
ML for SS: Embeddings and topic
modeling

Dr. Richard M. Crowley

https://rmc.link/
rcrowley@smu.edu.sg

mailto:rcrowley@smu.edu.sg


Overview



Papers

This is a nicely motivated paper in terms of its usage of LDA
Needed to answer the research question

Demonstrates an interesting variant of LDA that can help with identifying differences in
information across groups or conditions

Demonstrates a usage of embedding methods at the sentence level
Uses this to examine sentiment (e.g., in Loughran and McDonald 2011) in a fine-grained
manner

Huang et al. (2018 MS)

Roberts et al. (2014 AJPS)

Crowley and Wong (2022 working)



Technical Discussion: Linguistics
Python

LDA
 is the easiest to use in general

Installation is not always straightforward
Word2Vec

 is again quite easy to use
 is another good option

 is also an option
USE

 is the best choice

R

LDA
 can do a lot more than just standard LDA

{lda} and {topicmodels} both play nicely
with 

 gives an interface to the venerable
, capable of more

advanced topic modeling
Word2vec

See word2vec and rword2vec

gensim

gensim
fastText
Tensorflow

Tensorflow

stm

quanteda
mallet
MALLET Java package

Both R and python are good for LDA. Python is better for embedding methods. R is the only option for
STM.

There is a fully worked out solution for using python, data and dictionaries are on eLearn. STM is
worked out in R.

https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://fasttext.cc/
https://www.tensorflow.org/tutorials/text/word2vec
https://tfhub.dev/google/universal-sentence-encoder-large/5
http://www.structuraltopicmodel.com/
https://quanteda.io/
https://github.com/mimno/RMallet
http://mallet.cs.umass.edu/


Main application: Analyzing Wall Street Journal
articles

On eLearn you will find a full issue of the WSJ in text format

Apply a topic model to the documents
Analyze the documents using an STM

Tasks

We will also explore embedding methods more generally



How I work [on ML-based projects]



High level overview: Process
1. Idea generation
2. Prototyping

Testing out different approaches to measurement or data collection
3. Data collection

Implement in an automated fashion
Note that sometimes you need to update the data in the review process.

4. Implementation
Run/train the desired algorithm on the collected data
Again, best to keep this automated

5. Data manipulation
Build a data set with the implementation’s output + standard measures
Automate this too

6. Econometrics: keep automating
7. Writing



High level overview: Tools
Hardware

Data stored in RAID 1/5/6 arrays (redundant disks)
Duplicated across machines
HDDs for large data, SSDs for temporary storage

The more CPU cores, the better (so long as memory
scales to match)
Large memory for text analytics

64-128GB is good for most tasks
512GB for large matrix problems

Nvidia GPU for neural network training and
inference

10-100x speedup for most algorithms
Nvidia is needed for CUDA
CUDA is needed for most ML libraries
The more VRAM, the better

So�ware

Python via miniconda for data collection and
processing

Pycharm and JupyterLab for GUIs
R for data manipulation, econometrics, and
visualization

RStudio for GUI
Stata for econometrics
s�p for data transfer
Nomachine for remote access

I run everything under Linux – a bit more stable for long computations, better multithreading in
python, and easier to set up servers on



My workflow



Working with python
Preferred distribution: miniconda

Anaconda without the GUI frontend
Why?

Command line simplicity of pip
Solid collection of packages when including conda-forge
Significantly easier installs of more complex so�ware

E.g., Tensorflow + CUDA + cuDNN as a one-liner
Handles virtual environments

pip + virtualenv is flaky for specific installs across python versions on Linux
It’s a bit better on Windows

poetry is also quite unreliable

Why not base python?



Base miniconda setup
1. Install from https://docs.conda.io/en/latest/miniconda.html
2. Install to a custom folder where you have sufficient storage

E.g., I use /media/Data/Anaconda/ on Linux or D:\Anaconda on Windows
3. Install mamba (fast package resolution): conda install -c conda-forge mamba
4. Install JupyterLab: mamba install -c conda-forge jupyterlab
5. Install the kernel module: mamba install -c conda-forge nb_conda_kernels

Lets you access all anaconda virtual environments from one JupyterLab instance
6. Install pip to access other packages: mamba install pip
7. Add conda-forge to the default channel list:

conda config --add channels conda-forge

Make separate projects using mamba create -n $name 
python=$version mamba pip ipykernel $other_packages_here



Miniconda for this class

Also need to install graphviz: https://graphviz.org/

mamba create -n MLSS python=3.9 mamba pip ipykernel ipywidgets numpy pandas statsmodels scikit-learn nltk s
  spacy textacy bs4xgboost matplotlib seaborn umap-learn requests graphviz python-graphviz shap pillow
  tensorflow tensorflow-hub wasabi==0.9.1 gensim pyLDAvis keras-preprocessing doubleml pydot
conda activate MLSS
conda install mkl-service
conda install -c powerai tensorflow-gan
python -m spacy download en_core_web_sm
conda deactivate



Miniconda for Crowley and Wong (2022)
# Base environment
mamba create -n R017 python=3.9 mamba pip ipykernel spacy textacy numpy scikit-learn h5py dask dask-ml nltk
mamba install opencv psutil
conda activate R017
conda install mkl-service
python -m spacy download en_core_web_sm
conda deactivate

# 10-K downloader and parser
mamba create -n S001 python=3.9 mamba pip ipykernel spacy textacy numpy scikit-learn h5py dask dask-ml nltk
conda activate S001
conda install mkl-service
python -m spacy download en_core_web_sm
conda deactivate

# FinBERT
mamba create -n T017 python=3.9 mamba pip ipykernel cython h5py sentencepiece python_abi numpy pandas pytz 
conda activate T017
mamba install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
mamba install -c huggingface transformers==4.14.1 tokenizers==0.10.3 huggingface_hub 
conda install mkl-service
conda deactivate
sudo apt-get install git-lfs



Working with R
R doesn’t have as robust of virtual environments as python
renv might work well enough these days though

Instead, I tend to keep track of dependencies in the scripts themselves
Especially if it isn’t from CRAN

I.e., just leave a comment with the install procedure in the script

Clean, readable, moderately efficient
Based around a pipe operator %>%

Computationally efficient and SQL-
like
Overloads [ with new syntax

Coding paradigms

tidyverse

df <- df %>%
  group_by('gvkey') %>%
  mutate(obs=n()) %>%
  ungroup()

data.table

df[ , obs := .N, by='gvkey']

https://tidyverse.tidyverse.org/
https://r-datatable.com/


Working with R
Tidyverse syntax is great for data manipulation

Leaves an easy to understand list of transformations in the code
E.g.: Compiling data output from python scripts and from databases into 1 file for
analysis

Data.table is great for:
Time consuming computations
Computations on large datasets

Lower memory usage than base R, tidyverse, or pandas (python)
E.g.: Computing pairwise distances in matched observations across a 20M row
dataset

R includes matrix algebra in the base install
R supports MKL for more efficient CPU usage



Econometrics
R

Strong programming tools and consistent syntax
All standard econometric tools are included or available through CRAN
Some libraries are efficiently multithreaded
Some implementations of algorithms are significantly faster

E.g., HDFE through  is 10-50x faster than Stata
Some newer methods are only in R (or R and python both)

Stata
The language itself is lacking, so custom functions are tricky
All standard econometric tools are included or available through ssc

E.g., reghdfe, ppmlhdfe, egen, unique, outreg2
Many specialized econometric tools are also included
As of more recent versions, it supports having multiple data frames in memory
Efficient multithreading is paywalled

fixest

https://lrberge.github.io/fixest/


How did I do this paper?
1. Idea generation: Came out of discussion with Franco when visiting Rotman
2. Prototyping: Tried a variety of approaches based on LDA, word vectors, and dependency parsers before settling on

OpenIE
OpenIE was the only algorithm that really captured the context of the words

3. Data collection: python script to download and parse 10-K filings
4. Implementation:

OpenIE in Java with ~120GB RAM allocated
Masking and filtering code in python, multithreaded
USE in python (Tensorflow) on GPU
MiniBatch K-means in python (scikit-learn)
Instruments by coding Google Apps Script from python (auto-generate forms)

5. Data manipulation: R to add everything into a giant data-frame, mostly using data.table
6. Econometrics: In R

OLS is just implemented in Base R; CV LASSO in ; Double LASSO in {hdm}
Some simulation in R: Coded in a tight loop using  and 

7. Writing

glmnet
doParallel foreach

https://glmnet.stanford.edu/
https://github.com/RevolutionAnalytics/doparallel
https://github.com/RevolutionAnalytics/foreach


Tips on computation
1. If you are working with csv files, gzip them. Python and R both work well with them
2. Data bigger than your RAM? Use HDF5 – SAS-like functionality usable from R and python
3. Always keep documentation for your code, including the order to run everything
4. Python specific

Multithreading in python is worth the extra work if the process will take hours
Numpy arrays are nearly always faster if you are doing math on lists.
If you can write your problem as matrix algebra, implement it as such in numpy.

Matrices are extraordinarily efficient.
Many python libraries use C code under the hood. These are significantly faster than pure python libraries. You can
compile your own C code libraries using python code using Cython

5. R specific
Learn both tidyverse and data.table, and use data.table for slower tasks or those that use a lot of RAM
Matrix algebra is, again, the most efficient approach.

Need to calculate CAPM-based returns? You use a linear regression. Linear regression is solvable in closed form
with matrix algebra

6. Stata specific
You can run multiple copies of Stata side-by-side to max out your CPU :)



Embeddings



What are “vector space models”
Different ways of converting some abstract information into numeric information

Focus on maintaining some of the underlying structure of the abstract information
Examples (from smallest to largest input):

Word vectors:

Paragraph/document vectors:

Sentence vectors:

Topic vectors:

Word2vec
GloVe

Doc2Vec

Universal Sentence Encoder

Latent Dirichlet Allocation (LDA)

https://www.tensorflow.org/tutorials/representation/word2vec
https://nlp.stanford.edu/projects/glove/
https://medium.com/wisio/a-gentle-introduction-to-doc2vec-db3e8c0cce5e
https://tfhub.dev/google/universal-sentence-encoder-large/5
https://ai.stanford.edu/~ang/papers/jair03-lda.pdf


Word vectors
Instead of coding individual words, encode word meaning
The idea:

Our old way (encode words as IDs from 1 to N) doesn’t understand relationships such
as:

Spatial relations
Grammatical relations (weakly when using stemming)
Social relationships
etc.

Word vectors try to encapsulate all of the above implicitly, through by
encoding words as a vector based on how features manifest themselves in
text



Word vectors: Simple example
words f_animal f_people f_location
dog 0.5 0.3 -0.3
cat 0.5 0.1 -0.3
Bill 0.1 0.9 -0.4
turkey 0.5 -0.2 -0.3
Turkey -0.5 0.1 0.7
Singapore -0.5 0.1 0.8

The above is a simplified illustrative example
Notice how we can tell apart different animals based on their relationship with people
Notice how we can distinguish turkey (the animal) from Turkey (the country) as well



What it retains: word2vec

Relations are retained as vectors between points (distance + direction)

https://www.tensorflow.org/tutorials/representation/word2vec#visualizing_the_learned_embeddings


What it retains: GloVe

https://nlp.stanford.edu/projects/glove/


How does word order work?
Infer a word’s meaning from the words around it

Refered to as CBOW (continuous bag of words)



How else can word order work?
Infer a word’s meaning by generating words around it

Refered to as the Skip-gram model



An example of using word2vec
In Brown, Crowley and Elliott (2020 JAR), word2vec was used to provide assurance that
the LDA model works reasonably well on annual reports
1. We trained a word2vec model on random issues of the WSJ (247.8M words)
2. The resulting model “understood” words in the context of the WSJ
3. We then ran a psychology experiment (word intrusion task) on the algorithm

Each question consisted of 3 words from 1 topic and 1 intruder from another topic
Ex.:

, Drug, Viral, Therapeutic
Supply, Steel, Capacity, 
Relief, Louisiana, , Assisted

The task is to find which word doesn’t belong

Laser
Losses

Cargo



Results



Loading in word2vec with Gensim
The gensim package comes with the ability to download word2vec and GloVe vectors
from a repository
The code below would allow you to download a model trained on Google News

In this model, each word is represented as a 300-dimensional vector

The model will be stored in ~/gensim_models/
~ represents your user directory
You can safely delete this directory a�er you are done using it

import gensim
import gensim.downloader

base_w2v = gensim.downloader.load('word2vec-google-news-300')

Note: The model it downloads is 1.7GB



Examining word2vec: Odd one out
base_w2v.doesnt_match(['Queen', 'King', 'Prince', 'Peasant'])

'Peasant'
base_w2v.doesnt_match(['Singapore', 'Malyasia', 'Indonesia', 'Germany'])

'Germany'
base_w2v.doesnt_match(['Euro', 'USD', 'RMB', 'computer'])

'computer'
base_w2v.doesnt_match(['mee goreng', 'char kway teoh', 'laksa', 'hamburger'])

'hamburger'



Examining word2vec: Closest words
base_w2v.most_similar(['Earnings'])

('Pro_Forma_EPS', 0.6441532373428345) ('Diluted_EPS', 0.636042058467865) 
 ('Goodwill_Impairment', 0.6357625126838684) ('Tax_Expense', 0.6289322376251221) 
 ('Reconciling_Items', 0.6285154819488525) ('Restructuring_Charges', 0.6268271207809448) 
 ('Backs_FY##', 0.6254147291183472) ('Raises_FY##_EPS', 0.6230234503746033) 
 ('Restructuring_Charge', 0.6216667294502258) ('FFO_Per_Share', 0.6207219958305359)

base_w2v.most_similar('IASB')
('Accounting_Standards_Board', 0.7211726307868958) ('FASB', 0.6697319149971008) 
 ('IAASB', 0.6319378614425659) ('IAS##', 0.6150702834129333) 
 ('FASB_IASB', 0.593984842300415) ('Exposure_Draft', 0.5892050266265869) 
 ('Board_IASB', 0.5818656086921692) ('IFRS', 0.5813880562782288) 
 ('GNAIE', 0.5802473425865173) ('Solvency_II', 0.574397087097168)



Examining word2vec: Closest words
base_w2v.most_similar(['KPMG'])

('PwC', 0.8044512867927551) ('PricewaterhouseCoopers', 0.8032213449478149) 
 ('Deloitte', 0.7856791019439697) ('Grant_Thornton', 0.7815379500389099) 
 ('PriceWaterhouseCoopers', 0.7609084248542786) ('KMPG', 0.7575340270996094) 
 ('PricewaterhouseCoopers_PwC', 0.7438496351242065) ('Pricewaterhouse_Coopers', 0.7163813710212708) 
 ('Delloitte', 0.7009097337722778) ('KPMG_LLP', 0.7008424401283264)

base_w2v.most_similar(['Arthur_Andersen'])
('Arthur_Andersen_LLP', 0.7720072269439697) ('Peat_Marwick', 0.6542829275131226) 
 ('Price_Waterhouse', 0.6524070501327515) ('KPMG_Peat_Marwick', 0.6093755960464478) 
 ('Peat_Marwick_Mitchell', 0.6006763577461243) ('&_Lybrand', 0.5949062705039978) 
 ('Arthur_Andersen_accounting', 0.559570848941803) ('auditor_Arthur_Andersen', 0.5569155812263489) 
 ('KPMG', 0.5496521592140198) ('Price_Waterhouse_LLP', 0.5493941903114319)



Examining word2vec: Analogies

Mathematically: 

man : King :: woman : ?

King−man+ woman =?

base_w2v.most_similar(positive=['King', 'woman'], negative=['man'])
('Queen', 0.5515626668930054) ('Oprah_BFF_Gayle', 0.47597548365592957) 
 ('Geoffrey_Rush_Exit', 0.46460166573524475) ('Princess', 0.4533674716949463) 
 ('Yvonne_Stickney', 0.4507041573524475) ('L._Bonauto', 0.4422135353088379) 
 ('gal_pal_Gayle', 0.4408389925956726) ('Alveda_C.', 0.4402790665626526) 
 ('Tupou_V.', 0.4373864233493805) ('K._Letourneau', 0.4351031482219696)



The sleight of hand behind this
Word2Vec implementations usually bar a word in the analogy from being an output

E.g., it will never report man : King :: woman : King
But this is actually the mathematical answer

analogy = base_w2v['King'] + base_w2v['woman'] + base_w2v['man']
analogy = analogy / np.linalg.norm(analogy)
print('King', np.linalg.norm(analogy - base_w2v['King']))

King 1.9888592
print('Queen', np.linalg.norm(analogy - base_w2v['Queen']))

Queen 2.7364814



It’s still pretty good though!
Note that since word2vec’s original answer was Queen, this implies it was second best

If Queen is the closest word to King, then this would be mathematically uninteresting
It’s actually 7th though!

base_w2v.most_similar('King')
[('Jackson', 0.5326348543167114), ('Prince', 0.5306329727172852), ('Tupou_V.', 0.5292826294898987), ('KIng', 
0.5227501392364502), ('e_mail_robert.king_@', 0.5173623561859131), ('king', 0.5158917903900146), ('Queen', 
0.5157250165939331), ('Geoffrey_Rush_Exit', 0.49920955300331116), ('prosecutor_Dan_Satterberg', 
0.49850785732269287), ('NECN_Alison', 0.49128594994544983)]



What is this good for?
1. You care about the words used, by not stylistic choices

Abstraction
2. You want to crunch down a bunch of words into a smaller number of dimensions

without running any bigger models (like LDA) on the text.
E.g., you can toss the 300 dimensions of the Google News model to a Lasso or Elastic
Net model

This is a big improvement over the past method of tossing vectors of word counts
at Naive Bayes

3. You want synonyms for a set of words that are selected in a less-researcher-biased
fashion

You can even get n-gram synonyms this way
A popular method for augmenting small dictionaries



Exercise: Trying out word2vec

This set of exercise is to help you understand about what word2vec is good at
As well as what it isn’t good at

Colab file available at https://rmc.link/colab_w2v

https://colab.research.google.com/drive/1OLBuaENiq_eerdyB5os7C0ga4SphtQgk?usp=sharing


Universal Sentence Encoder (USE)



Universal Sentence Encoder (USE)
Focuses on representing sentence-length chunks of text



A fun example of with USE
Predict Shakespeare with Cloud TPUs and Keras

https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/shakespeare_with_tpu_and_keras.ipynb


Cavaet on using USE
One big caveat: USE only knows what it’s trained on

Ex.: Feeding the same USE algorithm WSJ text

Samsung Electronics Co., suffering a handset sales slide, revealed a foldable-
screen smartphone that folds like a book and opens up to tablet size. Ah,
horror? I play Thee to her alone;
And when we have withdrom him, good all.
Come, go with no less through.

Enter Don Pedres. A flourish and my money. I will tarry. Well, you do!

LADY CAPULET.
Farewell; and you are



How does USE work?
USE is based on DAN (Deep Averaging Networks) and Transformers

There are variants using each
DAN is faster
Transformer is more accurate

USE learns the meaning of sentences via words’ implied meanings
Learn more:  and 
In practice, it works quite well

Original paper TensorFlow site

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46808.pdf
https://tfhub.dev/google/universal-sentence-encoder-large/5


Using USE
The model we will be using is the  by
Cer et al. (2018)
Converts text that is between phrase and paragraph length into 512-dimensional
vectors

Universal Sentence Encoder (USE) Transformer v5

embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder-large/5")

messages = ['Two words',
            'This is a sentence.',
            'This is a few sentences.  They are strung together.  They are in one string'
           ]

embeddings = embed(messages)
embeddings

<tf.Tensor: shape=(3, 512), dtype=float32, numpy=
array([[-1.0184747e-02, -3.1019164e-02, -4.2781506e-02, ...,
         1.0805108e-01,  7.7099161e-05, -6.1001875e-03],
       [-1.2058644e-02, -3.8627390e-02,  1.5427187e-03, ...,
         3.3353332e-02, -7.0963770e-02, -1.7223844e-03],
       [ 3.6280617e-02,  1.7835487e-03, -7.6090815e-03, ...,
         5.9779502e-02, -1.0792013e-01, -6.0476218e-03]], dtype=float32)>

https://tfhub.dev/google/universal-sentence-encoder-large/5


Compare sentences with USE
messages = ["How are you feeling?","How are you?","What's up?",
    "How old are you?","How old are you, in years?","What is your age?"]
embeddings = embed(messages)
plot_similarity(messages, embeddings, 90)

USE similarity matrix



Try this yourself!
The code is available in the Jupyter Notebook
Alternatively, you can go to: 

This is a hosted environment provided by Google
Use this if you couldn’t get TensorFlow installed.

https://rmc.link/colab_use

https://colab.research.google.com/drive/1TlgZ0rVCMz6LYjo20_CD21s_k0BxJSX_?usp=sharing


LDA



What is LDA?
Latent Dirichlet Allocation
One of the most popular methods under the field of topic modeling
LDA is a Bayesian method of assessing the content of a document
LDA assumes there are a set of topics in each document, and that this set follows a
Dirichlet prior for each document

Words within topics also have a Dirichlet prior

From Blei, Ng, and Jordan (2003). More details from the creator

http://www.cs.columbia.edu/~blei/papers/Blei2012.pdf


An example of LDA



How does it work?
1. Reads all the documents

Calculates counts of each word within the document, tied to a specific ID used across
all documents

2. Uses variation in words within and across documents to infer topics
By using a Gibbs sampler to simulate the underlying distributions

An MCMC method

It’s quite complicated in the background, but it boils down to a system where
generating a document follows a couple rules:
1. Topics in a document follow a multinomial/categorical distribution
2. Words in a topic follow a multinomial/categorical distribution



Implementing LDA in python
The best package for this is gensim

As long as your data fits in memory comfortably, it is easy to use
If not, you will need to construct a generator to pass to it, which is more complex

The code file for this session has an example of this!
In terms of computation time, you will likely spend more time prepping your text than
running the LDA model



Prepping text
We will take a more thorough approach using spaCy for preprocessing

Remove stopwords using spaCy
Remove numbers, symbols, and punctuation based on a neural network dependency
parser
Lemmatize words based on the word and its POS tags

If accuracy is less important or your computer can’t handle spaCy’s approach, another
approach is:

Use a regex or NLTK to tokenize into words
Use the stop-words package or NLTK to get a list of stopwords

Filter them out using a list comprehension
doc = [w for w in doc if w not in stopwords]

Apply a word-based lemmatizer from NLTK such as WordNet

https://www.nltk.org/_modules/nltk/stem/wordnet.html


Running the LDA model
# docs contains all of our cleaned 10-K filings
# doc_names contains the filings' accession numbers

# Prepare the needed parts for gensim's LDA implementation
words = gensim.corpora.Dictionary(articles)
words.filter_extremes(no_below=3, no_above=0.5)
words.filter_tokens(bad_ids=[words.token2id['_']])  # '_' is not treated as a symbol by spaCy
corpus = [words.doc2bow(doc) for doc in articles]

# Save the intermediate data -- useful if we want to tweak model parameters and re-run later
with open('../../Data/corpus_WSJ.pkl', 'wb') as f:
    pickle.dump([corpus, words], f, protocol=pickle.HIGHEST_PROTOCOL)

# Run the model
lda = gensim.models.ldamodel.LdaModel(corpus, id2word=words, num_topics=10, passes=5,
                                      update_every=5, alpha='auto', eta='auto')

# Save the output
lda.save('../../Data/lda_WSJ')



Examining the LDA model
1. Load in the LDA model along with the corpus structure and the document names

No need to do this if the model is still in memory

2. Examine a topic

lda = gensim.models.ldamodel.LdaModel.load('../../Data/lda_WSJ')
with open('../../Data/corpus_WSJ.pkl', 'rb') as f:
    corpus, words, doc_names = pickle.load(f)

# Parameters: topic number, number of words
lda.show_topic(0, 10)

[('abbott', 0.012434472), ('party', 0.008847061), ('government', 0.007975474), ('power', 0.007954226)] 
 [('labor', 0.007714725), ('conservative', 0.006868049), ('s&p', 0.006789061), ('political', 0.0066726357)] 
 [('rudd', 0.006448531), ('policy', 0.006251966)]

Note the weights associated with the words – some words are more
meaningful than others



Examining the LDA model
3. See the top words in each topic

for i in range(0,10):
    top = lda.show_topic(i, 10)
    top_words = [w for w, _ in top ]
    print('{}: {}'.format(i, ' '.join(top_words)))

0: abbott party government power labor conservative s&p political rudd policy
1: school ms. people white district security service inc. user officer
2: benefit city life home trip live people de blasio york
3: play williams city game partner set season . good azarenka
4: company work price day people end start share take retirement
5: % fund bank fee economy government investor mortgage financial crisis
6: market % country china u.s. report group car buy investor
7: company lhota city catsimatidis retiree work health plan people york
8: % health blasio de voter likely city old york support
9: president house rule u.s. congress vote company syria obama include



Examining the LDA model
The pyLDAvis package produces a nice interactive map of the topics

ldavis = pyLDAvis.gensim_models.prepare(lda, corpus, words, sort_topics=False)
pyLDAvis.display(ldavis)

Click here to see the output

file:///M:/Dropbox/Teaching/Doctoral_ML/2023_Fall/Slides/Session_6/ldavis.html


STM
STM (Structural Topic Modeling) adds two elements to the standard LDA approach:
1. Covariates can be included in determining the distribution of topics overall

(“prevalence”)
2. Covariates can be included in determining the weights of words within topics

(“content”)

This allows us to better examine the impact of characteristics on textual
content

A worked out example is in the R code file



Conclusion



Wrap-up

Can use them to more accurately compare textual similarity
Can use them as inputs into a model

Provides document-level insight into content distribution

Embeddings are useful in many contexts, but usually not as the final measure

LDA models work well as measures and can capture meaningful variation in
text

STM provides more power for analyses interested in if textual content differs
across groups or treatments



Packages used for these slides
Python
gensim
numpy
pandas
pyLDAvis
seaborn
spacy
tensorflow
tensorflow_hub

R

{stmBrowser}

gender
kableExtra
knitr
quarto
quanteda
readtext
reticulate
revealjs
stm

tidyverse

https://github.com/lmullen/gender
http://haozhu233.github.io/kableExtra/
https://yihui.org/knitr/
https://github.com/quarto-dev/quarto-r
https://quanteda.io/
https://github.com/quanteda/readtext
https://rstudio.github.io/reticulate/
https://github.com/rstudio/revealjs
http://www.structuraltopicmodel.com/
https://tidyverse.tidyverse.org/


References
Blei, David M., Andrew Y. Ng, and Michael I. Jordan. “Latent dirichlet allocation.” the Journal of machine Learning
research 3 (2003): 993-1022.
Brown, Nerissa C., Richard M. Crowley, and W. Brooke Elliott. “What are you saying? Using topic to detect financial
misreporting.” Journal of Accounting Research 58, no. 1 (2020): 237-291.
Cer, Daniel, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Constant et al. “Universal
sentence encoder.” arXiv preprint arXiv:1803.11175 (2018).
Crowley, Richard M. and M. H. Franco Wong. “Understanding Sentiment through Context.” Working paper, 2022.
Huang, Allen H., Reuven Lehavy, Amy Y. Zang, and Rong Zheng. “Analyst information discovery and interpretation
roles: A topic modeling approach.” Management Science 64, no. 6 (2018): 2833-2855.
Roberts, M.E., Stewart, B.M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S.K., Albertson, B. and Rand, D.G., 2014.
Structural topic models for open-ended survey responses. American Journal of Political Science, 58(4), pp.1064-1082.



Custom code
# USE plot code
def distance_matrix_np(pts):
    """Returns matrix of pairwise Euclidean distances. Vectorized numpy version."""
    return np.sum((pts[None,:] - pts[:, None])**2, -1)**0.5

def plot_similarity(messages, embeddings, rotation):
    messages2 = []
    for message in messages:
        if len(message.split()) > 4:
            c = 0
            temp = ''
            for m in message.split():
                temp += m
                c += 1
                if c==4:
                    temp += '\n'
                    c = 0
                else:
                    temp += ' '
            temp = temp[:-1]
            messages2.append(temp)
        else:
            messages2.append(message)
    messages = messages2
    corr = distance_matrix_np(embeddings)
    corr = 1 - corr/2
    sns.set(font_scale=1.2)
    g = sns.heatmap(
        corr,

xticklabels=messages




