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Overview



Papers

Introduces a ML-based method for causal identification useful in standard DID and IV approaches
Focused on calculating ATE and ATTE

Uses XGBoost + DoubleML for an interesting application: deaths caused by pollution
The study is well designed, showing results using both traditional econometrics and ML-based econometrics

Examines the impact of misinformation laws in China
Implements DoubleML-DiD to measure the effect

Chernozhukov et al. 2017 AAER

Deryugina et al. 2019 AAER

Crowley et al. 2023a Working



Technical Discussion: DoubleML
Python

Use the DoubleML library
For a basic DoubleML model
For a DiD model from Crowley et
al. (2023a)

R
The  library is available in R
as well

We’ll try this for a model with
clustered standard errors

{dmlmt} for multilevel treatments
using DoubleML

We’ll try this for a model with
clustered standard errors

Both the above are implemented in
Crowley et al. (2023b)
The AER paper’s source code is all in
R!

doubleML

https://docs.doubleml.org/r/stable/


Double ML: Theory



Background
There are a number of relevant papers published in economics in recent years
developing and using Double ML
The method is developed largely from:

Chernozhukov et al. (2017 AER), “Double/debiased/Neyman machine learning of
treatment effects”
Chernozhukov et al. (2018 Econometrics J), “Double/debiased machine learning for
treatment and structural parameters.”

Impact or overlap with methodological work by Susan Athey, Matthew
Gentzkow, Trevor Hastie, Guido Imbens, Matt Taddy, and Stefan Wager



What is Double ML?
1. Split your sample as you would for -fold cross validation, into sets 

 samples of  observations each
Let 

2. Construct  estimators using a machine learning estimator over nuisance parameters
(e.g., controls) applied to the data 

3. Average the  estimators to obtain a final estimator
This average estimator is approximately unbiased and normally distributed
The estimator is also asymptotically efficient
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And repeat. Bootstrap this out and take the mean or median of the
estimators



Where Double ML excels: Endogenous treatment
Suppose a policy affects a subset of individuals (people, corporations, etc.)
Suppose individuals have the ability to alter their treatment status

E.g., state laws (move), labor laws, etc.
Linear controls may be insufficient to claim causality of the treatment on anything

1. Linear controls
2. Propensity score adjustments (e.g., weighting)
3. Matching methods
4. “doubly-robust” estimators

There are a lot of older methods that try to address this, though incompletely



Why is machine learning needed?
Suppose a true form of a specification is as follows

 is a treatment indicator,  is a vector of controls

We o�en assume  to be something like 
We o�en assume  to be a constant (i.e., assume that  is exogenous)
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We know these assumptions aren’t true! (in many cases)



Why is machine learning needed?

We could use a more flexible econometric approach, such as including interactions
between  and 

This is still very restrictive: purely linear
We could include transformations of  and its interactions

This is still restrictive:  is additively separable
We could use a nonparametric estimator!

This is where machine learning is very useful: efficient and reasonably accurate
nonparametric estimation

LASSO, random forest, XGBoost, etc.

How can we estimate a more general form for  and ?g
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Model variants
Interactive regression model (IRM)

The model described in the previous slides
Partially linear regression model (PLR)

Use if you can separate your treatment effect from the controls but suspect nonlinear
effects of controls

Solves  and 
There are also instrumental variable variants of both IRM and PLR
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What does this give us?
Average treatment effect (ATE)

How does the treatment effect the outcome across groups?

Average treatment effect of the treated (ATTE)
How does the treatment effect only those under the treatment?
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Reconciling these slides notation with the paper
These slides use a somewhat simpler oriented notation.
Reconciliation from slides to papers:

 is 
 is 
 is  or  depending on the paper
 is 
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Implementing DoubleML



Walking through an implementation of DoubleML

This problem is walked through in Chernozhukov et al. (2017 AER, Web Appendix)
The R code for the AER paper is available from AER as well

Quite clean code at that!
We will implement this in python using the DoubleML library

Which Chernozhukov was involved in the development of

Problem: How does 401k participation impact wealth?



Importing the data
Conveniently, the data is available from the DoubleML package

# Grab the dataset
import doubleml.datasets
df = dml.datasets.fetch_401K('DataFrame')
df

         nifa  net_tfa        tw  age      inc  ...  twoearn  e401  p401  pira  hown
0         0.0      0.0    4500.0   47   6765.0  ...        0     0     0     0     1
1      6215.0   1015.0   22390.0   36  28452.0  ...        0     0     0     0     1
2         0.0  -2000.0   -2000.0   37   3300.0  ...        0     0     0     0     0
3     15000.0  15000.0  155000.0   58  52590.0  ...        1     0     0     0     1
4         0.0      0.0   58000.0   32  21804.0  ...        0     0     0     0     1
...       ...      ...       ...  ...      ...  ...      ...   ...   ...   ...   ...
9910  98498.0  98858.0  157858.0   52  73920.0  ...        0     1     1     0     1
9911    287.0   6230.0   15730.0   41  42927.0  ...        1     1     1     1     1
9912     99.0   6099.0    7406.0   40  23619.0  ...        0     1     0     1     0
9913      0.0    -32.0    2468.0   47  14280.0  ...        0     1     1     0     0
9914   4000.0   5000.0    8857.0   33  11112.0  ...        0     1     1     0     0

[9915 rows x 14 columns]



Using your own data
We can also do this manually, by importing the Stata file from AER
We then need to prep the data into the format DoubleML expects

This is fairly straightforward, just defining our Y, treatment, and control variables

df = pd.read_stata('../../Data/S8_sipp1991.dta')

y = 'net_tfa'
treat = 'e401'
controls = [x for x in df.columns.tolist() if x not in [y, treat]]

df_dml = dml.DoubleMLData(df, y_col=y, d_cols=treat, x_cols=controls)



What is the data format used by DoubleML?

Pandas dataframe
A pre-specified outcome variable
One or more treatment indicators
One or more controls
Optional instruments

print(df_dml)
================== DoubleMLData Object ==================

------------------ Data summary      ------------------
Outcome variable: net_tfa
Treatment variable(s): ['e401']
Covariates: ['nifa', 'tw', 'age', 'inc', 'fsize', 'educ', 'db', 'marr', 'twoearn', 'p401', 'pira', 'hown']
Instrument variable(s): None
No. Observations: 9915

------------------ DataFrame info    ------------------
<class 'pandas.core.frame.DataFrame'>
Int64Index: 9915 entries, 0 to 9914
Columns: 14 entries, nifa to hown
dtypes: float32(4), int8(10)
memory usage: 329.2 KB



Set up the Nuisance functions
Recall that there are two functions,  and  that need to be solved for this method

 must match the treatment’s form,  the DV’s form
We can specify any form for these that we want, if they follow Scikit-learn’s API

: Continuous GBM

: Binary GBM

m

0

g

0

m

0

g

0

g

0

g_0 = GradientBoostingRegressor(
  loss='ls',
  learning_rate=0.01,
  n_estimators=1000,
  subsample=0.5,
  max_depth=2
  )

m

0

m_0 = GradientBoostingClassifier(
  loss='exponential',
  learning_rate=0.01,
  n_estimators=1000,
  subsample=0.5,
  max_depth=2
  )



Run the DML model: Average Treatment Effects
# Fix the random number generator for replicability
np.random.seed(1234)
# Run the model
dml_model_irm = dml.DoubleMLIRM(df_dml, g_0, m_0)
# Output the model's findings
print(dml_model_irm.fit())

================== DoubleMLIRM Object ==================

------------------ Data summary      ------------------
Outcome variable: net_tfa
Treatment variable(s): ['e401']
Covariates: ['nifa', 'tw', 'age', 'inc', 'fsize', 'educ', 'db', 'marr', 'twoearn', 'p401', 'pira', 'hown']
Instrument variable(s): None
No. Observations: 9915

------------------ Score & algorithm ------------------
Score function: ATE
DML algorithm: dml2

------------------ Resampling        ------------------
No. folds: 5
No repeated sample splits: 1



Run the DML model: ATTE
ATTE: Average Treatment Effects of the Treated

# Run the model
dml_model_irm_ATTE = dml.DoubleMLIRM(df_dml, g_0, m_0, score='ATTE')
# Output the model's findings
print(dml_model_irm_ATTE.fit())

================== DoubleMLIRM Object ==================

------------------ Data summary      ------------------
Outcome variable: net_tfa
Treatment variable(s): ['e401']
Covariates: ['nifa', 'tw', 'age', 'inc', 'fsize', 'educ', 'db', 'marr', 'twoearn', 'p401', 'pira', 'hown']
Instrument variable(s): None
No. Observations: 9915

------------------ Score & algorithm ------------------
Score function: ATTE
DML algorithm: dml2

------------------ Resampling        ------------------
No. folds: 5
No repeated sample splits: 1



Other twists on the model
1. Change the machine learning backend

Our models used dml2
You can switch to dml1 using dml_procedure='dml1'
dml1 follows the math in these slides

Solve for a condition equal to zero for each model, and then average the
estimators
dml2 solves the for the average of the condition being equal to zero overall

2. Run multiple iterations of the model
The paper uses 100 iterations, emulate this by adding n_rep=100

3. Change the machine learning models fed to the DoubleML model
An example of using “Histogram-based Gradient Boosting” is in the Jupyter
notebook

This is a much faster GBM-like model



DoubleML DiD



An example of DML DiD
On the next slides, I present the code for the DML DiD test from Crowley et al. 2023a
The code uses an estimator that is doubly robust following Sant’Anna and Zhao (2020)
The code uses the DiD approach from Chang (2020)

Pros
DiD with DoubleML!

Cons
Hard to use many Fixed Effects
No model for clustered standard
errors (yet)
Only works with basic DiD estimation



Initializing the model in Python
Here we define  in ml_m and  in ml_g. This paper uses XGBoost as the
underlying algorithm, so the model is fully nonparametric.

m

0

g

0

# Set up the ML functions to use within the DoubleML routine
# Initial
ml_g = ml_l_xgb = XGBRegressor(objective = "reg:squarederror", eta = 0.1,
                        n_estimators = 100)
ml_m = XGBClassifier(use_label_encoder = False,
                        objective = "binary:logistic",
                        eval_metric = "logloss",
                        eta = 0.1, n_estimators = 100)

# Set a random seed for replicability
np.random.seed(65474)



Setting up the data and estimator

The above code is very similar to our base DoubleML model
Just note the use of dml.DoubleMLDIDCS() instead of dml.DoubleMLIRM()

# Build the data object
data = df[['Avg_Fake', 'treat', 'post_reg', 'Size_w', 'ROA_w', 'Market_to_Book_w',
           'Leverage_w', 'SOE_indicator', 'dailyret_w', 'retvol_qtr_w',
           'disclosure_rating', 'avg_daily_overall_tone_w', 'log_avg_total_words',
           'log_daily_post_count']]
obj_dml_data = dml.DoubleMLData(data, 'Avg_Fake', 'treat', t_col='post_reg')

# Compile the DMLDiD estimator
dml_did_obj = dml.DoubleMLDIDCS(obj_dml_data, ml_g, ml_m)

# Run and output the results
output = dml_did_obj.fit()  # Takes 7 minutes using 16 cores

print(output)  # shown on the next slide



Model output
================== DoubleMLDIDCS Object ==================

------------------ Data summary      ------------------
Outcome variable: Avg_Fake
Treatment variable(s): ['treat']
Covariates: ['Size_w', 'ROA_w', 'Market_to_Book_w', 'Leverage_w', 'SOE_indicator', 'dailyret_w', 'retvol_qtr_w', 
'disclosure_rating', 'avg_daily_overall_tone_w', 'log_avg_total_words', 'log_daily_post_count']
Instrument variable(s): None
Time variable: post_reg
No. Observations: 2633704

------------------ Score & algorithm ------------------
Score function: observational
DML algorithm: dml2

Machine learner



DoubleML with clustered standard errors



An example of DML with clustered SEs
On the next slides, I present the code for the clustered standard error DoubleML model
from Crowley, Lou, Tan, and Zhang (2023b)
The model is from Chiang et al. (2022)

Bootstrapping and sampling over the clustering variables

Pros
Clustering with DoubleML!

One-way
Two-way

Cons
Hard to use many Fixed Effects
Only works with basic treatment
effect estimation
High computational cost and data
requirements



Initializing the model in R

Here we use a LASSO model, so this is only semi-parametric
lasso_l is , lasso_m is 

# Required imports
('hdm')
( )
( )
( )

# Note that all the data is in `df`

# Data setup (building a data.frame for it)
formula = (~ -1 + mcap + roa + dt_at + log_followers + log_friends +
                    log_total_tweets + (year) + event + (sic1))
data_transf = ( (formula, df))

# Set up the learners using glmnet under the hood
lasso_l = lrn("regr.cv_glmnet", nfolds = 10, s = "lambda.min")
lasso_m = lrn("classif.cv_glmnet", nfolds = 10, s = "lambda.min")

library
library 'DoubleML'
library 'mlr3'
library 'mlr3learners'

formula
as.factor as.factor

data.frame model.matrix

g

0

m

0

https://rdrr.io/r/base/library.html
https://rdrr.io/r/base/library.html
https://docs.doubleml.org/stable/index.html
https://rdrr.io/r/base/library.html
https://mlr3.mlr-org.com/
https://rdrr.io/r/base/library.html
https://mlr3learners.mlr-org.com/
https://rdrr.io/r/stats/formula.html
https://rdrr.io/r/base/factor.html
https://rdrr.io/r/base/factor.html
https://rdrr.io/r/base/data.frame.html
https://rdrr.io/r/stats/model.matrix.html


Setting up the data and estimator

Note that the R doubleml package allows for specifying clustering via the
cluster_cols argument in the data construction function

# Constructing the DML data object
y_col = 'log_tweets_num'
d_col = 'misinformation'
cluster_cols = ('region', 'year')
dml_df = (df[ (y_col, d_col, cluster_cols)],
               data_transf)
dml_data = DoubleMLClusterData$new(dml_df,
                                   y_col=y_col,
                                   d_cols=d_col,
                                   cluster_cols=cluster_cols,
                                   x_cols= (data_transf))

(1111)
#dml_data$z_cols = z_col
#dml_data$cluster_cols = c('model.id', 'cdid')
n_rep = 10
dml_pl = DoubleMLPLR$new(dml_data,
                           lasso_l, lasso_m,

n folds=2 n rep=n rep)

c
cbind c

names

set.seed

https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/names.html
https://rdrr.io/r/base/Random.html


Model output

Thi model does not give coefficient estimates

dml_pl$summary()
Estimates and significance testing of the effect of target variables
               Estimate. Std. Error t value Pr(>|t|)  
misinformation   -0.6509     0.2956  -2.202   0.0277 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



DoubleML with multilevel treatments



An example of multilevel treatment DML
On the next slides, I present the code for the multilevel treatment DoubleML model
from Crowley, Lou, Tan, and Zhang (2023b)
The model is from Knaus (2020)

Pros
Supports any level of treatment, 2
levels or more
Useful with stacked regressions
Can also compare the ATEs across
levels

Cons
Hard to use many Fixed Effects
No model for clustered standard
errors (yet)



Initializing the model

No need to set up the ML functions with {dmlmt}
It uses cross-validated post-LASSO by default

# imports
(dmlmt)library

https://rdrr.io/r/base/library.html


Setting up the data and estimator

No need to build a DoubleML data object
pl=TRUE specifies to use post-LASSO

Post-LASSO is slower but more rigorous

# Build the data
Y = df$log_tweets_num
tier1 <- ('cn2', 'sg', 'ru')
tier2 <- ('de', 'fr')
tier3 <- ('be', 'it', 'nl')
D_mult = (df$event  tier1, 1,
                (df$event  tier2, 2,
                       (df$event  tier3, 3,
                              0))) * df$post * df$treat
X4 = (~ -1 + mcap + roa + dt_at + log_followers + log_friends +
                    log_total_tweets + (year) + (sic1),
                  data = df)

# Compile and run DMLDiD estimator
stand_l_bin4 <- dmlmt(X4, D_mult, Y, pl=TRUE)

c
c
c
ifelse %in%

ifelse %in%
ifelse %in%

model.matrix
as.factor as.factor

https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/ifelse.html
https://rdrr.io/r/base/match.html
https://rdrr.io/r/base/ifelse.html
https://rdrr.io/r/base/match.html
https://rdrr.io/r/base/ifelse.html
https://rdrr.io/r/base/match.html
https://rdrr.io/r/stats/model.matrix.html
https://rdrr.io/r/base/factor.html
https://rdrr.io/r/base/factor.html


Model output

Level 0 is the control level; levels 1-3 are treatments
Note that the output shows us the ATE of the treatments and the difference across
treatments

 Multiple treatment

 Potential outcomes:
# Treatment 0 4.7123 0.0200
# Treatment 1 4.0268 0.2991
# Treatment 2 4.8360 0.0595
# Treatment 3 4.4298 0.0928
# 
# Average effects
# TE        SE       t         p    
# T1 - T0 -0.685500  0.299019 -2.2925 0.0218828 *  
#   T2 - T0  0.123747  0.059220  2.0896 0.0366596 *  
#   T3 - T0 -0.282490  0.092132 -3.0661 0.0021701 ** 
# T2 T1 0 809248 0 304212 2 6601 0 0078143 **



Conclusion



Wrap-up

Easy to implement as well!
Many models now available, making it more general-purpose

You can use ML to strengthen an econometric framework

Double Machine Learning can help in cleanly identifying treatment effects

ML and Econometrics are not at odds with one another

ML is essentially just another tool in the econometrics toolbox!



Packages used for these slides
Python
doubleML
numpy
pandas

R
{doubleML}
{dmlmt}

{hdm}
glmnet

kableExtra
knitr
mlr3
mlr3learners
quarto
reticulate
revealjs

https://glmnet.stanford.edu/
http://haozhu233.github.io/kableExtra/
https://yihui.org/knitr/
https://mlr3.mlr-org.com/
https://mlr3learners.mlr-org.com/
https://github.com/quarto-dev/quarto-r
https://rstudio.github.io/reticulate/
https://github.com/rstudio/revealjs
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