), ('Tupou_V.', 0.5292826294898987), ('KIng', 0.522750139236

4 . 17

What is this good for?

1. You care about the words used, by not stylistic choices

▪ Abstraction

2. You want to crunch down a bunch of words into a smaller number of dimensions without running any bigger

models (like LDA) on the text.

▪ E.g., you can toss the 300 dimensions of the Google News model to a Lasso or Elastic Net model

▪ This is a big improvement over the past method of tossing vectors of word counts at Naive Bayes

3. You want synonyms for a set of words that are selected in a less-researcher-biased fashion

▪ You can even get n-gram synonyms this way

▪ A popular method for augmenting small dictionaries

4 . 18

Exercise: Trying out word2vec

▪ This set of exercise is to help you understand a bit better about what word2vec is good at

▪ As well as what it isn’t good at

Colab file available at https://rmc.link/colab_w2v

4 . 19

https://colab.research.google.com/drive/1OLBuaENiq_eerdyB5os7C0ga4SphtQgk?usp=sharing

Universal Sentence Encoder (USE)

5 . 1

Universal Sentence Encoder (USE)

Focuses on representing sentence-length chunks of text

5 . 2

A fun example of with USE

▪ Predict Shakespeare with Cloud TPUs and Keras

5 . 3

https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/shakespeare_with_tpu_and_keras.ipynb

Cavaet on using USE

▪ One big caveat: USE only knows what it’s trained on

▪ Ex.: Feeding the same USE algorithm WSJ text

Samsung Electronics Co., suffering a handset sales slide, revealed a foldable-screen

smartphone that folds like a book and opens up to tablet size. Ah, horror? I play Thee to

her alone;

And when we have withdrom him, good all.

Come, go with no less through.

Enter Don Pedres. A flourish and my money. I will tarry. Well, you do!

LADY CAPULET.

Farewell; and you are

5 . 4

How does USE work?

▪ USE is based on DAN (Deep Averaging Networks) and Transformers

▪ There are variants using each

▪ DAN is faster

▪ Transformer is more accurate

▪ USE learns the meaning of sentences via words’ implied meanings

▪ Learn more: and

▪ In practice, it works quite well

Original paper TensorFlow site

5 . 5

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46808.pdf
https://tfhub.dev/google/universal-sentence-encoder/4

Using USE

▪ The model we will be using is the by Cer et al. (2018)

▪ Converts text that is between phrase and paragraph length into 512-dimensional vectors

Universal Sentence Encoder (USE) Transformer v5

embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder-large/5")

messages = ['Two words',

 'This is a sentence.',

 'This is a few sentences. They are strung together. They are in one string'

]

embeddings = embed(messages)

embeddings

<tf.Tensor: shape=(3, 512), dtype=float32, numpy=
array([[-1.0184747e-02, -3.1019164e-02, -4.2781506e-02, ...,
1.0805108e-01, 7.7099161e-05, -6.1001875e-03],
[-1.2058644e-02, -3.8627390e-02, 1.5427187e-03, ...,
3.3353332e-02, -7.0963770e-02, -1.7223844e-03],
[3.6280617e-02, 1.7835487e-03, -7.6090815e-03, ...,
5.9779502e-02, -1.0792013e-01, -6.0476218e-03]], dtype=float32)>

5 . 6

https://tfhub.dev/google/universal-sentence-encoder-large/5

Compare sentences with USE

messages = ["How are you feeling?","How are you?","What's up?",

 "How old are you?","How old are you, in years?","What is your age?"]

embeddings = embed(messages)

plot_similarity(messages, embeddings, 90)

5 . 7

LDA

6 . 1

What is LDA?

▪ Latent Dirichlet Allocation

▪ One of the most popular methods under the field of topic modeling

▪ LDA is a Bayesian method of assessing the content of a document

▪ LDA assumes there are a set of topics in each document, and that this set follows a Dirichlet prior for each

document

▪ Words within topics also have a Dirichlet prior

From Blei, Ng, and Jordan (2003). More details from the creator

6 . 2

http://www.cs.columbia.edu/~blei/papers/Blei2012.pdf

An example of LDA

6 . 3

How does it work?

1. Reads all the documents

▪ Calculates counts of each word within the document, tied to a specific ID used across all documents

2. Uses variation in words within and across documents to infer topics

▪ By using a Gibbs sampler to simulate the underlying distributions

▪ An MCMC method

▪ It’s quite complicated in the background, but it boils down to a system where generating a document follows

a couple rules:

1. Topics in a document follow a multinomial/categorical distribution

2. Words in a topic follow a multinomial/categorical distribution

6 . 4

Implementing LDA in python

▪ The best package for this is

▪ As long as your data fits in memory comfortably, it is easy to use

▪ If not, you will need to construct a generator to pass to it, which is more complex

▪ The code file for this session has an example of this!

▪ In terms of computation time, you will likely spend more time prepping your text than running the LDA

model

gensim

6 . 5

https://radimrehurek.com/gensim/

Prepping text

▪ We will take a more thorough approach using for preprocessing

▪ Remove stopwords using ’

▪ Remove numbers, symbols, and punctuation based on a neural network dependency parser

▪ Lemmatize words based on the word and its POS tags

▪ If accuracy is less important or your computer can’t handle ’s approach, another approach is:

▪ Use a regex or NLTK to tokenize into words

▪ Use the stop-words package or NLTK to get a list of stopwords

▪ Filter them out using a list comprehension

▪ doc = [w for w in doc if w not in stopwords]

▪ Apply a word-based lemmatizer from NLTK such as

spaCy

spaCy

spaCy

WordNet

6 . 6

https://spacy.io/
https://spacy.io/
https://spacy.io/
https://www.nltk.org/_modules/nltk/stem/wordnet.html

Running the LDA model

docs contains all of our cleaned 10-K filings

doc_names contains the filings' accession numbers

Prepare the needed parts for gensim's LDA implementation

words = gensim.corpora.Dictionary(articles)

words.filter_extremes(no_below=3, no_above=0.5)

words.filter_tokens(bad_ids=[words.token2id['_']]) # '_' is not treated as a symbol by spaCy

corpus = [words.doc2bow(doc) for doc in articles]

Save the intermediate data -- useful if we want to tweak model parameters and re-run later

with open('../../Data/corpus_WSJ.pkl', 'wb') as f:

 pickle.dump([corpus, words], f, protocol=pickle.HIGHEST_PROTOCOL)

Run the model

lda = gensim.models.ldamodel.LdaModel(corpus, id2word=words, num_topics=10, passes=5,

 update_every=5, alpha='auto', eta='auto')

Save the output

lda.save('../../Data/lda_WSJ')

6 . 7

Examining the LDA model

1. Load in the LDA model along with the corpus structure and the document names

▪ No need to do this if the model is still in memory

2. Examine a topic

lda = gensim.models.ldamodel.LdaModel.load('../../Data/lda_WSJ')

with open('../../Data/corpus_WSJ.pkl', 'rb') as f:

 corpus, words, doc_names = pickle.load(f)

M:\Python_environments\Teaching_ML_v1\lib\site-packages\gensim\similarities__init__.py:15: UserWarning: The gensim.similar
warnings.warn(msg)

Parameters: topic number, number of words

lda.show_topic(0, 10)

[('abbott', 0.012434472), ('party', 0.008847061), ('government', 0.007975474), ('power', 0.007954226)]
[('labor', 0.007714725), ('conservative', 0.006868049), ('s&p', 0.006789061), ('political', 0.0066726357)]
[('rudd', 0.006448531), ('policy', 0.006251966)]

Note the weights associated with the words – some words are more meaningful than

others

6 . 8

Examining the LDA model

3. See the top words in each topic

for i in range(0,10):

 top = lda.show_topic(i, 10)

 top_words = [w for w, _ in top]

 print('{}: {}'.format(i, ' '.join(top_words)))

0: abbott party government power labor conservative s&p political rudd policy
1: school ms. people white district security service inc. user officer
2: benefit city life home trip live people de blasio york
3: play williams city game partner set season . good azarenka
4: company work price day people end start share take retirement
5: % fund bank fee economy government investor mortgage financial crisis
6: market % country china u.s. report group car buy investor
7: company lhota city catsimatidis retiree work health plan people york
8: % health blasio de voter likely city old york support
9: president house rule u.s. congress vote company syria obama include

6 . 9

Examining the LDA model

▪ The package produces a nice interactive map of the topicspyLDAvis

ldavis = pyLDAvis.gensim_models.prepare(lda, corpus, words, sort_topics=False)

pyLDAvis.display(ldavis)

Click here to see the output

6 . 10

https://pyldavis.readthedocs.io/en/latest/readme.html
file:///M:/Dropbox/Teaching/Doctoral_ML/2022_Fall/Slides/Session_6/ldavis.html

STM

▪ STM (Structural Topic Modeling) adds two elements to the standard LDA approach:

1. Covariates can be included in determining the distribution of topics overall (“prevalence”)

2. Covariates can be included in determining the weights of words within topics (“content”)

This allows us to better examine the impact of characteristics on textual content

A worked out example is in the R code file

6 . 11

Conclusion

7 . 1

Wrap-up

▪ Can use them to more accurately compare textual similarity

▪ Can use them as inputs into a model

▪ Provides document-level insight into content distribution

Embeddings are useful in many contexts, but usually not as the final measure

LDA models work well as measures and can capture meaningful variation in text

STM provides more power for analyses interested in if textual content differs across

groups or treatments

7 . 2

Python

▪ gensim

▪ numpy

▪ pandas

▪ pyLDAvis

▪ seaborn

▪ spacy

▪ tensorflow

▪ tensorflow_hub

R

▪ gender

▪ knitr

▪ reticulate

▪ revealjs

▪ quanteda

▪ readtext

▪ stm

▪ stmBrowser

▪ tidyverse

Packages used for these slides

7 . 3

References

▪ Blei, David M., Andrew Y. Ng, and Michael I. Jordan. “Latent dirichlet allocation.” the Journal of machine

Learning research 3 (2003): 993-1022.

▪ Brown, Nerissa C., Richard M. Crowley, and W. Brooke Elliott. “What are you saying? Using topic to detect

financial misreporting.” Journal of Accounting Research 58, no. 1 (2020): 237-291.

▪ Cer, Daniel, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Constant et

al. “Universal sentence encoder.” arXiv preprint arXiv:1803.11175 (2018).

▪ Crowley, Richard M. and M. H. Franco Wong. “Understanding Sentiment through Context.” Working paper,

2022.

▪ Huang, Allen H., Reuven Lehavy, Amy Y. Zang, and Rong Zheng. “Analyst information discovery and

interpretation roles: A topic modeling approach.” Management Science 64, no. 6 (2018): 2833-2855.

▪ Roberts, M.E., Stewart, B.M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S.K., Albertson, B. and Rand, D.G.,

2014. Structural topic models for open-ended survey responses. American Journal of Political Science, 58(4),

pp.1064-1082.

7 . 4

