
ML for SS: Workflow and ML
regression

Dr. Richard M. Crowley

https://rmc.link/
rcrowley@smu.edu.sg

mailto:rcrowley@smu.edu.sg

About me

Research
Accounting disclosure: What companies say, and why it matters

Focus on social media and regulatory filings
Approach this using AI/ML techniques

Research highlights
1. Detecting financial misreporting using the topic modeling of annual report text
2. Multiple projects on Twitter showcasing:

1. How companies strategically disseminate financial information on Twitter
2. That CSR disclosure on Twitter is not credible
3. That executives’ disclosures are as important on Twitter as their firms’ disclosures

3. Newer work on
COVID-19 reactions worldwide
Sentiment and understandability in accounting text
Misinformation laws (e.g., POFMA)

All of the above use text-based data paired with AI/ML algorithms. A secondary thread is the importance of content, while
some papers also push for better causality in research.

What is the common thread?

A quick overview of the course

A typical class session
2-3 papers to discuss

Each paper will usually use a different
method
Almost all papers are applied
Student led

2 students per paper

Method overview
Walk through methods’ technical
aspects
Discuss how and where the method is
useful
Showcase a coded up example

When feasible, I will show this for
both R and python

Professor led

Expectations
Already
1. Have a working knowledge of python

or R
If you don’t, I can provide access to
training materials

2. Have some understanding of statistics
(e.g., regression)

3. Prior understanding of ML is not
required

You will learn a lot in the next 12
weeks!

In class
1. Read all the required papers
2. Be ready to discuss them!

Ask questions
Answer questions

3. Paper presentations should balance
presentation and discussion (critical
thinking)

Have a really good point to discuss?
Ask it to the class

A great presentation will make us
all think more

What we will cover

1. Working with data and ML regression
2. Tree-based ML algorithms
3. Clustering algorithms

Drop-in replacements for regression
Non-linear and non-parametric methods
Dimensionality reduction

Regression and analysis with ML

Not far removed from traditional econometrics, but more flexible

What we will cover

4. Text processing (NLP)
5. Linguistics
6. Embedding and topic models
7. Inferring traits from text

What is being discussed (content)
People’s sentiment or emotion toward something

Working with textual data

These methods are o�en useful in measuring phenomenon

What we will cover

8. Causal machine learning
9. Policy prediction

10. Bias

Understanding policy impacts
Understanding processes

Economics approaches to ML

Useful for measuring impact or effects

What we will cover

11. Text processing
12. Image processing

Better understanding message content
Picking apart images
Building better classifiers

Neural networks

These methods can offer powerful methods for measuring phenomenon

Overview

Papers

A fairly approachable overview of ML methods in economics
The points the paper makes are applicable broadly in any archival/empirical discipline

An application of LASSO to a context most should be familiar with: restaurant menus
Easy to motivate LASSO in this paper – more variables than observations!

Paper 1: Mullainathan and Spiess 2017 JEP

Paper 2: Chahuneau et al 2012

Technical discussion: Implementing LASSO
1. Sample splitting
2. Cross validation
3. What are LASSO and Elastic Net (i.e., regularized regression)
4. Implementing them

Python
Using sklearn
Can be done using built-in CV
methods

R
Using
Fast and easy to use
Nice CV methods built-in

glmnet

Both Python and R are good for this. Stata is also OK with lassopack.

A worked out solution for each language on my website, data is on eLearn.

https://glmnet.stanford.edu/

Main application: A linear problem
Idea: Discussion of risks, such as as foreign currency risks, operating risks, or legal risks
should provide insight on the volatility of future outcomes for the firm.
Testing: Predicting future stock return volatility based on 10-K filing discussion

Dependent Variable
Future stock return volatility

Independent Variables
A set of 31 measures of what was
discussed in a firm’s annual report

This test mirrors Bao and Datta (2014 MS)

Secondary application: A binary problem
Idea: Using the same data as in Application 1, can we predict instances of intentional
misreporting?
Testing: Predicting 10-K/A irregularities using finance, textual style, and topics

Dependent Variable
Intentional misreporting as stated in
10-K/A filings

Independent Variables
17 Financial measures
20 Style characteristics
31 10-K discussion topics

This test mirrors a subset of Brown, Crowley and Elliott (2020 JAR)

Paper 1: An overview of applied ML

Paper 2: ML for panel data

Problems of the usual approach
For both linear and logistic regression:

Easy to have too many covariates
Which can lead to high VIFs and multicollinearity

For logit:
Convergence is iffy when using sparse datasets or DVs

How can machine learning help?

1. Some methods directly adress the issues of multicollinearity or having too many
covariates (via model selection)

2. Some methods address sparsity well, being robust to binary DVs with sub 10% classes

What is LASSO?
Least Absolute Shrinkage and Selection Operator

Least absolute: uses an error term like
Shrinkage: it will make coefficients smaller

Less sensitive → less overfitting issues
Selection: it will completely remove some variables

Less variables → less overfitting issues
Sometimes called regularization

 means 1 dimensional distance, i.e.,

Note that regularization is a standard approach to dealing with inflated VIFs as well!

|ε|

L

1

L

1

|ε|

Great if you have way too many inputs in your model or high multicollinearity

L

1

How does it work?

Add an additional penalty term that is
increasing in the absolute value of
each

Incentivizes lower s, shrinking
them

The selection is part is explainable
geometrically in 2D

If the MSE level curves hit a corner
of the diamond shaped penalty
curve, then a coefficient is set to 0

{ + λ }min

β∈R

1

N

|ε|

2

2

|β|

1

β

β

What about other penalty types?
LASSO ()

Decreases coefficient values
Makes many of them 0
Increases prediction stability

Ridge ()

Decreases coefficient values
Increases prediction stability more
Less sensitive to outliers

L

1

L

2

Combining LASSO and Ridge: Elastic Net
Elastic Net has both and
penalties!
Allows you to optimize the amount of
selection effect you want from LASSO
and the amount of shrinkage from
Ridge
A generalization of LASSO and Ridge

L

1

L

2

{ + + }min

β∈R

1

N

|ε|

2

2

λ

1

|β|

1

λ

2

||β||

2

Technical: Preparation

Importing data
Python: We can use pandas to import the data set
R: We can use to import the data set
Compressing a csv file can save 50-90% of the storage space of the file

Note:
SAS, python pandas, and R can all handle .csv.gz and .csv.zip files
Stata is a bit tedious here, requiring uncompressing first

Either use your file manager or using Stata’s unzipfile command

tidyverse

df = pd.read_csv('../../Data/S1_data.csv.gz')

df = read_csv('../../Data/S1_data.csv.gz')

https://tidyverse.tidyverse.org/

Validating predictive analyses
Ideal:

Withhold the last year (or a few) of data when building the model
Check performance on hold out sample
This is out of sample testing
Ensure that the data is independent across time!

Sometimes acceptable:
Withhold a random sample of data when building the model
Check performance on hold out sample
Potential problems with correlations between hold out sample and training sample

Training vs. testing split
A simple approach is to split by time
Check which years are in the data using .unique()

Split out the last year as the testing sample
This can be done using a simple conditional
Final year is 2004, so…

Testing: df.year == 2004
Training: df.year < 2004

Check the years in the data
df['year'].unique()

array([2002, 2003, 2004, 1999, 2000, 2001], dtype=int64)

Check the years in the data
(df$year)unique

[1] 2002 2003 2004 1999 2000 2001

https://rdrr.io/r/base/unique.html

Splitting the sample

Note that the number of rows in df is the same as the sum of rows in train and test

Subset the final year to be the testing year
train = df[df.year < 2004]
test = df[df.year == 2004]
print(df.shape, train.shape, test.shape)

(14301, 198) (11478, 198) (2823, 198)

Subset the final year to be the testing year
train <- df %>% (year < 2004)
test <- df %>% (year == 2004)

(((df), (train), (test)))

filter
filter

print c nrow nrow nrow
[1] 14301 11478 2823

https://rdrr.io/r/stats/filter.html
https://rdrr.io/r/stats/filter.html
https://rdrr.io/r/base/print.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/nrow.html
https://rdrr.io/r/base/nrow.html
https://rdrr.io/r/base/nrow.html

Aside: Random testing sample
In python, Scikit-learn (sklearn) can handle this robustly

Scikit-learn is a package focused on simple machine learning methods
Since random sampling is common in ML, Scikit-learn provides multiple ways to handle
this.

The function is sklearn.model_selection.train_test_split()
Optionally you can stratify across classes in your data using the stratify=
parameter

In R, can handle this well using the createDataPartition() functioncaret

https://github.com/topepo/caret/

Technical: Running simple regressions

Using Statsmodels in Python
The statsmodels package provides a suit of basic regression functions
It supports most standard statistical approaches

OLS, Logit, GLM, Probit, Poisson, ARIMA, etc.
It includes some other interesting functions as well, such as:

Imputation methods (e.g., MICE), GAMs, Quantile regression, Markov switching, etc.
There are 2 interfaces to the package:
1. statsmodels.formula.api (usually imported as smf) – pandas-friendly
2. statsmodels.api (usually imported as sm) – requires data to be formatted

differently

Linear regression (OLS)
Unlike most statistical so�ware, regressions in statsmodels require multiple steps.

Note the use of ~ as the equals sign in the equation

Step 1: specify the regression structure

formula = 'sdvol1 ~ ' + ' + '.join(vars_topic[0:-1])
model = smf.ols(formula=formula, data=train)

Step 2: Run the regression

fit1 = model.fit()

Linear regression (OLS)

OLS Regression Results

Dep. Variable: sdvol1 R-squared: 0.161

Model: OLS Adj. R-squared: 0.159

Method: Least Squares F-statistic: 73.45

Date: Sun, 20 Aug 2023 Prob (F-statistic): 0.00

Time: 17:23:20 Log-Likelihood: 24508.

No. Observations: 11478 AIC: -4.895e+04

Df Residuals: 11447 BIC: -4.873e+04

Df Model: 30

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

Intercept 0.0458 0.000 171.114 0.000 0.045 0.046

Step 3: Output the results (optional)

fit1.summary()

Base R
Fitting regressions is straightforward in R

BD_eq <- (("sdvol1 ~ ", (("Topic_",1:30,"_n_oI"), collapse=" + "), collapse=""))
model <- (BD_eq, train)

(model)

as.formula paste paste paste0
lm

summary

Call:
lm(formula = BD_eq, data = train)

Residuals:
 Min 1Q Median 3Q Max
-0.18799 -0.01707 -0.00646 0.00904 0.49410

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0457521 0.0002674 171.114 < 2e-16 ***
Topic_1_n_oI 1.1709484 0.3404372 3.440 0.000585 ***
Topic_2_n_oI 0.5367261 0.2615383 2.052 0.040174 *
Topic_3_n_oI 0.4004462 0.4160324 0.963 0.335801
Topic_4_n_oI 0.6475066 0.2386256 2.713 0.006668 **
Topic 5 n oI 0 6776698 0 2462900 2 752 0 005941 **

https://rdrr.io/r/stats/formula.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/stats/lm.html
https://rdrr.io/r/base/summary.html

Logistic regression in Python

Logit Regression Results

Dep. Variable: Restate_Int No. Observations: 11478

Model: Logit Df Residuals: 11410

Method: MLE Df Model: 67

Date: Sun, 20 Aug 2023 Pseudo R-squ.: 0.1205

Time: 17:23:21 Log-Likelihood: -622.06

converged: False LL-Null: -707.27

Covariance Type: nonrobust LLR p-value: 5.753e-11

coef std err z P>|z| [0.025 0.975]

Intercept -6.6337 5.591 -1.187 0.235 -17.592 4.324

formula = 'Restate_Int ~ ' + \
 ' + '.join(vars_financial) + ' + ' +\
 ' + '.join(vars_style) + ' + ' +\
 ' + '.join(vars_topic[0:-1]) # Drop the final value to avoid multicollinearity
model = smf.logit(formula=formula, data=train)
fit_logit = model.fit()

Warning: Maximum number of iterations has been exceeded.
 Current function value: 0.054196
 Iterations: 35

fit_logit.summary()

Logistic regression in R
BCE_eq <- (("Restate_Int ~ logtotasset + rsst_acc + chg_recv + chg_inv +
 soft_assets + pct_chg_cashsales + chg_roa + issuance +
 oplease_dum + book_mkt + lag_sdvol + merger + bigNaudit +
 midNaudit + cffin + exfin + restruct + bullets + headerlen +
 newlines + alltags + processedsize + sentlen_u + wordlen_s +
 paralen_s + repetitious_p + sentlen_s + typetoken +
 clindex + fog + active_p + passive_p + lm_negative_p +
 lm_positive_p + allcaps + exclamationpoints + questionmarks + ",
 (("Topic_",1:30,"_n_oI"), collapse=" + "), collapse=""))

model_logit <- (BCE_eq, train, family="binomial")

(model_logit)

as.formula paste

paste paste0

glm

summary

Call:
glm(formula = BCE_eq, family = "binomial", data = train)

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.634e+00 5.591e+00 -1.187 0.23541
logtotasset 9.363e-02 6.442e-02 1.454 0.14607
rsst_acc 3.269e-01 3.226e-01 1.013 0.31095
chg_recv 6.838e-01 1.307e+00 0.523 0.60085
chg_inv -1.428e+00 1.509e+00 -0.947 0.34378
soft_assets 1.451e+00 4.698e-01 3.088 0.00201 **
pct_chg_cashsales -1.230e-03 8.480e-03 -0.145 0.88472
chg_roa -2.584e-01 2.635e-01 -0.981 0.32666
issuance 2.336e-01 4.218e-01 0.554 0.57971
oplease_dum 1.529e-01 3.136e-01 0.488 0.62572
book_mkt 7.977e-03 4.436e-02 0.180 0.85731
lag_sdvol -4.005e-02 1.003e-01 -0.399 0.68984
merger -2.662e-01 2.563e-01 -1.039 0.29903
bigNaudit -1.544e-01 4.452e-01 -0.347 0.72877
midNaudit 3 926e-01 5 218e-01 0 752 0 45180

https://rdrr.io/r/stats/formula.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/stats/glm.html
https://rdrr.io/r/base/summary.html

Technical: Measuring predictive performance

Linear predictive power
The 2 methods that are most o�en used are:

RMSE: Root Mean Squared Error
MAE: Mean Absolute Error

RMSE MAE
sklearn.metrics.mean_squared_error()

apply_rmse <- function(v1, v2) {
 (((v1 - v2)^2, na.rm=T))
}

sqrt mean

sklearn.metrics.mean_absolute_error()

apply_mae <- function(v1, v2) {
 ((v1-v2), na.rm=T)
}

mean abs

https://rdrr.io/r/base/MathFun.html
https://rdrr.io/r/base/mean.html
https://rdrr.io/r/base/mean.html
https://rdrr.io/r/base/MathFun.html

Logistic predictive power
For logistic regression, ROC AUC is a good measure
Use sklearn in python or in Ryardstick

Y_hat_test = fit_logit.predict(test)
auc = metrics.roc_auc_score(test.Restate_Int
 Y_hat_test)

test$Y_hat_test <- (model_logit,test
 type="response")
auc_out <- test %>%
 roc_auc(Restate_Int_f, # must be a factor
 Y_hat_test,
 event_level='second')

predict

https://github.com/tidymodels/yardstick
https://rdrr.io/r/stats/predict.html

Visualizing AUC with the ROC curve
sklearn makes it easy to output a ROC curve as well

Logit, out-of-sample
Y_hat_test = fit_logit.predict(test)
auc = metrics.roc_auc_score(test.Restate_Int, Y_hat_test)

fpr, tpr, thresholds = metrics.roc_curve(test.Restate_Int, Y_hat_test)
display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=auc)
display.plot()

Using yardstick in R
test$Y_hat_test <- (model_logit, test, type="response")
test %>%
 roc_curve(Restate_Int_f, Y_hat_test, event_level='second') %>%
 autoplot()

predict

https://rdrr.io/r/stats/predict.html

Technical: Implementing LASSO (linear)

Using python: Setting up to use Scikit-Learn
Scikit-learn, like many machine learning packages, expects separate data sets or
matrices for DVs and IVs
LASSO, Ridge, and Elastic net are also particular about data format:

Scikit-learn has this all built in, so it will be easy

sklearn.preprocessing.StandardScaler() defaults to transforming to Z-scores
Applying .fit() with data makes it calculate the mean and SD of each column
Applying .transform() with data applies the Z-score based on the fitted parameters

Avoids any look-ahead bias in our testing sample!

Every input should be normalized to a Z-score! (python-specific requirement)

vars = vars_topic
scaler_X = preprocessing.StandardScaler()
scaler_X.fit(train[vars])
train_X_linear = scaler_X.transform(train[vars])
test_X_linear = scaler_X.transform(test[vars])

Using Python: Setting up to use Scikit-Learn

Inputs are required to be 2D matrices by sklearn
The np.array(____).reshape(-1, 1) bit is to cast the Pandas series back into a
2D matrix
np.array() casts the pandas series object to an array (matrix), but it is only 1D
.reshape(-1,1) forces the matrix to be a column (and thus 2D) instead of a 1D row
matrix

scaler_Y = preprocessing.StandardScaler()
scaler_Y.fit(np.array(train.sdvol1).reshape(-1, 1))
train_Y_linear = scaler_Y.transform(np.array(train.sdvol1).reshape(-1, 1))
test_Y_linear = scaler_Y.transform(np.array(test.sdvol1).reshape(-1, 1))

Using Python: Simple LASSO, linear
Fitting a LASSO with a pre-specified
penalty

Custom coefficient plot function

reg_lasso = linear_model.Lasso(alpha=0.1)
reg_lasso.fit(train_X_linear, train_Y_linear

coefplot(vars, reg_lasso.coef_)

Not too difficult, but the coefplot function is custom (see Jupyter notebook
for it)

Using R: Setting up to use glmnet
The package expects data as separate matrices for X and Y measures
It does not require data to be Z-scores – it is invariant to this

This is a `{glmnet}’-specific nicety, other R packages may require scaling
The and commands from Base R make this easy

glmnet

model.matrix() model.frame()

x_lm <- (BD_eq, data=train)[,-1] # [,-1] to remove intercept
y_lm <- (BD_eq, data=train)[,"sdvol1"]

model.matrix
model.frame

https://glmnet.stanford.edu/
https://rdrr.io/r/stats/model.matrix.html
https://rdrr.io/r/stats/model.frame.html
https://rdrr.io/r/stats/model.matrix.html
https://rdrr.io/r/stats/model.frame.html

Using R: Running glmnet
fit_LASSO_lm <- glmnet(x=x_lm, y=y_lm,
 family = "gaussian",
 alpha = 1 # Specifies LASSO. alpha = 0 is ridge
)

coefplot(fit_LASSO_lm, sort='magnitude')

In this case, coefplot is available from CRAN

Cross validation (linear)

What is cross validation?
Validation is where you keep part of the training sample as a hold out sample to
evaluate and improve your algorithm against

This prevents biasing towards the real hold out sample (the testing sample)
Cross validation takes this further by making a bunch of validation samples,
An example of 10-fold cross validation:
1. Randomly splits the data into 10 groups
2. Runs the algorithm on 90% of the data (groups)
3. Determines the best model based on the performance of the group that was le� out
4. Repeat steps 2 and 3 (more times)
5. Uses the best overall model across all hold out samples

10 − 1 = 9

10 − 1 = 9

10

Scikit-learn has this built in! So does glmnet!

10-fold CV LASSO, linear, Python
reg_lasso = linear_model.LassoCV(cv=10)
reg_lasso.fit(train_X_linear, np.ravel(train_Y_linear))

coefplot(vars, reg_lasso.coef_)

10-fold CV LASSO, linear, R
To replicate our linear LASSO:

cvfit_lm = cv.glmnet(x=x_lm, y=y_lm, family = "gaussian", alpha = 1, type.measure="mse")
(cvfit_lm)plot

Note: This is optimizing MSE instead of – glmnet doesn’t support !R

2

R

2

https://rdrr.io/r/graphics/plot.default.html

10-fold CV elastic net, linear, Python
Need to specify values to examine for the ratio between and penalty
l1_ratio=1 is a LASSO, l1_ratio=0 is Ridge, in between is elastic net

L

1

L

2

reg_EN = linear_model.ElasticNetCV(cv=10, l1_ratio=[.1, .5, .7, .9, .95, .99, 1])
reg_EN.fit(train_X_linear, np.ravel(train_Y_linear))

Note: This does CV over both parameters!

10-fold CV elastic net, linear, R
In R, can do this too
alpha=1 is LASSO
alpha=0 is Ridge
If alpha is set between 0 and 1, it’s an elastic net!

To replicate our linear LASSO:

glmnet

cvfit_en = cv.glmnet(x=x, y=y, family = "binomial", alpha = 0.5, type.measure="auc")

Note: This does CV only over the penalty parameter. You need to build your
own grid over the alpha parameter

https://glmnet.stanford.edu/

LASSO for logistic regression

Using python: Setting up to use Scikit-Learn
Scikit-learn, like many machine learning packages, expects separate data sets or
matrices for DVs and IVs
LASSO, Ridge, and Elastic net are also particular about data format:

Scikit-learn has this all built in, so it will be easy

sklearn.preprocessing.StandardScaler() defaults to transforming to Z-scores
Applying .fit() with data makes it calculate the mean and SD of each column
Applying .transform() with data applies the Z-score based on the fitted parameters

Avoids any look-ahead bias in our testing sample!

Every input should be normalized to a Z-score! (python-specific requirement)

vars = vars_financial + vars_style + vars_topic
scaler_X = preprocessing.StandardScaler()
scaler_X.fit(train[vars])
train_X_logistic = scaler_X.transform(train[vars])
test_X_logistic = scaler_X.transform(test[vars])

Using Python: Setting up to use Scikit-Learn

Inputs are required to be 2D matrices by sklearn
No scaling need for logistic LASSO, since it is binary

train_Y_logistic = train.Restate_Int
test_Y_logistic = test.Restate_Int

Using Python: Simple LASSO, linear
reg_lasso = linear_model.LogisticRegression(penalty='l1', solver='saga', C=0.1)
reg_lasso.fit(train_X_logistic, train_Y_logistic)

coefplot(vars, reg_lasso.coef_)

10-fold CV LASSO, linear, Python
reg_lasso = linear_model.LogisticRegressionCV(penalty='l1', solver='saga', Cs=10, cv=5, scoring="roc_auc")
reg_lasso.fit(train_X_logistic, train_Y_logistic)

coefplot(vars, reg_lasso.coef_) display = \
 metrics.RocCurveDisplay.from_estimator(
 reg_lasso, test_X_logistic, test_Y_logist
display.plot()

10-fold CV elastic net, linear, Python
To replicate our linear LASSO:

reg_EN = linear_model.LogisticRegressionCV(
 penalty='elasticnet', solver='saga', Cs=5, cv=5,
 scoring="roc_auc", l1_ratios=[.96, .97, .98, .99, 1])
reg_EN.fit(train_X_logistic, train_Y_logistic)

coefplot(vars, reg_EN.coef_) display = \
 metrics.RocCurveDisplay.from_estimator(
 reg_EN, test_X_logistic, test_Y_logistic)
display.plot()

Simple logistic LASSO, R
x <- (BCE_eq, data=train)[,-1] # [,-1] to remove intercept
y <- (BCE_eq, data=train)[,"Restate_Int"]
fit_LASSO_logit <- glmnet(x=x, y=y,
 family = "binomial",
 alpha = 1 # Specifies LASSO. alpha = 0 is ridge
)
coefplot(fit_LASSO_logit, sort='magnitude')

model.matrix
model.frame

https://rdrr.io/r/stats/model.matrix.html
https://rdrr.io/r/stats/model.frame.html

10-fold CV LASSO, logistic, R
cvfit_logit = cv.glmnet(x=x, y=y, family = "binomial", alpha = 1, type.measure="auc")

coefplot(cvfit_logit, lambda='lambda.min', sort='magnitude')

10-fold CV elastic net, logistic, R
alpha=1 is LASSO; alpha=0 is Ridge; 0<alpha<1 is an elastic net

cvfit_en = cv.glmnet(x=x, y=y, family = "binomial", alpha = 0.5, type.measure="auc")

coefplot(cvfit_en, lambda='lambda.min', sort='magnitude')

Note: This does CV only over the penalty parameter. You need to build your
own grid over the alpha parameter

Conclusion

Wrap-up

R and Stata are both better for this, python is capable but not as simple

Python is better at this than basic regression
In some circumstances, these techniques are

More econometrically defensible, more robust, and more accurate
R’s package is more efficient and easier to use

But the elastic net implementation is more flexible for CV in Python
Stata has an interesting implementation in lassopack
For more interesting variants, check out R’s hdm

Econometrics

Machine learning regression

glmnet

https://glmnet.stanford.edu/

Packages used for these slides
Python

matplotlib
numpy
pandas
scikit-learn
statsmodels

R
DT
downlit
glmnet
kableExtra
knitr
plotly
quarto
reticulate
revealjs
tidyverse
yardstick

https://github.com/rstudio/DT
https://downlit.r-lib.org/
https://glmnet.stanford.edu/
http://haozhu233.github.io/kableExtra/
https://yihui.org/knitr/
https://plotly-r.com/
https://github.com/quarto-dev/quarto-r
https://rstudio.github.io/reticulate/
https://github.com/rstudio/revealjs
https://tidyverse.tidyverse.org/
https://github.com/tidymodels/yardstick

References
Bao, Yang, and Anindya Datta. “Simultaneously discovering and quantifying risk types from textual risk disclosures.”
Management Science 60, no. 6 (2014): 1371-1391.
Brown, Nerissa C., Richard M. Crowley, and W. Brooke Elliott. “What are you saying? Using topic to detect financial
misreporting.” Journal of Accounting Research 58, no. 1 (2020): 237-291.
Chahuneau, Victor, Kevin Gimpel, Bryan R. Routledge, Lily Scherlis, and Noah A. Smith. “Word salad: Relating food
prices and descriptions.” In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pp. 1357-1367. 2012.
Mullainathan, Sendhil, and Jann Spiess. “Machine learning: an applied econometric approach.” Journal of Economic
Perspectives 31, no. 2 (2017): 87-106.

Custom code
Replication of R’s coefplot function for use with sklearn’s linear and logistic LASSO

def coefplot(names, coef, title=None):
 # Make sure coef is list, cast to list if needed.
 if isinstance(coef, np.ndarray):
 if len(coef.shape) > 1:
 coef = list(coef[0])
 else:
 coef = list(coef)

 # Drop unneeded vars
 data = []
 for i in range(0, len(coef)):
 if coef[i] != 0:
 data.append([names[i], coef[i]])
 data.sort(key=lambda x: x[1])
 # Add in a key for the plot axis
 data = [data[i] + [i+1] for i in range(0,len(data))]
 fig, ax = plt.subplots(figsize=(4,0.25*len(data)))
 ax.scatter([i[1] for i in data], [i[2] for i in data])
 ax.grid(axis='y')
 ax.set(xlabel="Fitted value", ylabel="Residual", title=(title if title is not None else "Coefficient Plot"))
 ax.axvline(x=0, linestyle='dotted')
 ax.set_yticks([i[2] for i in data])
 ax.set_yticklabels([i[0] for i in data])
 return ax

