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Overview



Papers

A fairly approachable overview of ML methods in economics
The points the paper makes are applicable broadly in any archival/empirical discipline

Uses XGBoost for an interesting application: Determining fall risk in older adults
Combines experimental work with ML-based econometrics

Paper 1: Purda and Skillicorn 2015

Paper 2: Noh et al. 2021



Technical Discussion: Classification
SVM and Tree-based algorithms (like XGBoost)

Python

Using sklearn for SVM
Using xgboost for XGBoost
Using sklearn for hyperparameter
tuning

R
Using  for SVM
Using  for XGBoost
Using  and related
packages for hyperparameter tuning

caret
xgboost
tidymodels

Python is generally a bit stronger for these topics.

There is a fully worked out solution for each language on my website, data is
on eLearn.

https://github.com/topepo/caret/
https://github.com/dmlc/xgboost
https://tidymodels.tidymodels.org/


Main application: Binary problem
Idea: Using the same data as in Application 1, can we predict instances of intentional
misreporting?
Testing: Predicting 10-K/A irregularities using finance, textual style, and topics

Dependent Variable
Intentional misreporting as stated in
10-K/A filings

Independent Variables
17 Financial measures
20 Style characteristics
31 10-K discussion topics

This test mirrors a subset of Brown, Crowley and Elliott (2020 JAR)

Same problem and data as last week’s binary problem



Main application: A Linear problem
Idea: Discussion of risks, such as as foreign currency risks, operating risks, or legal risks
should provide insight on the volatility of future outcomes for the firm.
Testing: Predicting future stock return volatility based on 10-K filing discussion

Dependent Variable
Future stock return volatility

Independent Variables
A set of 31 measures of what was
discussed in a firm’s annual report

This test mirrors Bao and Datta (2014 MS)

Same problem and data as last week’s linear problem



SVM: Support Vector Machine



What is SVM?

SVM-type algorithms generally focus on separability under some tolerance for error
This is quite different from our regression approaches

Regression focuses on minimizing an error function

Note how in this example the points
that matter are those that are on the
error boundaries
The rest of the points aren’t affecting
the outcome much

You could shi� them around on
their respective side of the line with
minimal impact

Simpler case: Binary Classification



What are the benefits of SVM?
1. Non-linear kernels

SVM can be linear or non-linear
3 examples to the right, 

2. Different objective function than
regression

Fits better with classification,
conceptually

3. Can work with non-numeric data
(text, images, graphs)

adapted
from the sklearn documentation

https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html


What are the costs of SVM?
1. Doesn’t work well on noisy data
2. Can be slow to train on datasets with many observations

More than 10,000 observations leads to a lot of slow down for non-linear kernels
3. Difficult to interpret model when using a non-linear kernel
4. Can be difficult to pick an optimal kernel



Implementing SVM in python
For this we will use sklearn again
To keep things simple and interpretable, we will use linear kernels in these examples

Binary classification
Fast linear model:
sklearn.svm.LinearSVC()

General model:
sklearn.svm.SVC()

Regression
Fast linear model:
sklearn.svm.LinearSVR()

General model:
sklearn.svm.SVR()

Both linear methods have a hyperparameter C which controls the amount of
regularization (inversely)

We can tune this using sklearn as well!



Why are there two ways each to run a linear SVM
model?

The two ways use different backends
The LinearSV_ methods use a backend called liblinear
The SV_ methods use a backend called libsvm

liblinear is faster but only supports linear kernels
Time to run is roughly linear in the number of observations
libsvm is fast on small samples; time increase for additional obs. is polynomial

The results aren’t quite the same across backends
liblinear uses a penalized intercept while libsvm does not
liblinear optimizes a “squared hinge” loss function while libsvm optimizes
“hinge” loss

Both developed out of National Taiwan University, and both maintained by
the same professor



Implementing LinearSVC for irregularity detection
To train a simple linear SVM classifier, we can call svm.LinearSVC() pretty much the
same way that we used linear_model.Lasso() earlier

Note: The dual=False option is to maintain efficiency when the number of
observations is great than the number of variables

No regression table built in, but we can visualize it with coefplot()

model_svc = svm.LinearSVC(C=1, dual=False)
model_svc.fit(train_X_logistic, train_Y_logistic)

coefplot(vars_logistic, model_svc.coef_)



Visualizing LinearSVC for irregularity detection
coefplot(vars_logistic, model_svc.coef_) display = \

  metrics.RocCurveDisplay.from_estimator(
  model_svc, test_X_logistic,
  test_Y_logistic)
display.plot()



Optimizing the C parameter
C_range = np.logspace(-2, 6, 9)
param_grid = dict(C=C_range)
cv = model_selection.StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=1)
grid_svc = model_selection.GridSearchCV(svm.LinearSVC(dual=False), param_grid=param_grid, cv=cv)
grid_svc.fit(train_X_logistic, train_Y_logistic)
print("The best parameter is C=%s with a score of %0.2f"
      % (grid_svc.best_params_['C'], grid_svc.best_score_))

[1] "The best parameter is C=0.01 with a score of 0.99"



Comparison pre- vs post-optimization: ROC
Unoptimized Optimized

display = \
  metrics.RocCurveDisplay.from_estimator(
  model_svc, test_X_logistic,
  test_Y_logistic)
display.plot()

display = \
  metrics.RocCurveDisplay.from_estimator(
  grid_svc, test_X_logistic,
  test_Y_logistic)



Comparison pre- vs post-optimization: Coefficients
Unoptimized Optimized

coefplot(vars_logistic, model_svc.coef_) coefplot(vars_logistic,
  grid_svc.best_estimator_.coef_)



Visualizing with UMAP

UMAP stands for Uniform Manifold Approximation and Projection for Dimension
Reduction

From Leland, Healy and Melville (2018) (8k+ cites already)
It is useful for dimensionality reduction, like PCA

We will use it to reduce 68 dimensions down to 2
It is useful for plotting 2 dimensional representations of high dimensional data by
maintaining local distance structures, like t-SNE

Unlike t-SNE, it is efficient to run

What is UMAP?

UMAP essentially uses Reimannian manifolds and tries to maintain geodesic
distance around a point – it is well supported theoretically



Visualizing what SVM is doing using UMAP
train_Yhat_logistic = logistic(grid_svc.decision_function(train_X_logistic))
umap_compare_svm(train_X_logistic, train_Yhat_logistic, train_Y_logistic,
                 clip=[[0.25, 0.3], [0, 1]], binary=5, title="Full sample")

The data is really noisy



Visualizing what SVM is doing using UMAP
umap_compare_svm(train_X_logistic, train_Yhat_logistic, train_Y_logistic, clip=[[0.25, 0.3], [0, 1]],
  cmap='coolwarm', binary=5, subset=((train_Y_logistic==1) | (np.random.rand(len(train_Y_logistic))<0.05)),
  title="Performance on actual irregularities (Large) and random sample of non-irregularities")

Type I errors are pretty minimal – the algorithm is rarely very off



Visualizing what SVM is doing using UMAP
umap_compare_svm(train_X_logistic, train_Yhat_logistic, train_Y_logistic, clip=[[0.25, 0.3], [0, 1]], cmap=
                 subset=((train_Y_logistic==0) & (np.random.rand(len(train_Y_logistic))<0.05)),
                 title="Performance on a random sample of non-irregularities")

There are definitely some combinations of parameters that are consistently
leading to Type II errors



SVM for regression: SVR
model_svr = svm.LinearSVR(C=1, dual=False,
  loss='squared_epsilon_insensitive')
model_svr.fit(train_X_linear,
              np.ravel(train_Y_linear))

C_range = np.logspace(-4, 6, 11)
param_grid = dict(C=C_range)
cv = model_selection.KFold(n_splits=5)

grid_svr = model_selection.GridSearchCV(
  svm.LinearSVR(dual=False,
  loss="squared_epsilon_insensitive"),
  param_grid=param_grid, cv=cv)

grid_svr.fit(train_X_linear,
             np.ravel(train_Y_linear))
print("The best parameter is C=%s " +
      "with a score of %0.2f" % (
        grid_svr.best_params_['C'],
        grid_svr.best_score_))

[1] "The best parameter is C=0.0001 with a score 
of 0.06"



SVR coefficients
coefplot(vars_linear, model_svr.coef_) coefplot(vars_linear,

         grid_svr.best_estimator_.coef_)



Visualizing SVR with UMAP
train_Yhat_linear = model_svr.predict(train_X_linear)
umap_compare_svm(train_X_linear, train_Yhat_linear, train_Y_linear, clip=[[0, 2], [0, 2]])

Here we see some clusters that are indeed higher in volatility being picked up
correctly by SVM



Using R for the above
We can use  to handle training of the model

It will offload the model computation to kernlab
 is a collection of packages intended to serve as a spiritual successor to 

It is a collection of packages aimed at making ML workflows easier in R, much like what
Scikit-learn does for python
parsnip, recipes, rsample, dials, yardstick, etc.

It is still rough around the edges, but it is fairly functional

tidymodels

tidymodels caret

https://tidymodels.tidymodels.org/
https://tidymodels.tidymodels.org/
https://github.com/topepo/caret/


Step 1: Make a recipe for your data
Recipes serve as a guide on how to preprocess your data

There are many possible steps
This keeps preprocessing quick and transparent

recipe_svm <-
  recipe(BCE_eq, data = train)  %>%
  step_zv(all_predictors()) %>% # remove any zero variance predictors
  step_center(all_predictors()) %>%  # Center all prediction variables
  step_scale(all_predictors()) %>%  # Scale all prediction variables
  step_intercept() %>% # Add an intercept to the model
  step_num2factor(all_outcomes(), ordered = T, levels= ("0","1"),
                  transform = function(x) x + 1, skip = TRUE)  # Convert DV to factor

c

https://rdrr.io/r/base/c.html


Step 2: Define your ML model
There are many built-in models in 
For SVM, we will use svm_linear

Note how we specify tune() to the cost parameter
This is how we tell it where the grid search will go later!

Setting mode to classification ensures we use something like SVC rather than SVR
We can change the backend package by setting a different engine, with minimal
changes needed to the rest of our code!

tidymodels

model_svm <-
  svm_linear(cost = tune()) %>%
  set_mode("classification") %>%
  set_engine("kernlab")

https://tidymodels.tidymodels.org/


Step 3: Define a workflow
Workflows piece together the larger elements of a tidy model
Simplifies some of the hassle of using functions across tidymodels packages

workflow_svm <- workflow() %>%
  add_model(model_svm) %>%
  add_recipe(recipe_svm)



Step 4: Tie up loose ends
We need to set a cross validation: vfold_cv()
We need to specify the metric to track: metric_set()
We need to set our grid search’s grid: expand_grid()

folds_svm <- vfold_cv(train, v=10)  # from rsample
metrics_svm = metric_set(roc_auc)  # from yardstick
grid_svm <- expand_grid(cost = ( (-10,0, length.out=10)))exp seq

https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/seq.html


Step 5: Run the model

tune_grid() will execute the workflow:
1. Standardize our training data
2. Run the model
3. Apply 10-fold CV to it
4. Track ROC AUC for each model run
The resulting fitted model can then be analyzed

We have everything we need to run the model

svm_fit_tuned <- tune_grid(workflow_svm,
                           grid = grid_svm,
                           resamples = folds_svm,
                           metrics=metrics_svm)



See which model was the best
show_best(svm_fit_tuned, metric = "roc_auc")

# A tibble: 5 × 7
       cost .metric .estimator  mean     n std_err .config              
      <dbl> <chr>   <chr>      <dbl> <int>   <dbl> <chr>                
1 0.000419  roc_auc binary     0.637    10  0.0259 Preprocessor1_Model03
2 0.000138  roc_auc binary     0.616    10  0.0266 Preprocessor1_Model02
3 0.0000454 roc_auc binary     0.606    10  0.0320 Preprocessor1_Model01
4 0.00387   roc_auc binary     0.605    10  0.0240 Preprocessor1_Model05
5 0.0117    roc_auc binary     0.599    10  0.0257 Preprocessor1_Model06



Step 6: Re-run the model with the full data

The svm_final object can be used with the standard  function
The svm_fit_tuned object could not!

svm_final <- workflow_svm %>%
  finalize_workflow(
  select_best(svm_fit_tuned, "roc_auc")
) %>%
  fit(train)

You need to do this in order to be able to predict with the model

predict()

https://rdrr.io/r/stats/predict.html


Tree-based models



Simplest model: Decision tree
A simple decision tree behaves as we saw in Mullainathan and Spiess (2017 JEP)
It provides a set of conditions to traverse to go from data to the estimated output
In order to capture a complex problem, many layers are needed



Simple model: Random Forest
1 decision tree is OK, but…

There is a lot of error unless the tree is complex
Successive iterations of trees can be very different from one another

Run a bunch of decision trees with less depth each and average them (but
don’t give them all exactly the same data )



What is XGBoost
eXtreme Gradient Boosting
A simple explanation:
1. Start with 1 or more decision trees & check error
2. Make more decision trees & check error
3. Use the difference in error to guess a another model
4. Repeat #2 and #3 until the model’s error is stable



XGBoost: Foundations
XGBoost has its roots in AdaBoost (Adaptive Boosting)

Adaboost uses a sequence of weak learners to build a model
Combats against overfitting, and the sequence of individually weak models
converges to be a strong learner

The convergence part is mathematically proven!
XGBoost isn’t as theoretically founded as Adaboost

It trades off some mathematical rigor for flexibility and empirical performance



Benefits of XGBoost
Tree based

Inherently non-parametric (no assumptions on data distribution)
Non-linear but still somewhat interpretable
Robust to noise
Can handle missing or categorical variables (R implementation only)
Robust to overfitting (somewhat)

Implements gradient descent to sequentially grow trees
Parallelizable (so it can be computed efficiently)
Supports regularization

As compared to other tree algorithms



Drawbacks of XGBoost
So

many

hyperparameters.

This makes it difficult to train a model well
But it is hard to beat a well trained XGBoost model with anything else we have
discussed thus far

It may technically be interpretable, but interpreting a big model is still difficult
Like most tree-based methods, it struggles with extrapolation that is outside the
bounds of its input data.



XGBoost parameters
param = {
    'booster': 'gbtree',             # default -- tree based
    'nthread': 8,                    # number of threads to use for parallel processing
    'objective': 'binary:logistic',  # binary, output probabilities
    'eval_metric': 'auc',            # maximize ROC AUC
    'eta': 0.3,                      # shrinkage; [0, 1], default 0.3
    'max_depth': 6,                  # maximum depth of each tree; default 6
    'gamma': 0.1,                    # set above 0 to prune trees, [0, inf], default 0
    'min_child_weight': 1,           # higher leads to more pruning of tress, [0, inf], default 1
    'subsample': 0.8,                # Randomly subsample rows if in (0, 1), default 1
    'colsample_bytree': 0.8,         # Randomly subsample variables if in (0, 1), default 1
    'random_state': 70
}
num_round = 30

A lot of parameters – we can optimize all from eta to colsample_bytree
and the number of rounds



Running XGBoost
We use xgb.train() to fit the model

dtrain = xgb.DMatrix(train_X_logistic, label=train_Y_logistic, feature_names=vars_logistic)
dtest = xgb.DMatrix(test_X_logistic, label=test_Y_logistic, feature_names=vars_logistic)

model_xgb_logistic = xgb.train(param, dtrain, num_round)
test_Yhat_xgb_logistic = model_xgb_logistic.predict(dtest)
fpr, tpr, thresholds = metrics.roc_curve(test_Y_logistic, test_Yhat_xgb_logistic)
display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=auc)

display.plot()



Analyzing the model: Importance plot
The importance plot shows which variables have the greatest impact on the model

A higher number = more important
In this case, we see a mix of sentiment, financial, topic, and grammatical measures in
the top 5 measures

fig, ax = plt.subplots(figsize=(8,16))
xgb.plot_importance(model_xgb_logistic, ax=ax)



Analyzing the model: Seeing the trees

One of 30 trees in the model



What about optimizing all the parameters?
This can be done – details are in the python code file



Using R to run XGBoost
The same package,  works for this in R

The level of support across R and python is more or less the same

XGBoost in python
Can solve numeric problems well
Can do GPU computations for some
models
Can run larger-than-memory
computations

Good for big data sets!

XGBoost in R
Can solve numeric problems well
Can also handle categorical inputs

Use  just like we did for SVM, but specify tune() for each parameter you
want to tune

xgboost

tidymodels

https://github.com/dmlc/xgboost
https://tidymodels.tidymodels.org/


Running CV XGBoost in R
# model setup
params <- (max_depth=10,
               eta=0.2,
               gamma=10,
               min_child_weight = 5,
               objective =
                 "binary:logistic")

# run the model
xgbCV <- xgb.cv(params=params,
                data=train_x,
                label=train_y,
                nrounds=100,
                eval_metric="auc",
                nfold=10,
                stratified=TRUE)

list

https://rdrr.io/r/base/list.html


Conclusion



Wrap-up

Good for classification
Can be good for regression in some contexts
Key: Optimizes separability under some tolerance for error

Strong classification performance
Can handle sparsity well
A somewhat interpretable yet non-linear class of models

SVM: Support Vector Machine

Tree models



Packages used for these slides
Python

matplotlib
numpy
pandas
scikit-learn
xgboost
umap-learn

R
caret
downlit
kableExtra
knitr
quarto
reticulate
revealjs
tidymodels
tidyverse
xgboost
yardstick

https://github.com/topepo/caret/
https://downlit.r-lib.org/
http://haozhu233.github.io/kableExtra/
https://yihui.org/knitr/
https://github.com/quarto-dev/quarto-r
https://rstudio.github.io/reticulate/
https://github.com/rstudio/revealjs
https://tidymodels.tidymodels.org/
https://tidyverse.tidyverse.org/
https://github.com/dmlc/xgboost
https://github.com/tidymodels/yardstick
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Custom code
Replication of R’s coefplot function for use with sklearn’s linear and logistic LASSO

def coefplot(names, coef, title=None):
    # Make sure coef is list, cast to list if needed.
    if isinstance(coef, np.ndarray):
        if len(coef.shape) > 1:
            coef = list(coef[0])
        else:
            coef = list(coef)
    
    # Drop unneeded vars
    data = []
    for i in range(0, len(coef)):
        if coef[i] != 0:
            data.append([names[i], coef[i]])
    data.sort(key=lambda x: x[1])
    # Add in a key for the plot axis
    data = [data[i] + [i+1] for i in range(0,len(data))]
    fig, ax = plt.subplots(figsize=(4,0.25*len(data)))
    ax.scatter([i[1] for i in data], [i[2] for i in data])
    ax.grid(axis='y')
    ax.set(xlabel="Fitted value", ylabel="Residual", title=(title if title is not None else "Coefficient Plot"))
    ax.axvline(x=0, linestyle='dotted')
    ax.set_yticks([i[2] for i in data])
    ax.set_yticklabels([i[0] for i in data])
    return ax




