ML for SS: Bias

Dr. Richard M. Crowley

rcrowley@smu.edu.sg https://rmc.link/

Overview

Papers

Wich, Bauer and Groh (2020)

• A paper using SHAP to understand an impact of political bias

Lundberg et al. (2018)

- A practical use of SHAP for model explainability
- The team behind this paper contains the team from the original SHAP paper (Lundberg and Lee (2017))

Rambachan et al. (2020)

Discusses algorithmic fairness and sources of bias in algorithms

Technical Discussion: DoubleML

Focus on the SHAP method

Python

- Use the { shap } library
 - By the original author team
 - Great visualization support
 - Decent documentation
 - Has some bugs
 - Sometimes you need to use older packages with it

R

- For XGBoost, you can use SHAPforxgboost
- R, use shapper
- missing a lot of features

Python's support is a lot better here unless you are using XGBoost

• For accessing the python package in • For native SHAP, use shapr, but it is

What exactly is SHAP?

Aims to provide an explanation of the importance of model inputs in explaining model output

- Game theoretic and theory driven
- Unifies six other methods that tried to address this problem
- It is a model itself: a model to explain models
- Provides a simple to understand output

SHAP: SHapley Additive exPlanations

- Based on Shapley, 1953, "A value for n-person games."
- SHAP itself is from Lundberg and Lee (2017)

Principles of SHAP

1. Local accuracy

- The simple model is able to accurately predict a model output on small subsets of the data
- 2. Missingness
 - SHAP only uses data the original model had access to
 - If data was missing from the original model, SHAP won't use it
- 3. Consistency
 - Akin to transitivity conditions in utility theory (Savage Axioms)
 - But instead of "utility," we have "simplified model's input's contribution"

SHAP in more detail

SHAP is, per Lundberg and Lee (2017), the unique solution that maintains local accuracy and consistent from a class of methods called *additive feature* attribution methods (AFAM)

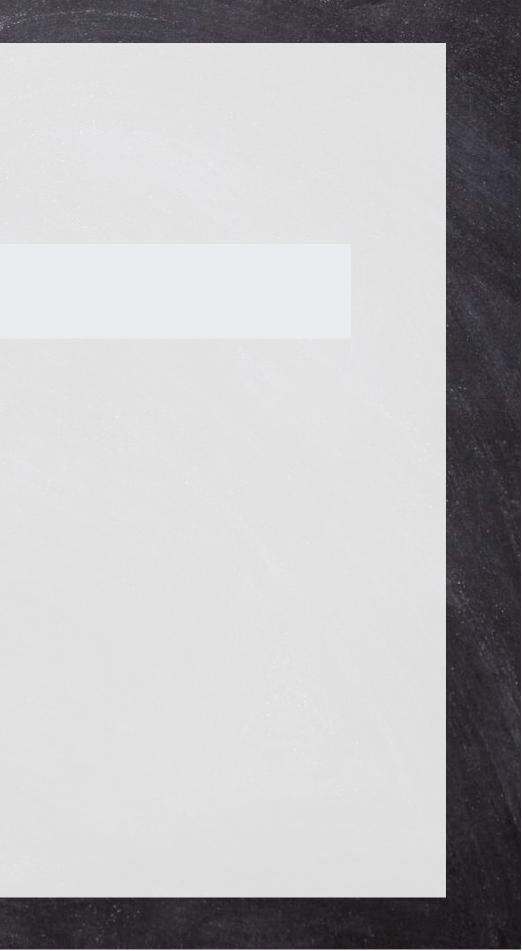
AFAM's have a linear function of binary variables where $z' \in \{0,1\}^M$ where M is a number of simplified input features, is the feature importance, , and when .

- 6 other methods in the literature also fit in the class
 - LIME, DeepLIFT, Layer-Wise Relevance Propagation, Shapley regression values, Shapley sampling values, Quantitative input influence
 - These methods were approximating SHAP

SHAP: Local accuracy

• is the explanation model of where and

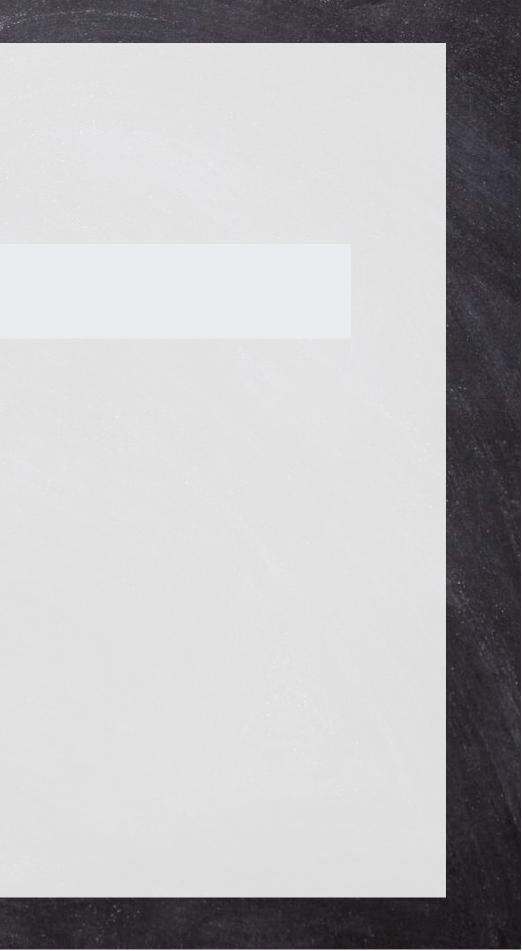
Not all other methods have this



SHAP: Missingness

• "Features missing in the original input [have] no impact"

All AFAM models have this



SHAP: Consistency

Let and denote setting. For any two models and :

- Recall that is measuring feature importance of
- If removing drops the prediction more under than under, then it has more feature importance under than under

Not all other methods have this

SHAP: The solution

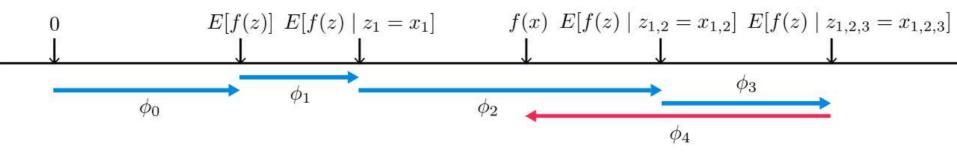
- Where:
 - is the number of non-zero entries in
 - is the set of all s.t. the non-zero entries are a subset of the non-zero entries in

Combinatoric weighting to the difference element adds to

SHAP sets; is the set of non-zero indexes in

Then approximate it all

Intuition of SHAP



- SHAP is defined by a series of [conditional] expectations of the impact of an input
- For linear models, order of selecting inputs has no effect
- For nonlinear models, SHAP averages inputs' conditional expected impact over all possible orderings
 - This is computationally intensive on high-dimensional data

Prepping SHAP

An example of quantifying bias

- Data: City of Chicago salaries
 - 33,586 employees
- Trained using a simple XGBoost model
- Features:
 - Job title
 - Department
 - Full time / part time
 - Salaried or hourly
 - Female

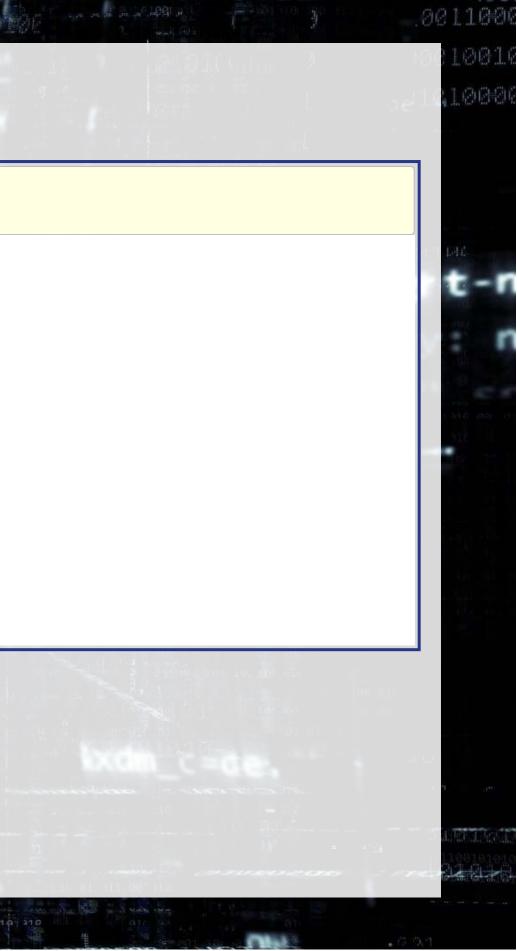
Is there gender bias in annual compensation?

The data

1000

Ş	<pre>vars = ['Job.Titles', 'Department', 'Full.Time', 'Salaried', 'Female'] df[vars]</pre>					
	Job.Titles Department	Full.Time \				
0	SERGEANT POLICE	1				
1	POLICE OFFICER (ASSIGNED AS DETECTIVE) POLICE	1				
2	Other GENERAL SERVICES	1				
3	Other WATER MGMNT	1				
4	Other TRANSPORTN	1				
3358	1 POLICE OFFICER POLICE	1				
3358	2 POLICE OFFICER POLICE	1				
3358	3 POLICE OFFICER POLICE	1				
3358	4 POLICE OFFICER POLICE	1				
3358	5 Other Other	1				
	Salaried Female					
0	1 0.0					

NAN



One hot encoding categorical data

- Pandas has a function for this, pd.get dummies()
 - prefix= lets us name the columns of the output
- As pd.get dummies() outputs a new data frame only containing the new columns, we need to join them back
 - df.join() makes this quick and easy

```
one_hot1 = pd.get_dummies(df['Job.Titles'], prefix='Job.Titles')
one hot2 = pd.get dummies(df['Department'], prefix='Department')
```

df = df.join(one hot1) df = df.join(one hot2)

Prepping XGBoost				
	We did this in Session 3			
Ş	<pre>vars = one_hot1.columns.tolist() + \ one_hot2.columns.tolist() + \ ['Full.Time', 'Salaried', 'Female'] dtrain = xgb.DMatrix(df[vars], label=df['Salary'], feature_names=vars)</pre>			
	<pre>'nthread': 8, 'objective': 'reg:squarederror',</pre>	<pre># default tree based # number of threads to use for parallel pr # RMSE error # maximize ROC AUC # shrinkage; [0, 1], default 0.3 # maximum depth of each tree; default 6 # set above 0 to prune trees, [0, inf], de # higher leads to more pruning of tress, [# Randomly subsample rows if in (0, 1), de</pre>		

processing default 0 [0, inf], default 1 default 1

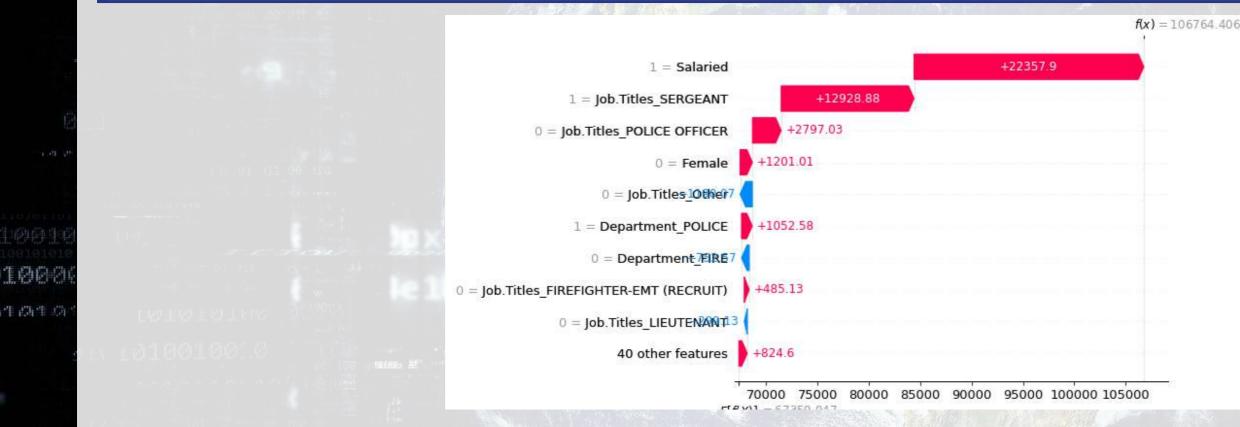
Building our model and prepping SHAP

- We call xgb.train() to fit our XGBoost model
 - model xgb = xgb.train(param, dtrain, num round)
- Since XGBoost is a tree-based model, we will use SHAP's shap.TreeExplainer() function to analyze the model
- Since we only have in-sample data, we will compute SHAP on the same data the XGBoost model was fit to
- We will also prepare a small sample for more CPU-intensive analyses

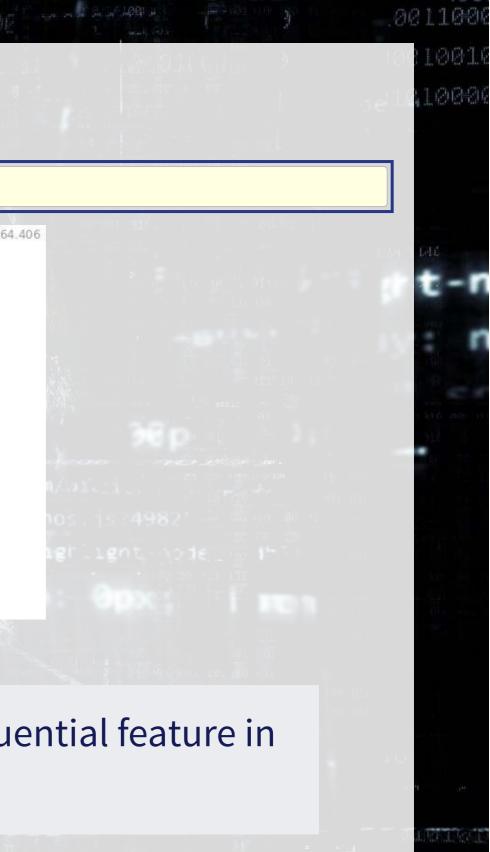
```
explainer = shap.TreeExplainer(model xgb)
shap values = explainer(df[vars])
df small = df.sample(frac=0.01)
shap values small = explainer(df[vars])
```

Explaining a single observation

shap.plots.waterfall(shap values[0])

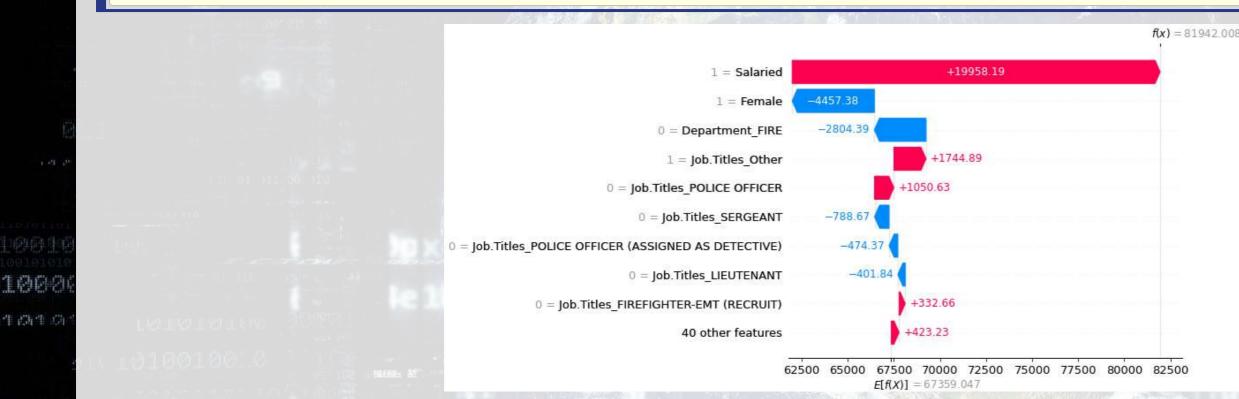


Here we see that having Female=0 was the fourth most influential feature in the model, and that it led to a *higher* predicted salary

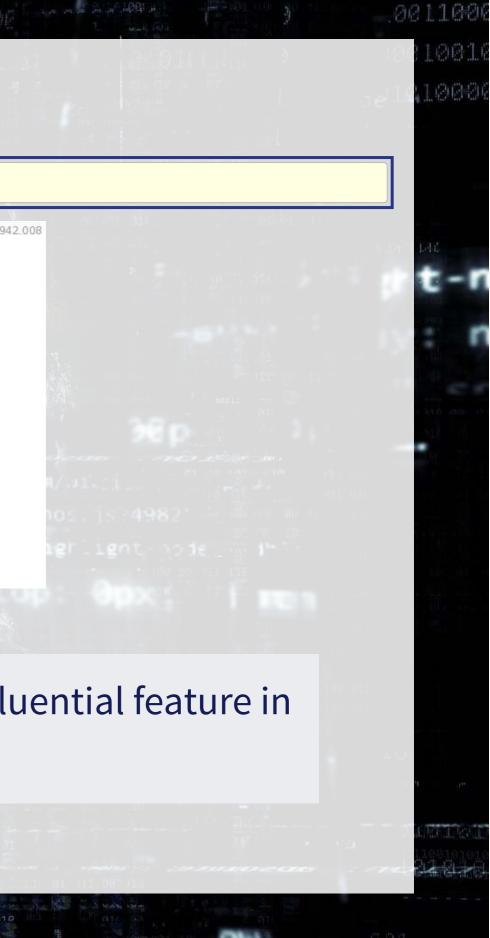


Explaining a single observation

shap.plots.waterfall(shap values[2])

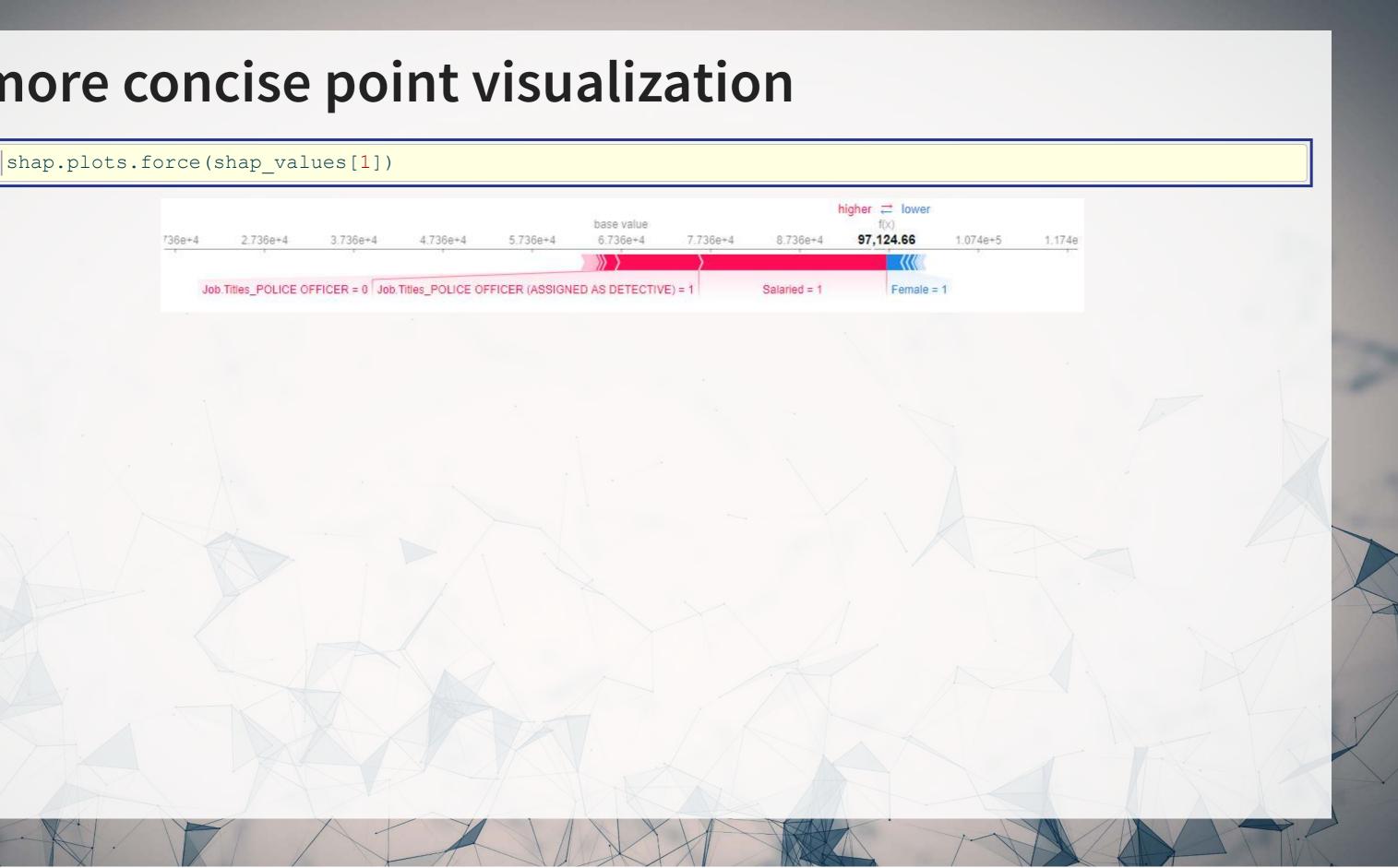


Here we see that having Female=1 was the second most influential feature in the model, and that it led to a *lower* predicted salary

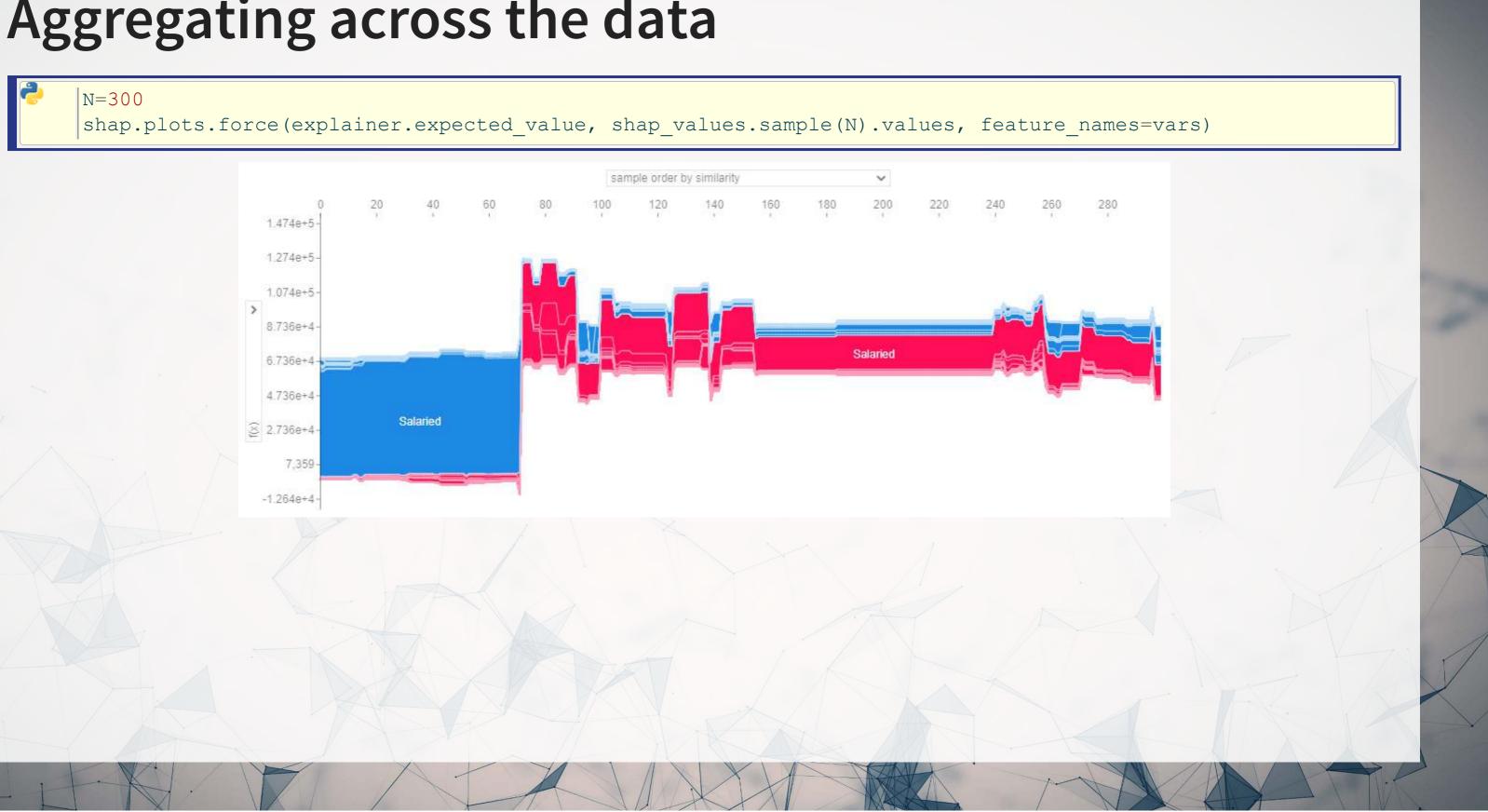


Charting with SHAP

A more concise point visualization

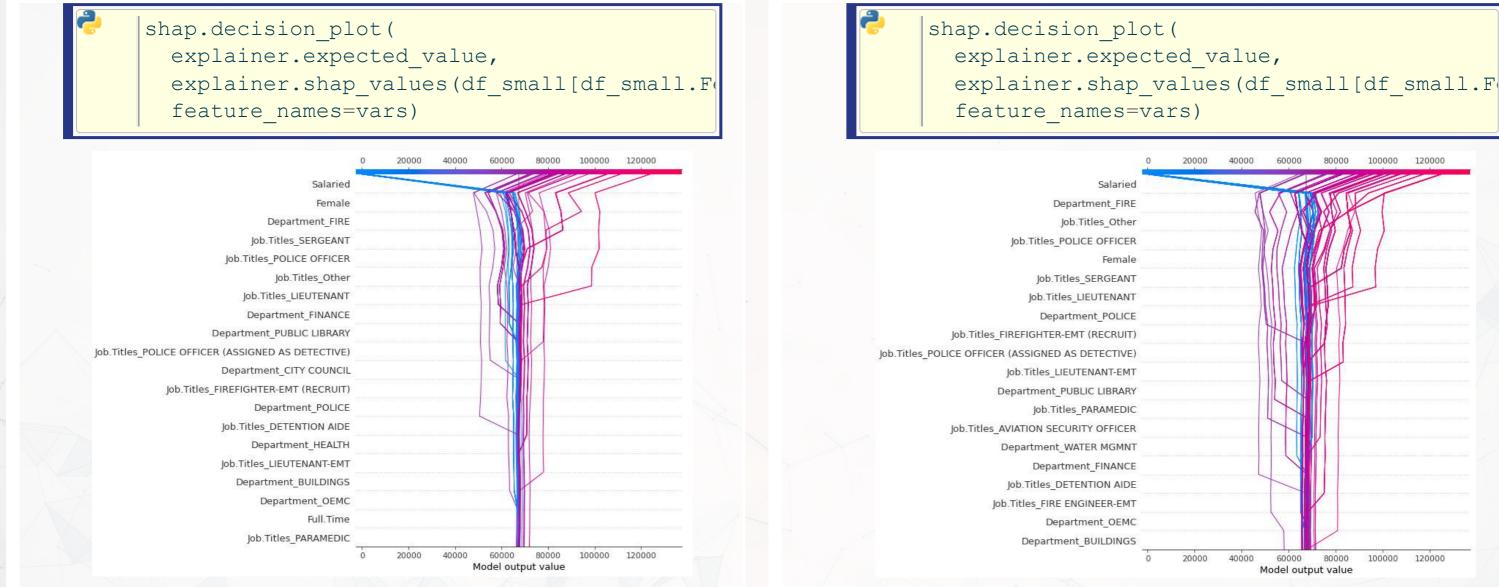


Aggregating across the data



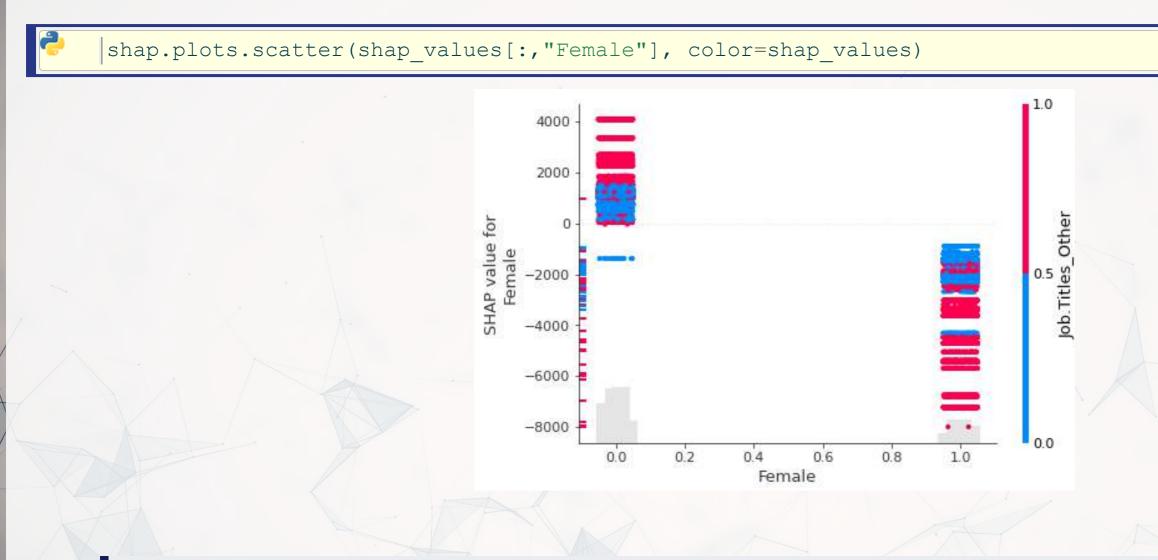
Seeing more variables' impact

• A "Decision plot" uses a line chart to show the impact of measures across the data



Aggregate analysis of an individual variable

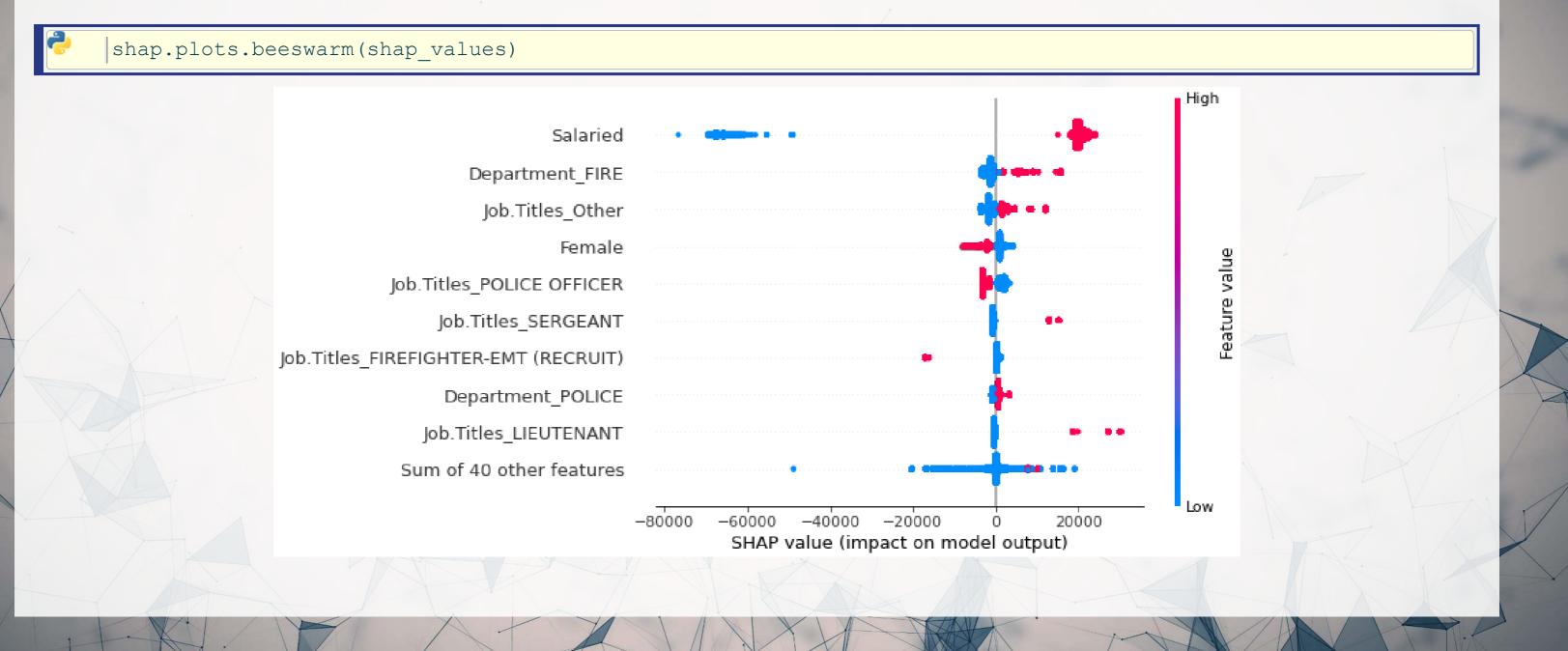
• To see the full impact of "Female" on outcomes in our data, a scatter plot is useful



Remember that our model is nonparametric! Signs can be different even when the variable doesn't change due to interactive effects

Multiple scatterplots at once: Bee swarm

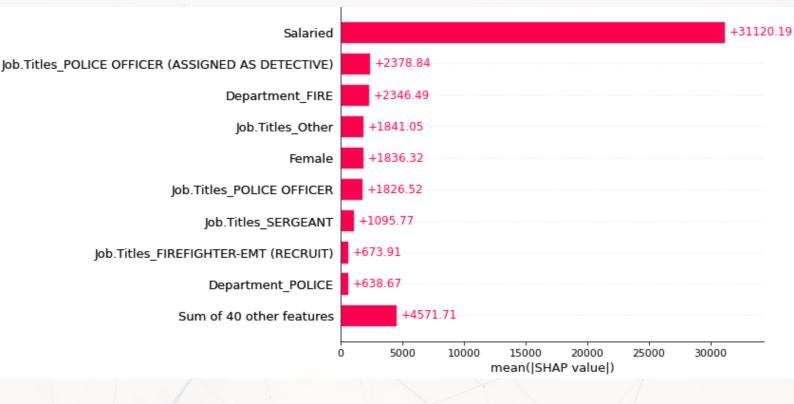
• If you want a concise way to present multiple variables, the bee swarm plot can be useful



Importance plot

• Lastly, we can replicate XGBoost's importance plot using

shap.plots.bar(shap_values)



This may not be useful for XGBoost since it already has an importance metric, but many other models lack it

Addendum: Using R

- If you are working explicitly with XGBoost, there is a great SHAPforxgboost package
- To interface with the python { shap } package, you can use shapper
- There is also shapr, though it isn't as full-featured.

Some coding resources on SHAP with R are available at this link

Conclusion

Wrap-up

SHAP can provide some insight into models at the observation, group, and sample level

• For more complex models, this helps to unwrap the "black box" some

SHAP can provide us with [conditional] marginal effects-like analysis for more complex models

• This can be used to provide granular insights on more complex models

Packages used for these slides

 $\cap \circ$

Python

- numpy
- pandas
- shap
- xgboost

R

- kableExtra
- knitr
- quarto
- reticulate
- revealjs

- 0 0 0 0 0 0

C

References

- Lundberg, Scott, and Su-In Lee. "A unified approach to interpreting model predictions." In Proceedings of the 31st Conference on Neural Information Processing Systems. (2017).
- Lundberg, Scott M., Bala Nair, Monica S. Vavilala, Mayumi Horibe, Michael J. Eisses, Trevor Adams, David E. Liston et al. "Explainable machine-learning predictions for the prevention of hypoxaemia during surgery." Nature biomedical engineering 2, no. 10 (2018): 749-760.
- Rambachan, Ashesh, Jon Kleinberg, Jens Ludwig, and Sendhil Mullainathan. "An economic perspective on algorithmic fairness." In AEA Papers and Proceedings, vol. 110, pp. 91-95. 2020.
- Shapley, Lloyd S. "A value for n-person games." (1953): 307-317.
- Wich, Maximilian, Jan Bauer, and Georg Groh. "Impact of politically biased data on hate speech classification." In Proceedings of the Fourth Workshop on Online Abuse and Harms, pp. 54-64. 2020.