ML for SS: Classification

Dr. Richard M. Crowley

rcrowley@smu.edu.sg https://rmc.link/

Overview

Papers

Paper 1: Purda and Skillicorn 2015

- A fairly approachable overview of ML methods in economics
- The points the paper makes are applicable broadly in any archival/empirical discipline

Paper 2: Noh et al. 2021

- Uses XGBoost for an interesting application: Determining fall risk in older adults
- Combines experimental work with ML-based econometrics

Technical Discussion: Classification

• SVM and Tree-based algorithms (like XGBoost)

Python

- Using sklearn for SVM
- Using xgboost for XGBoost
- Using sklearn for hyperparameter tuning

R

- Using caret for SVM
- Using xgboost for XGBoost
- Using tidymodels and related

Python is generally a bit stronger for these topics.

There is a fully worked out solution for each language on my website, data is on eLearn.

packages for hyperparameter tuning

Main application: Binary problem

- Idea: Using the same data as in Application 1, can we predict instances of intentional misreporting?
- Testing: Predicting 10-K/A irregularities using finance, textual style, and topics

Dependent Variable

生的同时

目的性

Intentional misreporting as stated in 10-K/A filings

Independent Variables

- 17 Financial measures
- 20 Style characteristics
- 31 10-K discussion topics

This test mirrors a subset of Brown, Crowley and Elliott (2020 JAR)

Same problem and data as last week's binary problem

Main application: A Linear problem

- Idea: Discussion of risks, such as as foreign currency risks, operating risks, or legal risks should provide insight on the volatility of future outcomes for the firm.
- Testing: Predicting future stock return volatility based on 10-K filing discussion

Dependent Variable

Future stock return volatility

Independent Variables

This test mirrors Bao and Datta (2014 MS)

Same problem and data as last week's linear problem

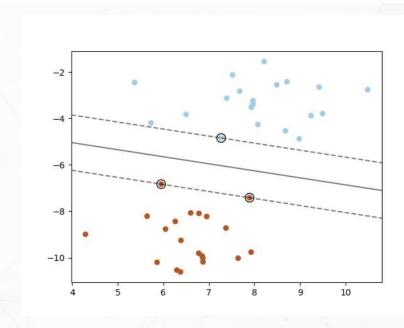
• A set of 31 measures of what was discussed in a firm's annual report

SVM: Support Vector Machine

What is SVM?

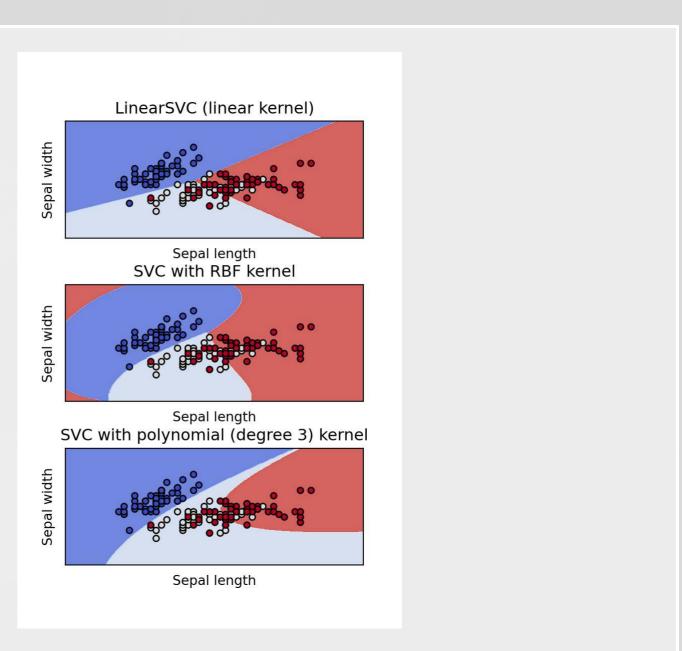
Simpler case: Binary Classification

- SVM-type algorithms generally focus on separability under some tolerance for error This is quite different from our regression approaches • Regression focuses on *minimizing an error function*
 - Note how in this example the points that matter are those that are on the error boundaries
 - The rest of the points aren't affecting the outcome much
 - You could shift them around on their respective side of the line with minimal impact



What are the benefits of SVM?

- 1. Non-linear kernels
 - SVM can be linear or non-linear
 - 3 examples to the right, adapted from the sklearn documentation
- 2. Different objective function than regression
 - Fits better with classification, conceptually
- 3. Can work with non-numeric data (text, images, graphs)



What are the costs of SVM?

1. Doesn't work well on noisy data 2. Can be slow to train on datasets with many observations

• More than 10,000 observations leads to a lot of slow down for non-linear kernels 3. Difficult to interpret model when using a non-linear kernel 4. Can be difficult to pick an optimal kernel

Implementing SVM in python

- For this we will use sklearn again
- To keep things simple and interpretable, we will use linear kernels in these examples

Binary classification

- Fast linear model:
 - sklearn.svm.LinearSVC()
- General model:
 - sklearn.svm.SVC()

Regression

- Fast linear model:
- General model:
 - sklearn.svm.SVR()
- Both linear methods have a hyperparameter C which controls the amount of regularization (inversely)
 - We can tune this using sklearn as well!

sklearn.svm.LinearSVR()

Why are there two ways each to run a linear SVM model?

- The two ways use different backends
 - The LinearSV methods use a backend called liblinear
 - The SV methods use a backend called libsvm
- liblinear is faster but only supports linear kernels
 - Time to run is roughly linear in the number of observations
 - libsvm is fast on small samples; time increase for additional obs. is polynomial
- The results aren't quite the same across backends
 - Iiblinear uses a penalized intercept while libsvm does not
 - "hinge" loss

Both developed out of National Taiwan University, and both maintained by the same professor

Implementing LinearSVC for irregularity detection

- To train a simple linear SVM classifier, we can call svm.LinearSVC() pretty much the same way that we used linear model.Lasso() earlier
 - Note: The dual=False option is to maintain efficiency when the number of observations is great than the number of variables

model svc = svm.LinearSVC(C=1, dual=False) model svc.fit(train X logistic, train Y logistic)

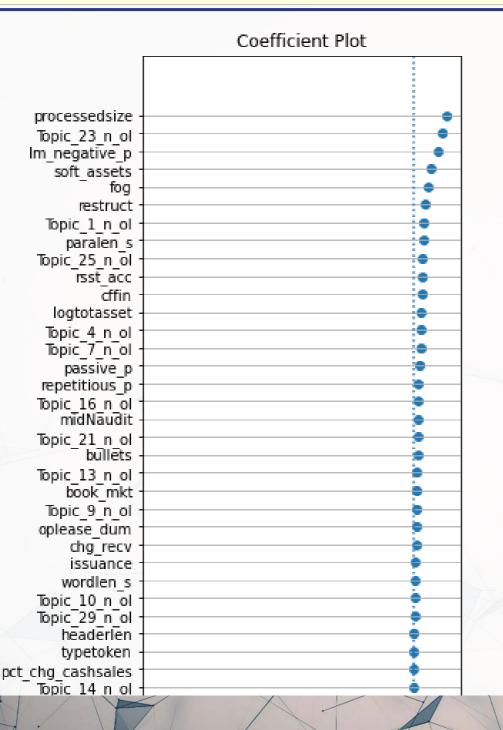
• No regression table built in, but we can visualize it with coefplot()

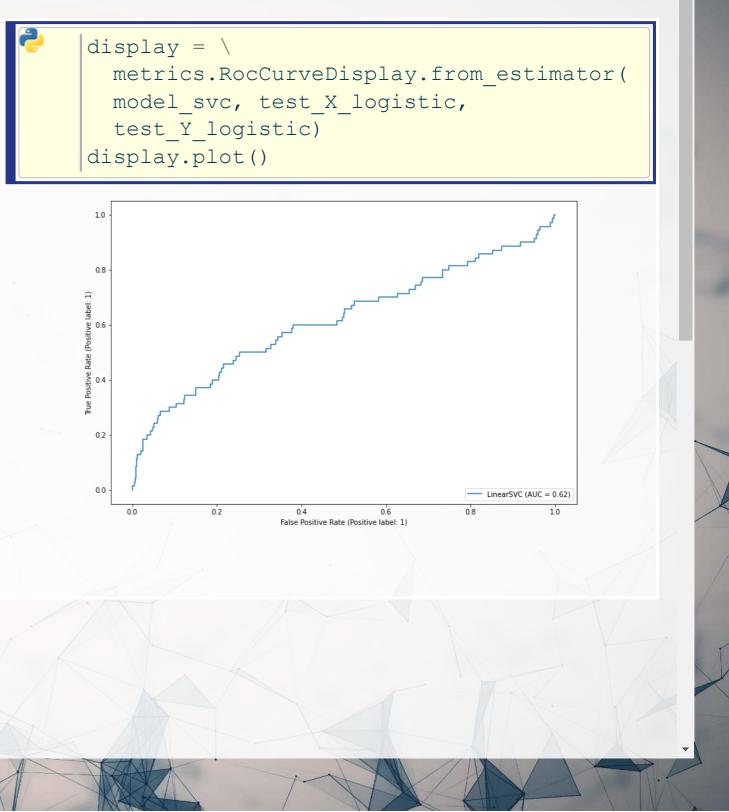
coefplot(vars logistic, model svc.coef)

Visualizing LinearSVC for irregularity detection

Ş

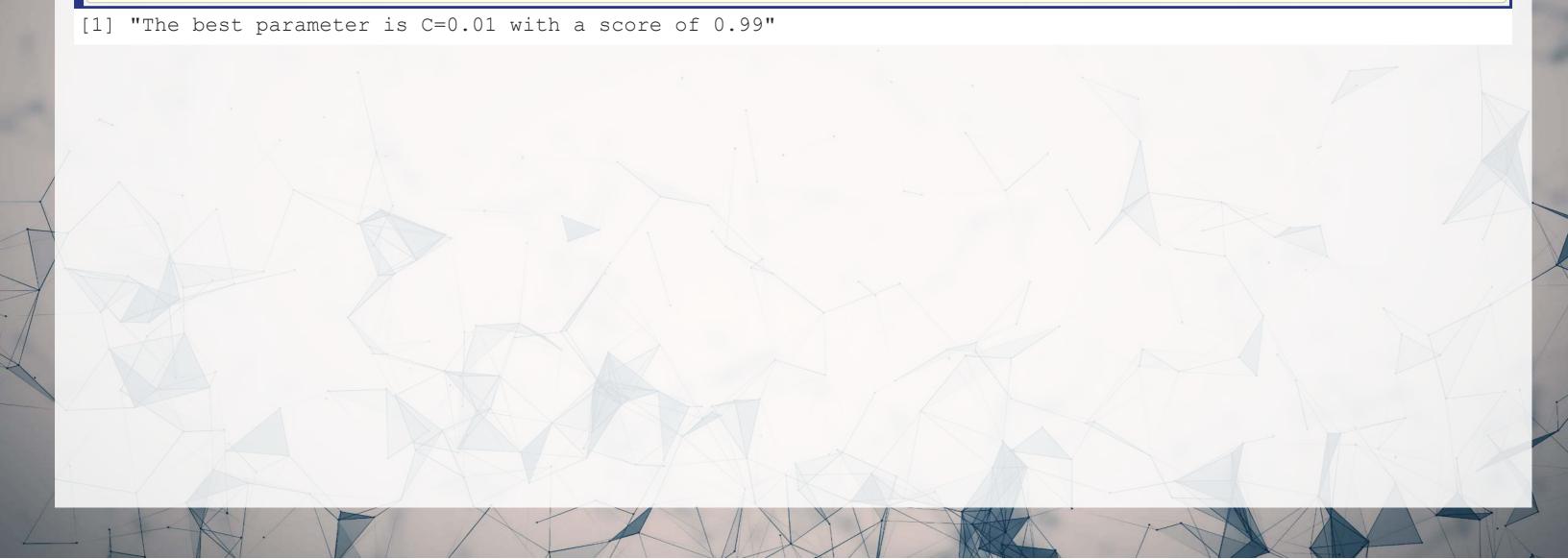
coefplot(vars_logistic, model_svc.coef_)

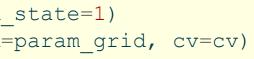




Optimizing the C parameter

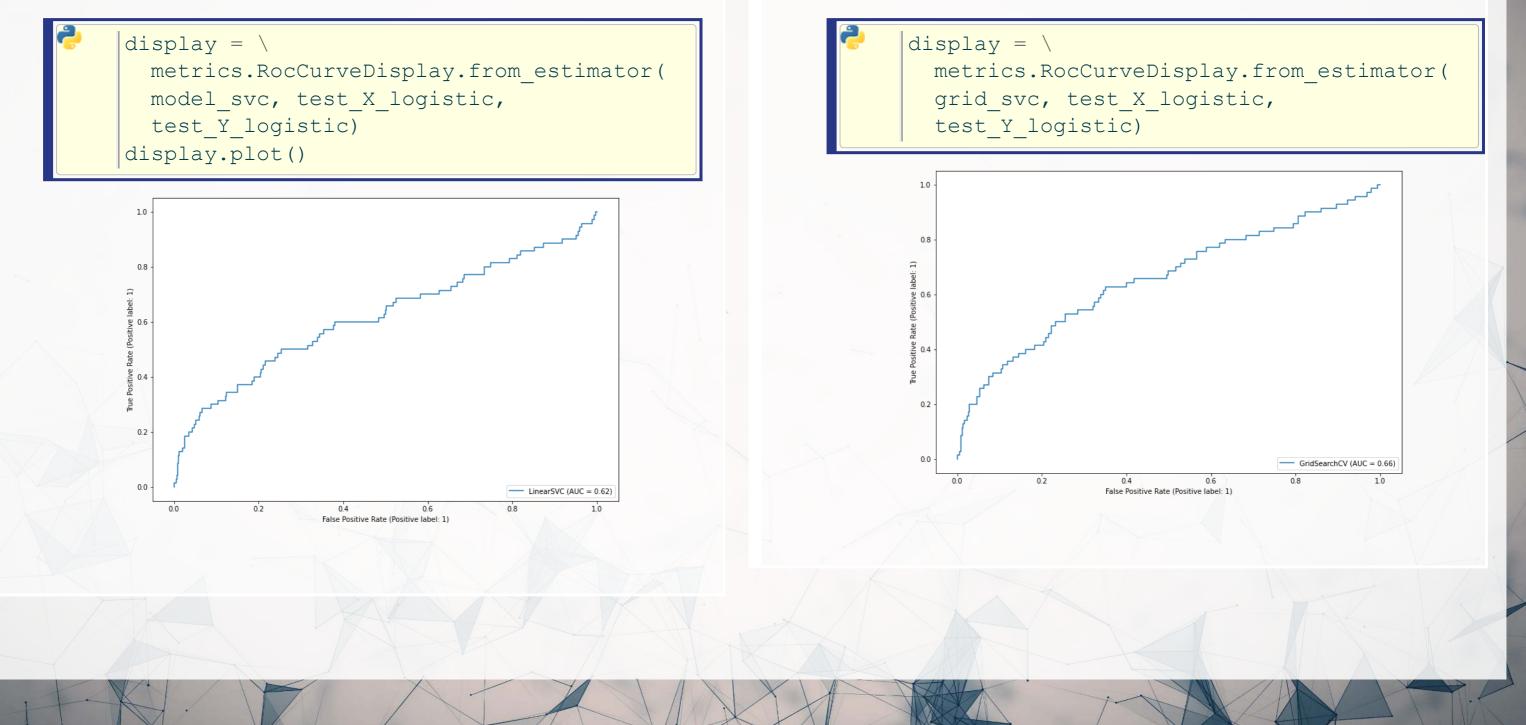
C range = np.logspace (-2, 6, 9)param grid = dict(C=C range) cv = model selection.StratifiedShuffleSplit(n splits=5, test size=0.2, random state=1) grid svc = model selection.GridSearchCV(svm.LinearSVC(dual=False), param grid=param grid, cv=cv) grid_svc.fit(train_X_logistic, train_Y_logistic) print("The best parameter is C=%s with a score of %0.2f" % (grid_svc.best_params_['C'], grid_svc.best_score_))





Comparison pre- vs post-optimization: ROC

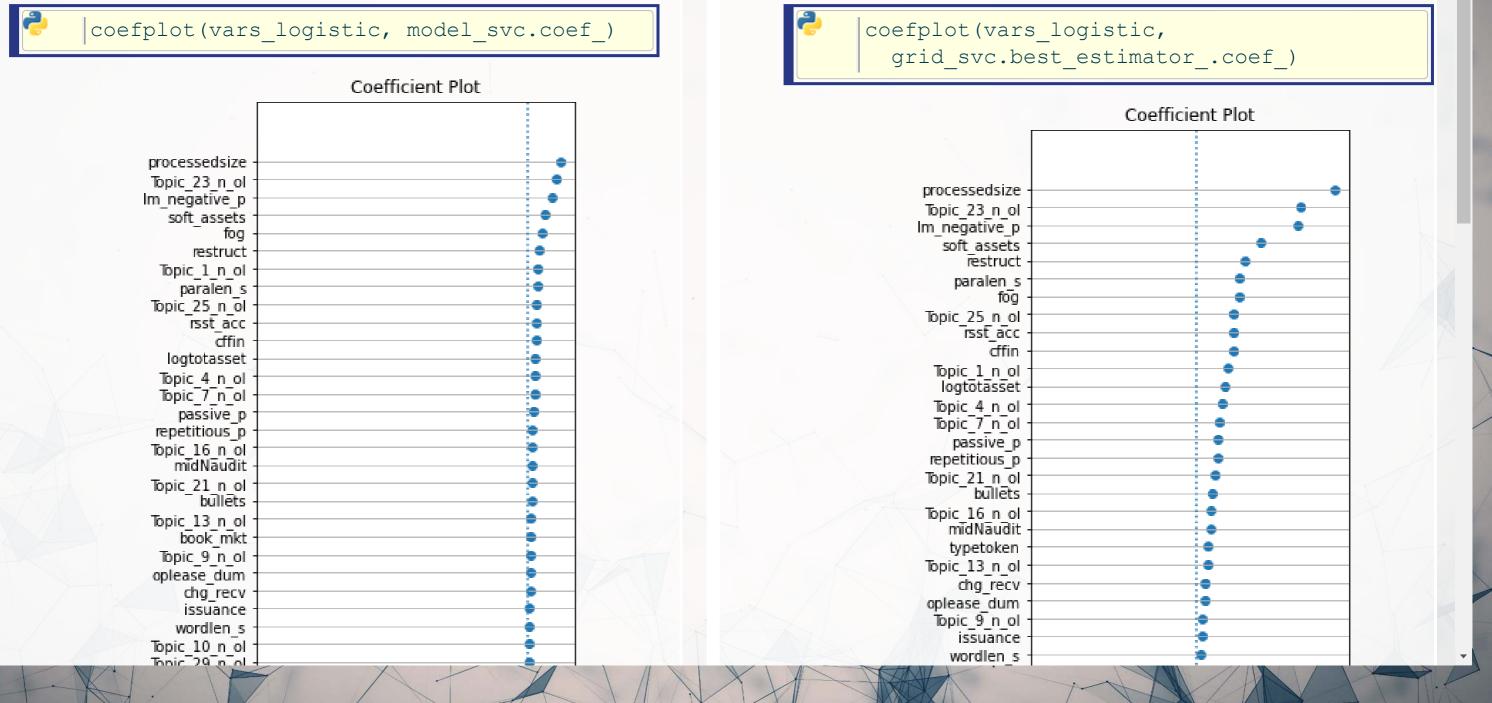
Unoptimized



Optimized

Comparison pre-vs post-optimization: Coefficients

Unoptimized



Optimized

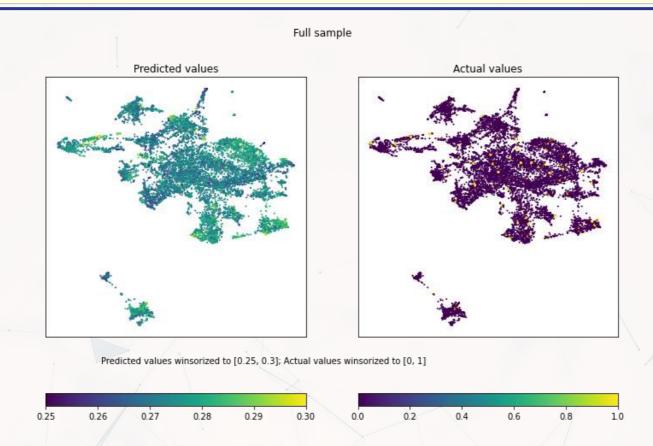
Visualizing with UMAP

What is UMAP?

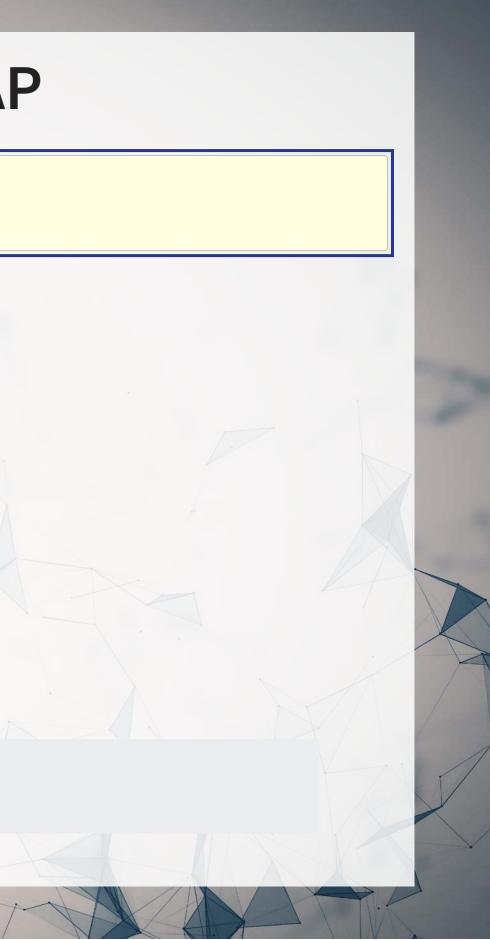
- UMAP stands for Uniform Manifold Approximation and Projection for Dimension Reduction
 - From Leland, Healy and Melville (2018) (8k+ cites already)
- It is useful for dimensionality reduction, like PCA
 - We will use it to reduce 68 dimensions down to 2
- It is useful for plotting 2 dimensional representations of high dimensional data by maintaining local distance structures, like t-SNE
 - Unlike t-SNE, it is efficient to run

UMAP essentially uses Reimannian manifolds and tries to maintain geodesic distance around a point – it is well supported theoretically

Visualizing what SVM is doing using UMAP

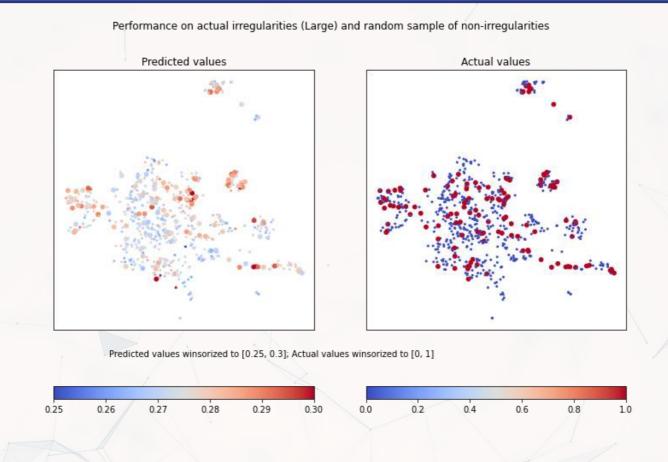


The data is really noisy



Visualizing what SVM is doing using UMAP

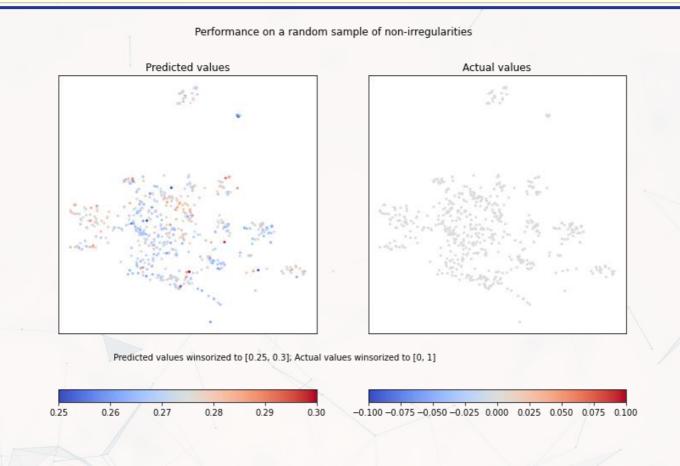
umap compare svm(train X logistic, train Yhat logistic, train Y logistic, clip=[[0.25, 0.3], [0, 1]], cmap='coolwarm', binary=5, subset=((train Y logistic==1) | (np.random.rand(len(train Y logistic))<0.05)),</pre> title="Performance on actual irregularities (Large) and random sample of non-irregularities")



Type I errors are pretty minimal – the algorithm is rarely very off

Visualizing what SVM is doing using UMAP

umap compare svm(train X logistic, train Yhat logistic, train Y logistic, clip=[[0.25, 0.3], [0, 1]], cmap= subset=((train Y logistic==0) & (np.random.rand(len(train Y logistic))<0.05)),</pre> title="Performance on a random sample of non-irregularities")



There are definitely some combinations of parameters that are consistently leading to Type II errors

SVM for regression: SVR

model svr = svm.LinearSVR(C=1, dual=False, loss='squared epsilon insensitive') model svr.fit(train X linear, np.ravel(train Y linear))

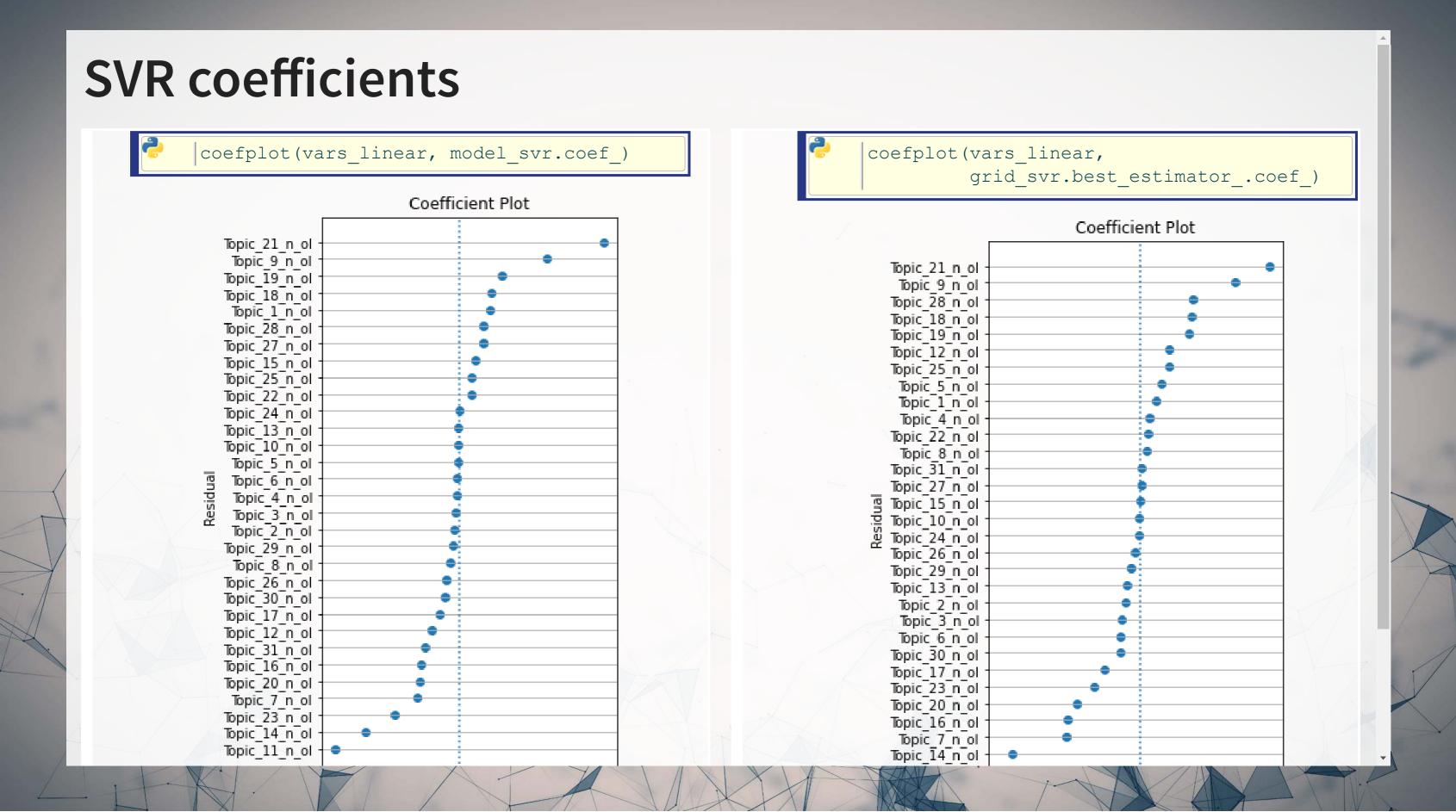
param grid = dict(C=C range) grid svr.fit(train X linear,

[1] "The best parameter is C=0.0001 with a score of 0.06"

C range = np.logspace(-4, 6, 11) cv = model selection.KFold(n splits=5)

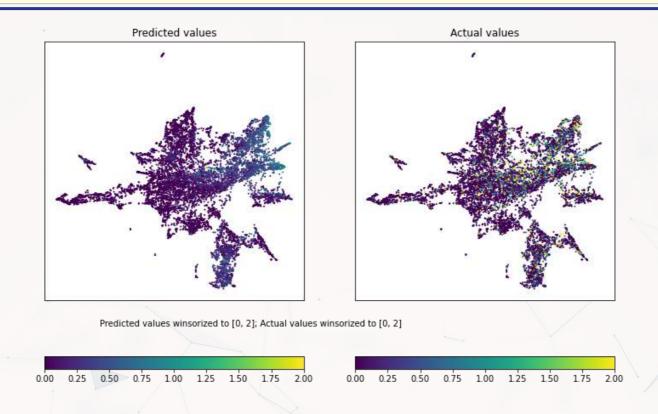
grid svr = model selection.GridSearchCV(svm.LinearSVR(dual=False, loss="squared epsilon insensitive"), param grid=param grid, cv=cv)

np.ravel(train Y linear)) print("The best parameter is C=%s " + "with a score of %0.2f" % (grid svr.best params ['C'], grid svr.best score))



Visualizing SVR with UMAP

train Yhat linear = model svr.predict(train X linear) umap_compare_svm(train_X_linear, train_Yhat_linear, train_Y_linear, clip=[[0, 2], [0, 2]])

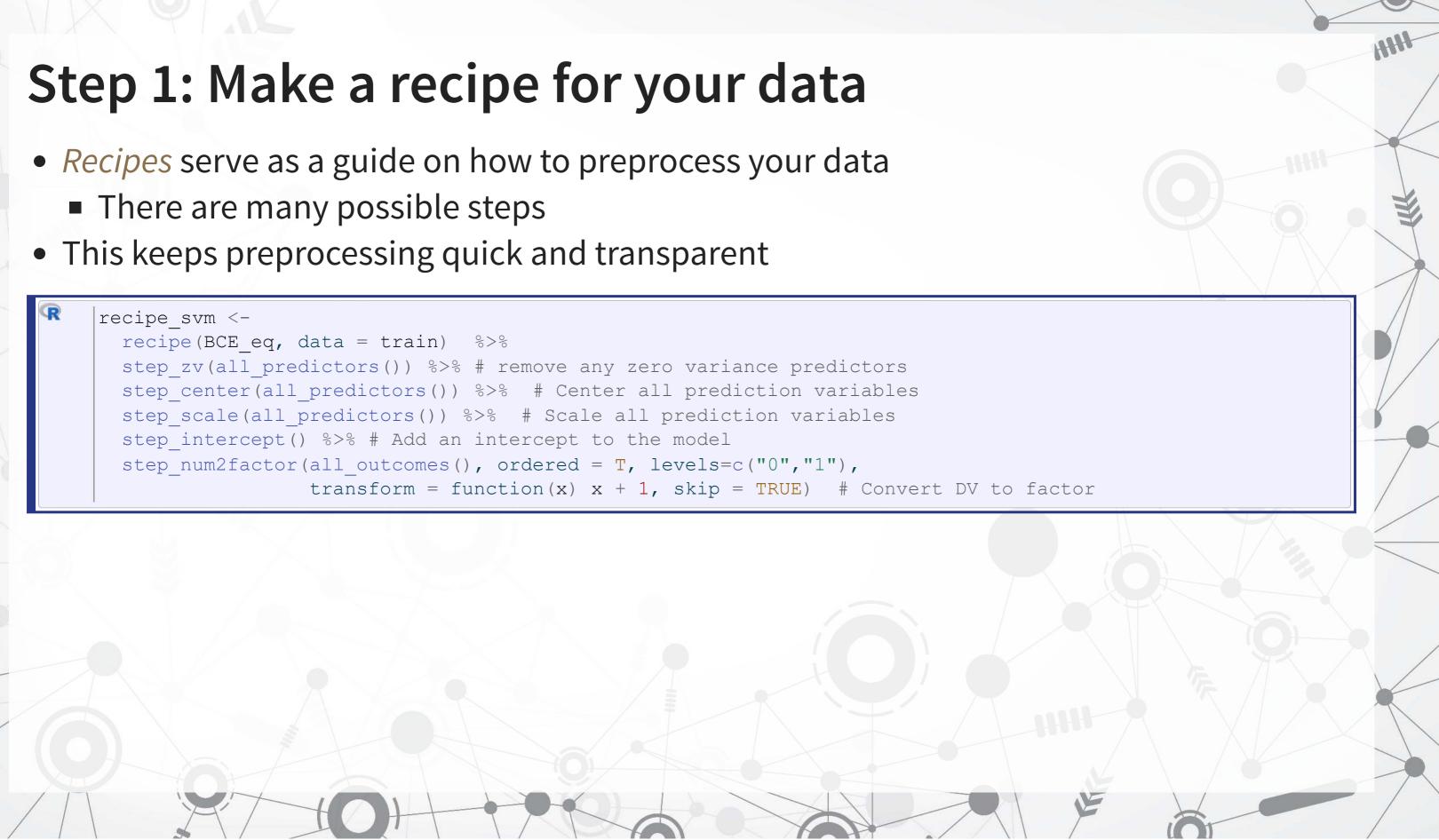


Here we see some clusters that are indeed higher in volatility being picked up correctly by SVM

Using R for the above

- We can use tidymodels to handle training of the model
 - It will offload the model computation to kernlab
- tidymodels is a collection of packages intended to serve as a spiritual successor to caret
- It is a collection of packages aimed at making ML workflows easier in R, much like what Scikit-learn does for python
 - parsnip, recipes, rsample, dials, yardstick, etc.
- It is still rough around the edges, but it is fairly functional

```
recipe(BCE eq, data = train) %>%
step zv(all predictors()) %>% # remove any zero variance predictors
step center(all predictors()) %>% # Center all prediction variables
step scale(all predictors()) %>% # Scale all prediction variables
step intercept() %>% # Add an intercept to the model
step num2factor(all outcomes(), ordered = T, levels=c("0", "1"),
```



Step 2: Define your ML model

- There are many built-in models in tidymodels
- For SVM, we will use svm_linear
 - Note how we specify tune() to the cost parameter
 - This is how we tell it where the grid search will go later!
- Setting mode to classification ensures we use something like SVC rather than SVR
- We can change the backend package by setting a different engine, with minimal changes needed to the rest of our code!

```
model_svm <-
    svm_linear(cost = tune()) %>%
    set_mode("classification") %>%
    set engine("kernlab")
```

C rather than SVR e, with minimal

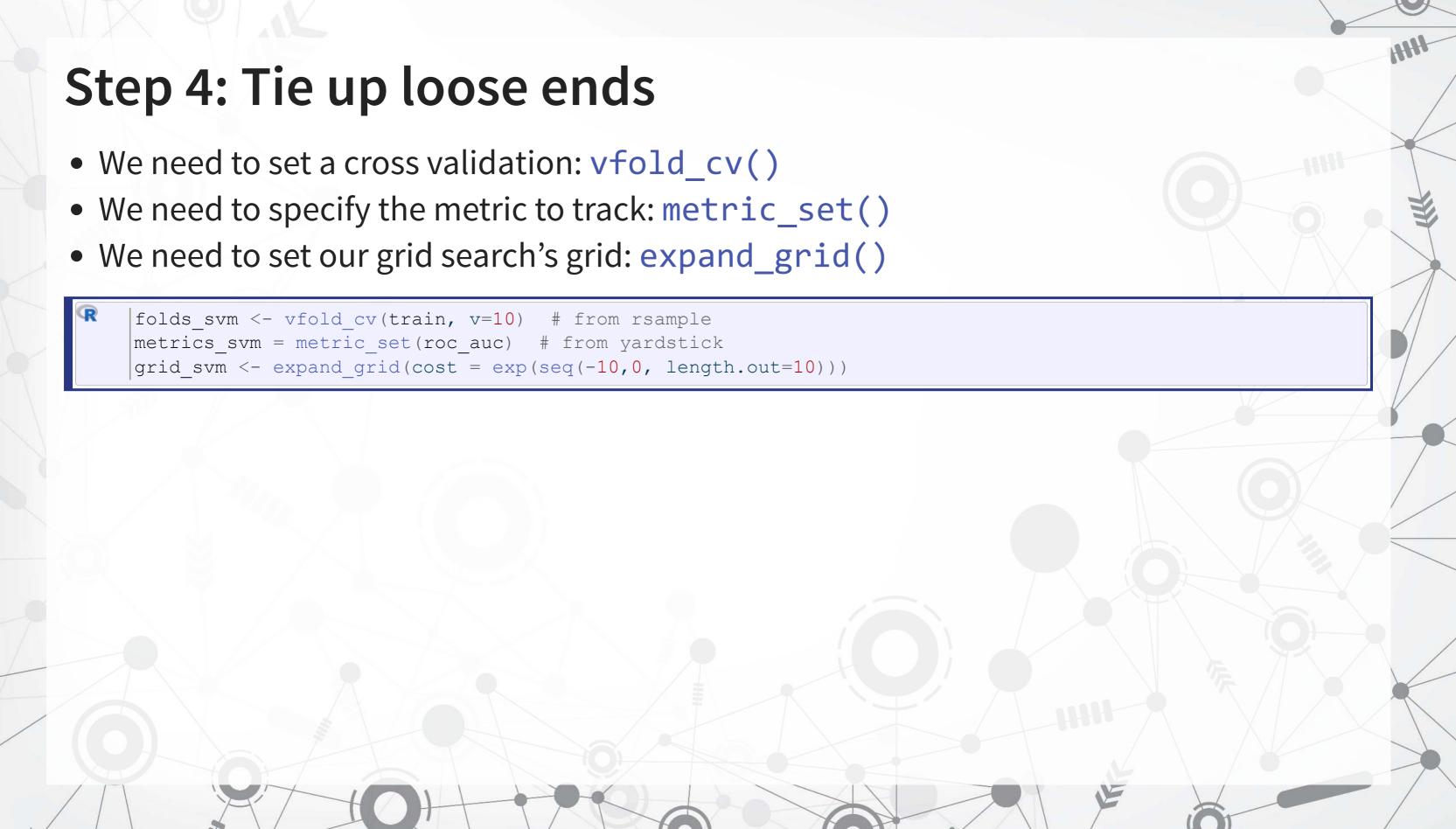
Step 3: Define a workflow

- Workflows piece together the larger elements of a tidy model
- Simplifies some of the hassle of using functions across tidymodels packages

workflow svm <- workflow() %>% add model (model svm) %>% add recipe(recipe svm)

R

folds svm <- vfold cv(train, v=10) # from rsample</pre> metrics svm = metric set(roc auc) # from yardstick



Step 5: Run the model

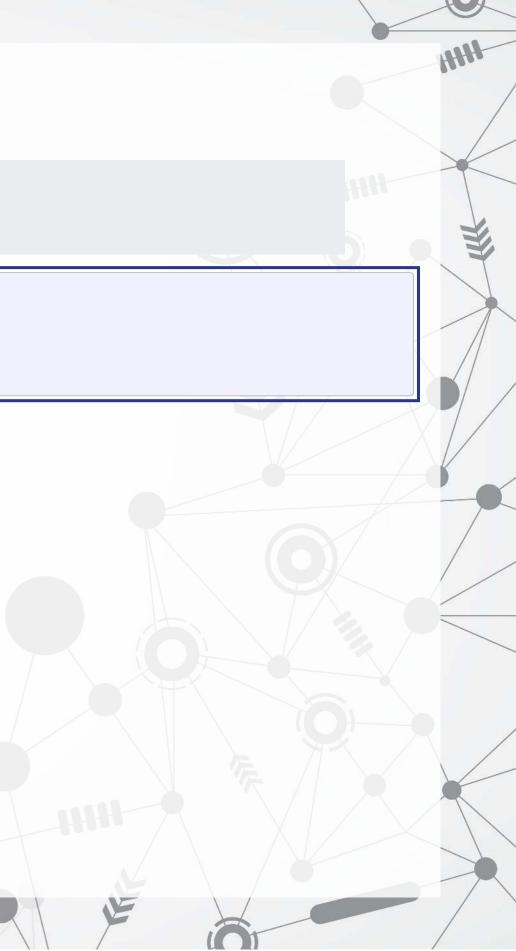
We have everything we need to run the model

2	<pre>svm_fit_tuned <- tune_grid(workflow_svm,</pre>
	grid = grid_svm,
	resamples = folds_svm,
	metrics=metrics_svm)

- tune_grid() will execute the workflow:
 - 1. Standardize our training data
 - 2. Run the model

R

- 3. Apply 10-fold CV to it
- 4. Track ROC AUC for each model run
- The resulting fitted model can then be analyzed



See which model was the best

show_best(svm_fit_tuned, metric = "roc_auc")

#	A tibble:	5 × 7					
	cost	.metric	.estimator	mean	n	std_err	.config
	<dbl></dbl>	<chr></chr>	<chr></chr>	<dbl></dbl>	<int></int>	<dbl></dbl>	<chr></chr>
1	0.000419	roc_auc	binary	0.637	10	0.0259	Preprocessor1_Model03
2	0.000138	roc_auc	binary	0.616	10	0.0266	Preprocessor1_Model02
3	0.0000454	roc_auc	binary	0.606	10	0.0320	Preprocessor1_Model01
4	0.00387	roc_auc	binary	0.605	10	0.0240	Preprocessor1_Model05
5	0.0117	roc_auc	binary	0.599	10	0.0257	Preprocessor1_Model06

Step 6: Re-run the model with the full data

svm final <- workflow svm %>% finalize workflow(select best(svm fit tuned, "roc auc") 응>응 fit(train)

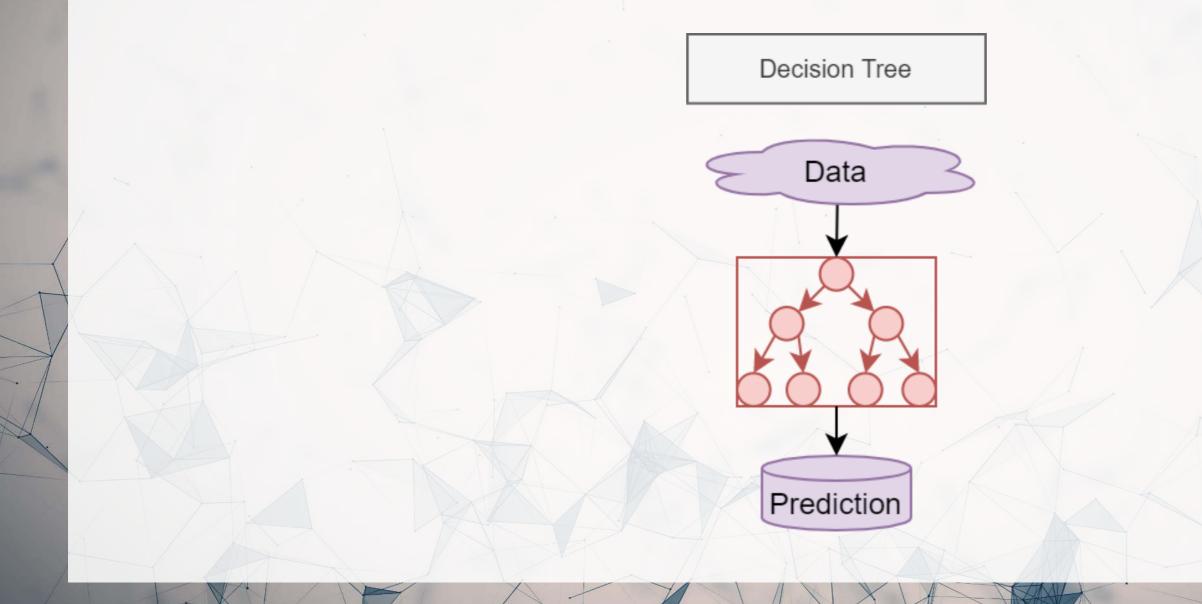
You need to do this in order to be able to predict with the model

• The svm_final object can be used with the standard predict() function The svm_fit_tuned object could not!

Tree-based models

Simplest model: Decision tree

- A simple decision tree behaves as we saw in Mullainathan and Spiess (2017 JEP)
- It provides a set of conditions to traverse to go from data to the estimated output
- In order to capture a complex problem, many layers are needed

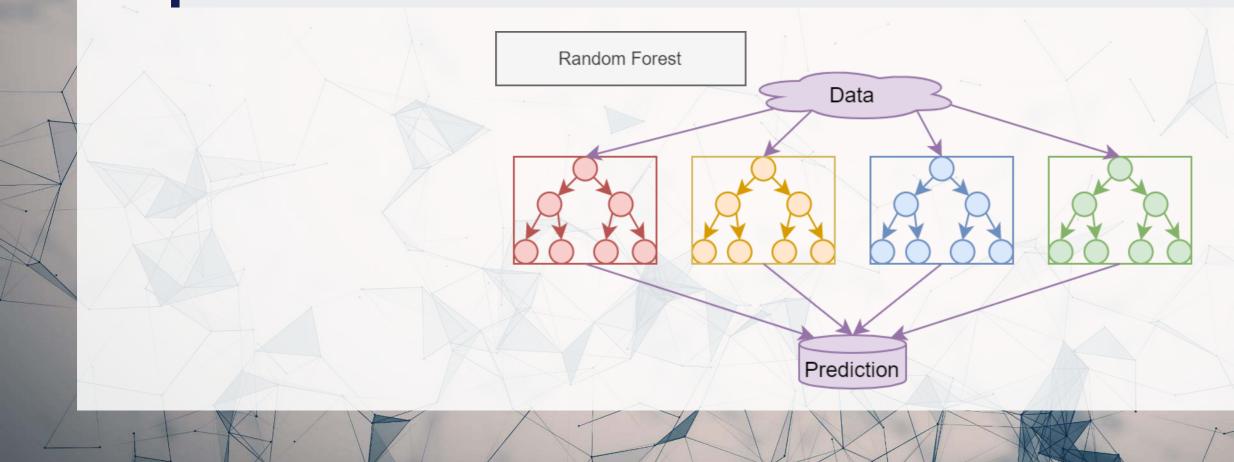


piess (2017 JEP) estimated output

Simple model: Random Forest

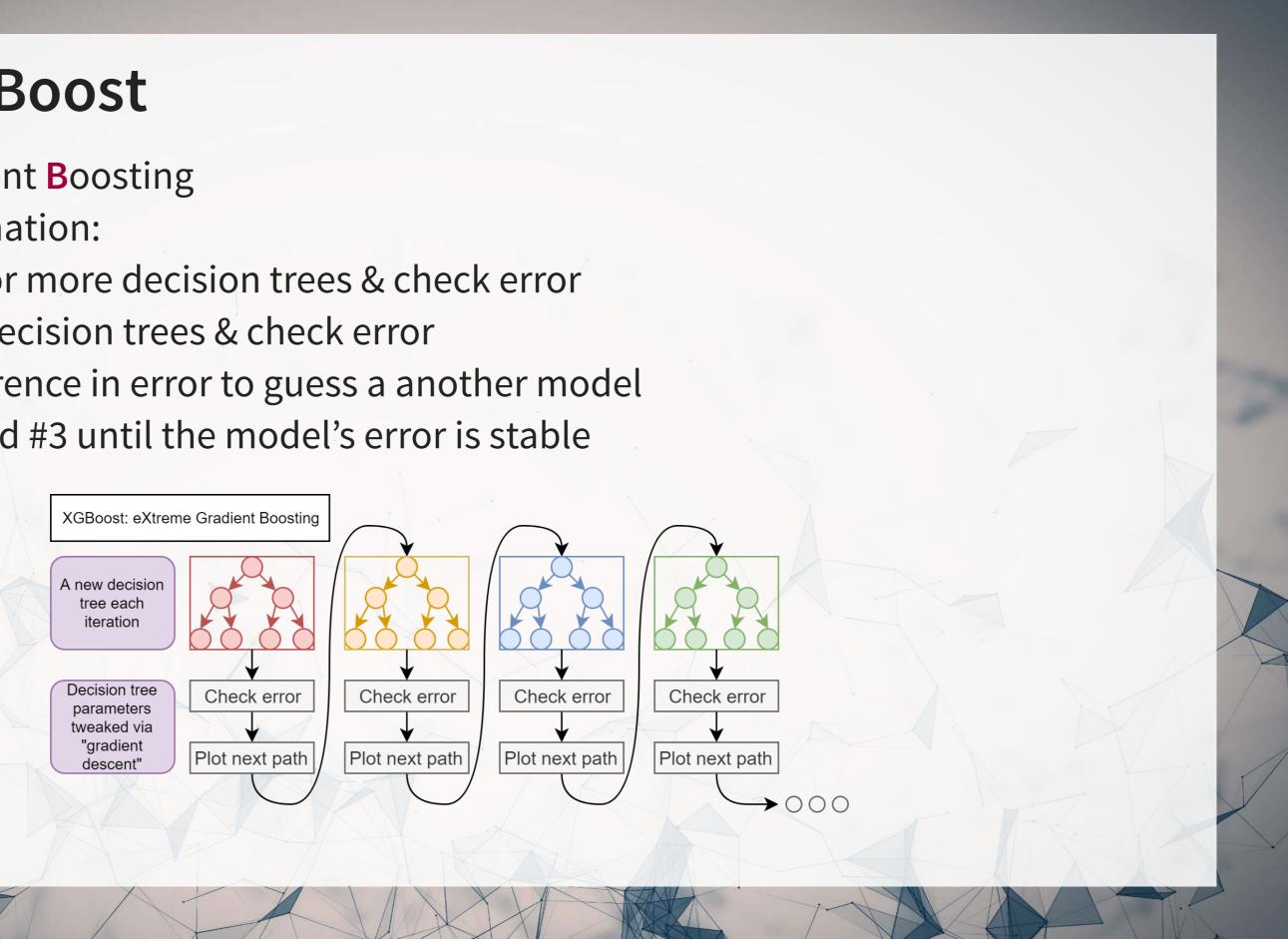
- 1 decision tree is OK, but...
 - There is a lot of error unless the tree is complex
 - Successive iterations of trees can be very different from one another

Run a bunch of decision trees with less depth each and average them (but don't give them all exactly the same data)



What is XGBoost

- eXtreme Gradient Boosting
- A simple explanation:
 - 1. Start with 1 or more decision trees & check error
 - 2. Make more decision trees & check error
 - 3. Use the difference in error to guess a another model
 - 4. Repeat #2 and #3 until the model's error is stable



XGBoost: Foundations

- XGBoost has its roots in AdaBoost (Adaptive Boosting)
 - Adaboost uses a sequence of weak learners to build a model
 - Combats against overfitting, and the sequence of individually weak models converges to be a strong learner
 - The convergence part is mathematically proven!
 - XGBoost isn't as theoretically founded as Adaboost
 - It trades off some mathematical rigor for flexibility and empirical performance

Benefits of XGBoost

- Tree based
 - Inherently non-parametric (no assumptions on data distribution)
- Non-linear but still somewhat interpretable
- Robust to noise
- Can handle missing or categorical variables (R implementation only)
- Robust to overfitting (somewhat)

As compared to other tree algorithms

- Implements gradient descent to sequentially grow trees
- Parallelizable (so it can be computed efficiently)
- Supports regularization

Drawbacks of XGBoost

So

many

hyperparameters.

- This makes it difficult to train a model well
 - But it is hard to beat a well trained XGBoost model with anything else we have discussed thus far
- It may technically be interpretable, but interpreting a big model is still difficult
- Like most tree-based methods, it struggles with extrapolation that is outside the bounds of its input data.

0 1 0 0 0 1 0 1 0 0 L

ing else we have is still difficult at is outside the

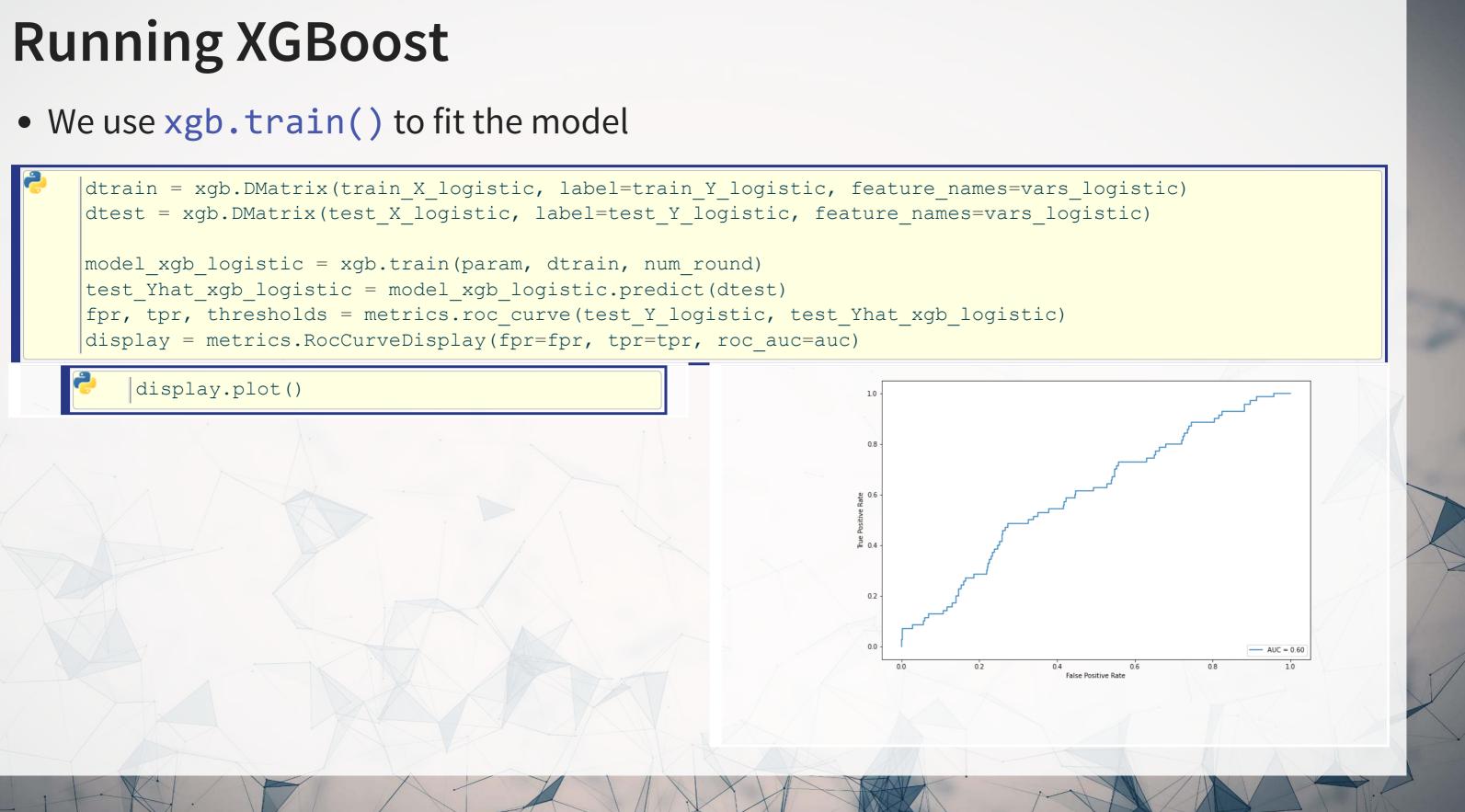
XGBoost parameters

```
param = \{
    'booster': 'gbtree',
   'nthread': 8,
    'objective': 'binary:logistic', # binary, output probabilities
    'eval metric': 'auc',
    'eta': 0.3,
    'max depth': 6,
    'gamma': 0.1,
    'subsample': 0.8,
    'random state': 70
```

num round = 30

default -- tree based # number of threads to use for parallel processing # maximize ROC AUC # shrinkage; [0, 1], default 0.3 # maximum depth of each tree; default 6 # set above 0 to prune trees, [0, inf], default 0 'min child weight': 1, # higher leads to more pruning of tress, [0, inf], default 1 # Randomly subsample rows if in (0, 1), default 1 'colsample bytree': 0.8, # Randomly subsample variables if in (0, 1), default 1

A lot of parameters – we can optimize all from eta to colsample bytree and the number of rounds

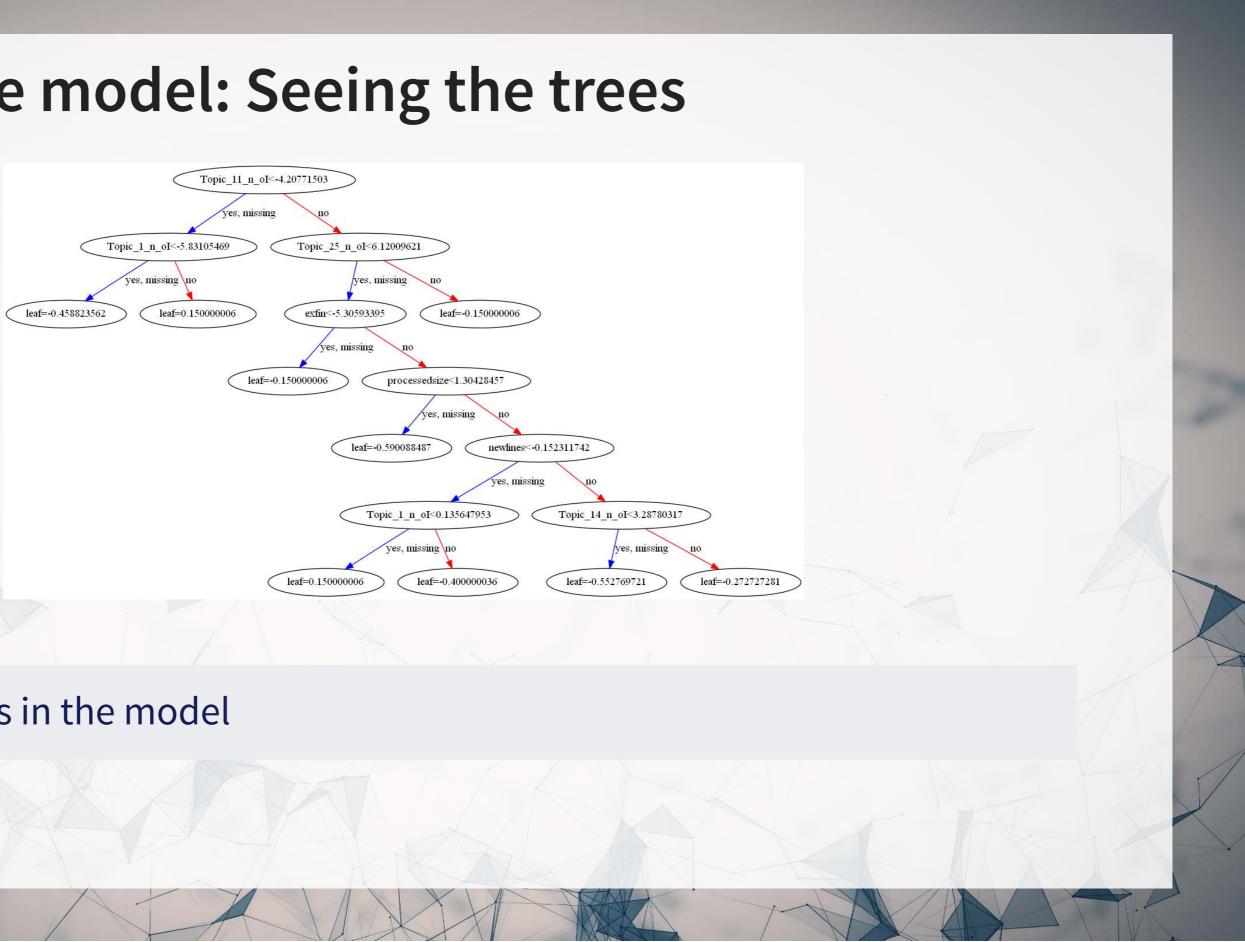


Analyzing the model: Importance plot

- The importance plot shows which variables have the greatest impact on the model
 - A higher number = more important
- In this case, we see a mix of sentiment, financial, topic, and grammatical measures in the top 5 measures

	Feature importance					
	Im_negative_p				23	
pci	_chg_cashsales - cffin -			20	-	
	Topic_16_n_ol			- 18		
	repetitious_p			- 18		
	Topic_27_n_ol			17		
	paralen_s			17		
	logtotasset -			17		
	processedsize		15	17		
	fog -		15			
	book_mkt - typetoken		15			
	Topic 9 n ol		15			
	chg_inv -		15			
	exfin		15			
	passive_p		14			
	Topic 24 n ol		13			
	Topic_19_n_ol - Topic_30_n_ol -		13			
	Topic 30 n ol		13			

Analyzing the model: Seeing the trees



One of 30 trees in the model

What about optimizing all the parameters?

This can be done – details are in the python code file

Using R to run XGBoost

- The same package, xgboost works for this in R
 - The level of support across R and python is more or less the same

XGBoost in python

- Can solve numeric problems well
- Can do GPU computations for some models
- Can run larger-than-memory computations
 - Good for big data sets!
- Use tidymodels just like we did for SVM, but specify tune() for each parameter you want to tune

XGBoost in R

- Can solve numeric problems well

• Can also handle categorical inputs

Running CV XGBoost in R

```
R
     # model setup
     params <- list(max depth=10,</pre>
                     eta=0.2,
                     gamma=10,
                     min child weight = 5,
                     objective =
                       "binary:logistic")
     # run the model
     xgbCV <- xgb.cv(params=params,</pre>
                      data=train x,
                      label=train y,
                      nrounds=100,
                      eval metric="auc",
                      nfold=10,
                      stratified=TRUE)
```


Conclusion

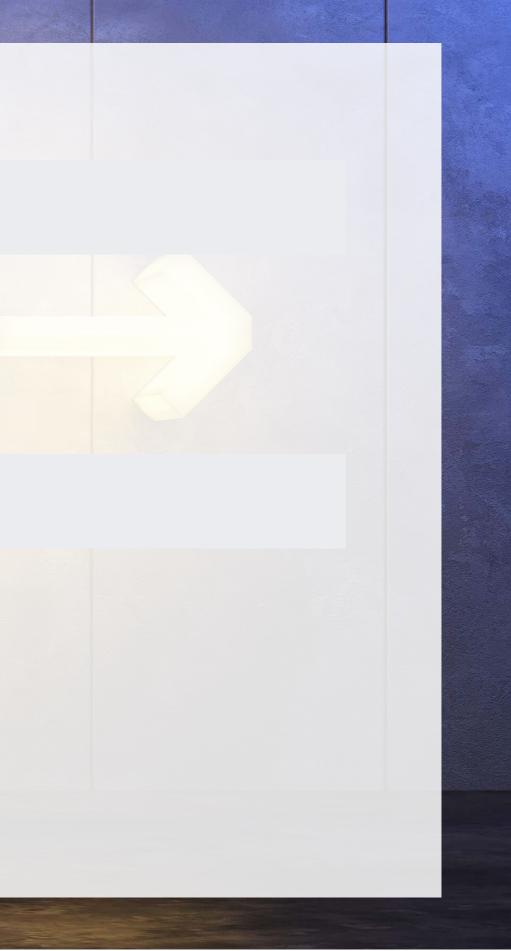
Wrap-up

SVM: Support Vector Machine

- Good for classification
- Can be good for regression in some contexts
- Key: Optimizes separability under some tolerance for error

Tree models

- Strong classification performance
- Can handle sparsity well
- A somewhat interpretable yet non-linear class of models



Packages used for these slides

00

Python

- matplotlib
- numpy
- pandas
- scikit-learn
- xgboost
- umap-learn

R

- caret
- downlit
- kableExtra
- knitr
- quarto
- reticulate
- revealjs
- tidymodels
- tidyverse
- xgboost
- yardstick

С

References

- Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." In Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining, pp. 785-794. 2016.
- McInnes, Leland, John Healy, and James Melville. "UMAP: Uniform manifold approximation and projection for dimension reduction." arXiv preprint arXiv:1802.03426 (2018).
- Mullainathan, Sendhil, and Jann Spiess. "Machine learning: an applied econometric approach." Journal of Economic Perspectives 31, no. 2 (2017): 87-106.
- Noh, Byungjoo, Changhong Youm, Eunkyoung Goh, Myeounggon Lee, Hwayoung Park, Hyojeong Jeon, and Oh Yoen Kim. "XGBoost based machine learning approach to predict the risk of fall in older adults using gait outcomes." Scientific reports 11, no. 1 (2021): 12183.
- Purda, Lynnette, and David Skillicorn. "Accounting variables, deception, and a bag of words: Assessing the tools of fraud detection." Contemporary Accounting Research 32, no. 3 (2015): 1193-1223.

Custom code

Replication of R's coefplot function for use with sklearn's linear and logistic LASSO

```
def coefplot(names, coef, title=None):
    # Make sure coef is list, cast to list if needed.
   if isinstance(coef, np.ndarray):
       if len(coef.shape) > 1:
            coef = list(coef[0])
        else:
            coef = list(coef)
    # Drop unneeded vars
   data = []
   for i in range(0, len(coef)):
       if coef[i] != 0:
            data.append([names[i], coef[i]])
   data.sort(key=lambda x: x[1])
   # Add in a key for the plot axis
   data = [data[i] + [i+1] for i in range(0, len(data))]
   fig, ax = plt.subplots(figsize=(4,0.25*len(data)))
   ax.scatter([i[1] for i in data], [i[2] for i in data])
   ax.grid(axis='y')
   ax.set(xlabel="Fitted value", ylabel="Residual", title=(title if title is not None else "Coefficient Plot"))
   ax.axvline(x=0, linestyle='dotted')
   ax.set yticks([i[2] for i in data])
   ax.set yticklabels([i[0] for i in data])
    return ax
```