
ACCT 420: R Supplement
Dr. Richard M. Crowley

https://rmc.link/
rcrowley@smu.edu.sg

mailto:rcrowley@smu.edu.sg

Vectors

Vectors: What are they?
Remember back to linear algebra…

Examples:

⎛

⎝

⎜

⎜

⎜

1

2

3

4

⎞

⎠

⎟

⎟

⎟

or ()

1 2 3 4

A row (or column) of data

Vector creation
Vectors are entered using the command
Any data type is fine, but all elements must be the same type

c()

company <- ("Google", "Microsoft", "Goldman")
company

c

[1] "Google" "Microsoft" "Goldman"
tech_firm <- (TRUE, TRUE, FALSE)
tech_firm

c

[1] TRUE TRUE FALSE
earnings <- (12662, 21204, 4286)
earnings

c

[1] 12662 21204 4286

A vector in R is a 1 dimensional collection of 1 or more of the same data type

https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html

Special cases for vectors
Counting between integers
:, e.g. 1:5 or 22:500

, e.g. seq(from=0, to=100,
by=5)

 note that [20] means the 20th output

Repeating something
, e.g. rep(1,times=10) or

rep("hi",times=5)seq()

1:5
[1] 1 2 3 4 5

(from=0, to=100, by=5)seq
 [1] 0 5 10 15 20 25 30 35 40 45
50 55 60 65 70 75 80 85 90
[20] 95 100

↑

rep()

(1,times=10)rep
 [1] 1 1 1 1 1 1 1 1 1 1

("hi",times=5)rep
[1] "hi" "hi" "hi" "hi" "hi"

https://rdrr.io/r/base/seq.html
https://rdrr.io/r/base/seq.html
https://rdrr.io/r/base/rep.html
https://rdrr.io/r/base/rep.html
https://rdrr.io/r/base/rep.html

Vector math

First element with first element,
Second element with second element,
…

Works the same as scalars, but applies element-wise

earnings # previously defined
[1] 12662 21204 4286

earnings + earnings # Add element-wise
[1] 25324 42408 8572

earnings * earnings # multiply element-wise
[1] 160326244 449609616 18369796

Vector math

Scalar is applied to all vector elements

Can also use 1 vector and 1 scalar

earnings + 10000 # Adding a scalar to a vector
[1] 22662 31204 14286

10000 + earnings # Order doesn't matter
[1] 22662 31204 14286

earnings / 1000 # Dividing a vector by a scalar
[1] 12.662 21.204 4.286

Vector math
From linear algebra, remember multiplication via a dot product.

That can be done with %*%

Other useful functions, and :

Dot product: sum of product of elements
earnings earnings # returns a matrix though...%*%

 [,1]
[1,] 628305656

(earnings earnings) # Drop drops excess dimensionsdrop %*%
[1] 628305656

length() sum()

(earnings) # returns the number of elementslength
[1] 3

(earnings) # returns the sum of all elementssum
[1] 38152

https://rdrr.io/r/base/matmult.html
https://rdrr.io/r/base/drop.html
https://rdrr.io/r/base/matmult.html
https://rdrr.io/r/base/length.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/length.html
https://rdrr.io/r/base/sum.html

Naming vectors
Vectors allow us to include a lot of
information in one object

It isn’t easy to read though
We can make things more readable by
assigning

Names provide a way to easily work
with and understand the data

Hard to read:

Easy to read:
names()

earnings
[1] 12662 21204 4286

(earnings) <- ("Google",
 "Microsoft",
 "Goldman")
earnings

names c

 Google Microsoft Goldman
 12662 21204 4286

Equivalently:
(earnings) <- company

earnings
names

 Google Microsoft Goldman
 12662 21204 4286

https://rdrr.io/r/base/names.html
https://rdrr.io/r/base/names.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/names.html

Selecting and combining vectors
Selecting can be done a few ways.

By index, such as [1]
By name, such as ["Google"]

Multiple selection:
earnings[c(1,2)]
earnings[1:2]
earnings[c("Google",
"Microsoft")]

Combining is done using

earnings[1]
Google
 12662

earnings["Google"]
Google
 12662

Each of the above 3 is equivalent
earnings[1:2]

 Google Microsoft
 12662 21204

c()

c1 <- (1,2,3)
c2 <- (4,5,6)
c3 <- (c1,c2)
c3

c
c
c

[1] 1 2 3 4 5 6

https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html

Vector example: Profit margin for tech firms
Calculating proit margin for all public US tech firms
715 tech firms with >1M sales in 2017

(earnings_2017) # Cleaned data from Compustat, in $M USDsummary
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-4307.49 -15.98 1.84 296.84 91.36 48351.00

(revenue_2017) # Cleaned data from Compustat, in $M USDsummary
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.06 102.62 397.57 3023.78 1531.59 229234.00

profit_margin <- earnings_2017 / revenue_2017
(profit_margin)summary

 Min. 1st Qu. Median Mean 3rd Qu. Max.
-13.97960 -0.10253 0.01353 -0.10967 0.09295 1.02655

These are the worst, midpoint, and best profit margin firms in 2017. Our names carried over :)
profit_margin[(profit_margin)][(1, (profit_margin)/2, (profit_margin))]order c length length

HELIOS AND MATHESON ANALYTIC NLIGHT INC
 -13.97960161 0.01325588
 CCUR HOLDINGS INC
 1.02654899

https://rdrr.io/r/base/summary.html
https://rdrr.io/r/base/summary.html
https://rdrr.io/r/base/summary.html
https://rdrr.io/r/base/order.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/length.html
https://rdrr.io/r/base/length.html

Practice: Vectors
This practice explores the ROA of Goldman Sachs, JPMorgan, and Citigroup in 2017
Do exercises 1 and 2 on the supplementary R practice file:

Short link:
R Practice

rmc.link/acct420r1sup

https://rmc.link/acct420r1sup
https://rmc.link/acct420r1sup

Matrices

Matrices: What are they?
Remember back to linear algebra…

Example:

⎛

⎝

⎜

1

5

9

2

6

10

3

7

11

4

8

12

⎞

⎠

⎟

A rows and columns of data

Matrix creation
Matrices are entered using the command
Any data type is fine, but all elements must be the same type

matrix()

columns <- ("Google", "Microsoft", "Goldman")
rows <- ("Earnings","Revenue")

equivalent: matrix(data=c(12662, 21204, 4286, 110855, 89950, 42254),ncol=3)
firm_data <- (data= (12662, 21204, 4286, 110855, 89950, 42254),nrow=2)
firm_data

c
c

matrix c

 [,1] [,2] [,3]
[1,] 12662 4286 89950
[2,] 21204 110855 42254

https://rdrr.io/r/base/matrix.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/matrix.html
https://rdrr.io/r/base/c.html

Math with matrices
Everything with matrices works just like vectors

firm_data + firm_data
 [,1] [,2] [,3]
[1,] 25324 8572 179900
[2,] 42408 221710 84508

firm_data / 1000
 [,1] [,2] [,3]
[1,] 12.662 4.286 89.950
[2,] 21.204 110.855 42.254

Matrix math with matrices
Matrix transposing, , uses

Matrix multiplication, , uses %*%

A

T t()

firm_data_T <- (firm_data)
firm_data_T

t

 [,1] [,2]
[1,] 12662 21204
[2,] 4286 110855
[3,] 89950 42254

A B

firm_data firm_data_T%*%
 [,1] [,2]
[1,] 8269698540 4544356878
[2,] 4544356878 14523841157

We won’t use these much, but they can be useful

https://rdrr.io/r/base/t.html
https://rdrr.io/r/base/t.html
https://rdrr.io/r/base/matmult.html

Matrix naming
We can name matrix rows and columns, much like we named vector elements
Use for rows
Use for columns

rownames()
colnames()

(firm_data) <- rows
(firm_data) <- columns

firm_data

rownames
colnames

 Google Microsoft Goldman
Earnings 12662 4286 89950
Revenue 21204 110855 42254

https://rdrr.io/r/base/colnames.html
https://rdrr.io/r/base/colnames.html
https://rdrr.io/r/base/colnames.html
https://rdrr.io/r/base/colnames.html

Selecting from matrices
Select using 2 indexes instead of 1:
matrix_name[rows,columns]
To select all rows or columns, leave that index blanks

firm_data[2,3]
[1] 42254

firm_data[, ("Google","Microsoft")]c
 Google Microsoft
Earnings 12662 4286
Revenue 21204 110855

firm_data[1,]
 Google Microsoft Goldman
 12662 4286 89950

https://rdrr.io/r/base/c.html

Combining matrices
Matrices are combined top to bottom as rows with
Matrices are combined side-by-side as columns with

rbind()
cbind()

Preloaded: industry codes as indcode (vector)
- GICS codes: 40=Financials, 45=Information Technology
- See: https://en.wikipedia.org/wiki/Global_Industry_Classification_Standard
Preloaded: JPMorgan data as jpdata (vector)

mat <- (firm_data,indcode) # Add a row
(mat)[3] <- "Industry" # Name the new row

mat

rbind
rownames

 Google Microsoft Goldman
Earnings 12662 4286 89950
Revenue 21204 110855 42254
Industry 45 45 40

mat <- (firm_data,jpdata) # Add a column
(mat)[4] <- "JPMorgan" # Name the new column

mat

cbind
colnames

 Google Microsoft Goldman JPMorgan
Earnings 12662 4286 89950 17370
Revenue 21204 110855 42254 115475

https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/base/colnames.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/base/colnames.html

Lists

Lists: What are they?
Like vectors, but with mixed types
Generally not something we will create
O�en returned by analysis functions in R

Ignore this code for now...
model <- ((earnings ~ revenue, data=tech_df))
#Note that this function is hiding something...
model

summary lm

Call:
lm(formula = earnings ~ revenue, data = tech_df)

Residuals:
 Min 1Q Median 3Q Max
-16045.0 20.0 141.6 177.1 12104.6

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.837e+02 4.491e+01 -4.091 4.79e-05 ***
revenue 1.589e-01 3.564e-03 44.585 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1166 on 713 degrees of freedom

https://rdrr.io/r/base/summary.html
https://rdrr.io/r/stats/lm.html

Looking into lists
Lists generally use double square brackets, [[index]]

Used for pulling individual elements out of a list
[[c()]] will drill through lists, as opposed to pulling multiple values
Single square brackets pull out elements as is
Double square brackets extract just the element
For 1 level, we can also use $

model["r.squared"]
$r.squared
[1] 0.7360059

model[["r.squared"]]
[1] 0.7360059

model$r.squared
[1] 0.7360059

earnings["Google"]
Google
 12662

earnings[["Google"]]
[1] 12662

#Can't use $ with vectors

Structure of a list
 will tell us what’s in this liststr()

(model)str
List of 11
 $ call : language lm(formula = earnings ~ revenue, data = tech_df)
 $ terms :Classes 'terms', 'formula' language earnings ~ revenue
 - attr(*, "variables")= language list(earnings, revenue)
 - attr(*, "factors")= int [1:2, 1] 0 1
 - attr(*, "dimnames")=List of 2
 $: chr [1:2] "earnings" "revenue"
 $: chr "revenue"
 - attr(*, "term.labels")= chr "revenue"
 - attr(*, "order")= int 1
 - attr(*, "intercept")= int 1
 - attr(*, "response")= int 1
 - attr(*, ".Environment")=<environment: R_GlobalEnv>
 - attr(*, "predvars")= language list(earnings, revenue)
 - attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"

attr(* "names") chr [1:2] "earnings" "revenue"

https://rdrr.io/r/utils/str.html
https://rdrr.io/r/utils/str.html

Practice: Lists
In this practice, we will explore lists and how to parse them
Do exercise 3 on the supplementary R practice file:

Short link:
R Practice

rmc.link/acct420r1sup

https://rmc.link/acct420r1sup
https://rmc.link/acct420r1sup

Data frames

What are data frames?
Data frames are like a hybrid between lists and matrices

Like a matrix:

2 dimensional like matrices
Can access data with []
All elements in a column must be the
same data type

Like a list:

Can have different data types for
different columns
Can access data with $

Think of columns as variables, rows as observations

Example of a data frame
The DT library is great for including larger collections of data in output
DT:: (tech_df[1:20, ("conm","tic","margin")], rownames=FALSE)datatable c

Show 10 entries Search:

Showing 1 to 10 of 20 entries

conm tic

AVX CORP AVX 0.00314245229040611

BK TECHNOLOGIES BKTI -0.0920421373270719

ADVANCED MICRO DEVICES AMD 0.00806905610808782

ASM INTERNATIONAL NV ASMIY 0.613509486149511

SKYWORKS SOLUTIONS INC SWKS 0.276661006737142

ANALOG DEVICES ADI 0.142390322629277

ANDREA ELECTRONICS CORP ANDR -0.1661866359447

APPLE INC AAPL 0.210924208450753

Previous 1 2 Next

https://rdrr.io/pkg/DT/man/datatable.html
https://rdrr.io/r/base/c.html

How to create data frames
1. On import of data, usually you will get a data frame
2. Using the functiondata.frame()

df <- (companyName=company,
 earnings=earnings,
 tech_firm=tech_firm)
df

data.frame

 companyName earnings tech_firm
Google Google 12662 TRUE
Microsoft Microsoft 21204 TRUE
Goldman Goldman 4286 FALSE

Note: stringsAsFactors=FALSE is no longer needed as of R 4.0.0

https://rdrr.io/r/base/data.frame.html
https://rdrr.io/r/base/data.frame.html

Selecting from data frames
Access like a matrix

Access like a list

df[,1]
[1] "Google" "Microsoft" "Goldman"

df$companyName
[1] "Google" "Microsoft" "Goldman"

df[[1]]
[1] "Google" "Microsoft" "Goldman"

All are relatively equivalent. Using $ is generally most natural. Using [,] is
good for complex references.

Making new columns in a data frame

companyName earnings tech_firm all_zero revenue margin
Google Google 12662 TRUE 0 110855 0.1142213
Microso� Microso� 21204 TRUE 0 89950 0.2357310
Goldman Goldman 4286 FALSE 0 42254 0.1014342

Suggested method: use $

df$all_zero <- 0
df$revenue <- (110855, 89950, 42254)
df$margin <- df$earnings / df$revenue
Custom function for small tables -- see last slide for code
html_df(df)

c

Alternative method: use just like with matricescbind()

https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/cbind.html

Sorting data frames
To sort a vector, we could use the

THIS CAN’T SORT DATA FRAMES

A column of a data frame is fine, but it can’t sort the whole thing!

sort()

(df$earnings)sort
[1] 4286 12662 21204

Warning

https://rdrr.io/r/base/sort.html
https://rdrr.io/r/base/sort.html

Sorting data frames
To sort a data frame, we use the function

It returns the order of each element in increasing value
1 is the lowest value

Then we pass the new order like we are selecting elements

order()

ordering <- (df$earnings)
ordering

order

[1] 3 1 2
df <- df[ordering,]
df

 companyName earnings tech_firm all_zero revenue margin
Goldman Goldman 4286 FALSE 0 42254 0.1014342
Google Google 12662 TRUE 0 110855 0.1142213
Microsoft Microsoft 21204 TRUE 0 89950 0.2357310

https://rdrr.io/r/base/order.html
https://rdrr.io/r/base/order.html

Sorting data frames
Order can sort by multiple levels
order(level1,level2,...), where level_ are vectors or data frame columns

Example of multicolumn sorting:
example <- (firm= ("Google","Microsoft","Google","Microsoft"),
 year= (2017,2017,2016,2016))
example

data.frame c
c

 firm year
1 Google 2017
2 Microsoft 2017
3 Google 2016
4 Microsoft 2016

with() allows us to avoiding prepending each column with "example$"
ordering <- (example$firm, example$year)
example <- example[ordering,]
example

order

 firm year
3 Google 2016
1 Google 2017
4 Microsoft 2016
2 Microsoft 2017

https://rdrr.io/r/base/data.frame.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/order.html

Subsetting data frames
1. We can use the selecting methods from before
2. We can pass a vector of logical values telling R what to keep

This is pretty useful!

3. We can use the function
I don’t recommend this function, as it

There are times where it is useful though

df[df$tech_firm,] # Remember the comma!
 companyName earnings tech_firm all_zero revenue margin
Google Google 12662 TRUE 0 110855 0.1142213
Microsoft Microsoft 21204 TRUE 0 89950 0.2357310

subset()
does not always work

(df,earnings < 20000)subset
 companyName earnings tech_firm all_zero revenue margin
Goldman Goldman 4286 FALSE 0 42254 0.1014342
Google Google 12662 TRUE 0 110855 0.1142213

https://rdrr.io/r/base/subset.html
http://adv-r.had.co.nz/Computing-on-the-language.html
https://rdrr.io/r/base/subset.html

Practice: Data frames
This exercise explores the nature of banks’ deposits

We will see which of Goldman, JPMorgan, and Citigroup have (since 2010):
The least of their assets in deposits
The most of their assets in deposits

Do exercise 4 on the supplementary R practice file:

Short link:
R Practice

rmc.link/acct420r1sup

https://rmc.link/acct420r1sup
https://rmc.link/acct420r1sup

Logical expressions

Why use logical expressions?
We just saw an example in our subsetting function
earnings < 20000

Logical expressions give us more control over the data
They let us easily create logical vectors for subsetting data

df$earnings
[1] 4286 12662 21204

df$earnings < 20000
[1] TRUE TRUE FALSE

Logical operators
== != > < >= <= ! | &

Equals: ==
2 == 2 TRUE
2 == 3 FALSE
'dog'=='dog' TRUE
'dog'=='cat' FALSE

Not equals: !=
The opposite of ==
2 != 2 FALSE
2 != 3 TRUE
'dog'!='cat' TRUE

Comparing strings is done character by character
Be very careful with it

→

→

→

→

→

→

→

Logical operators
== != > < >= <= ! | &

Greater than: >
2 > 1 TRUE
2 > 2 FALSE
2 > 3 FALSE
'dog'>'cat' TRUE

Less than: >
2 < 1 FALSE
2 < 2 FALSE
2 < 3 TRUE
'dog'<'cat' FALSE

Greater than or equal to: >
2 >= 1 TRUE
2 >= 2 TRUE
2 >= 3 FALSE

Less than or equal to: >
2 <= 1 FALSE
2 <= 2 TRUE
2 <= 3 TRUE

→

→

→

→

→

→

→

→

→

→

→

→

→

→

Logical operators
Not: !

This simply inverts everything
!TRUE FALSE
!FALSE TRUE

And: &
TRUE & TRUE TRUE
TRUE & FALSE FALSE
FALSE & FALSE FALSE

Or: | (pipe, same key as ‘\’)
Note that | is evaluated a�er all &s
TRUE | TRUE TRUE
TRUE | FALSE TRUE
FALSE | FALSE FALSE

You can mix in parentheses for grouping as needed

→

→

→

→

→

→

→

→

Examples for logical operators
How many tech firms had >$10B in revenue in 2017?

How many tech firms had >$10B in revenue but had negative earnings in 2017?

Who are those 4 with high revenue and negative earnings?

(tech_df$revenue > 10000)sum
[1] 46

(tech_df$revenue > 10000 & tech_df$earnings < 0)sum
[1] 4

columns <- ("conm","tic","earnings","revenue")
tech_df[tech_df$revenue > 10000 & tech_df$earnings < 0, columns]

c

 conm tic earnings revenue
35 CORNING INC GLW -497.000 10116.00
45 TELEFONAKTIEBOLAGET LM ERICS ERIC -4307.493 24629.64
120 DELL TECHNOLOGIES INC 7732B -3728.000 78660.00
214 NOKIA CORP NOK -1796.087 27917.49

https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/c.html

Other special values
We know TRUE and FALSE already

Note that FALSE can be represented as 0
Note that TRUE can be represented as any non-zero number

There are also:
Inf: Infinity, o�en caused by dividing something by 0
NaN: “Not a number,” likely that the expression 0/0 occurred
NA: A missing value, usually not due to a mathematical error
Null: Indicates a variable has nothing in it

We can check for these with:
is.inf()
is.nan()
is.na()
is.null()

https://rdrr.io/r/base/is.finite.html
https://rdrr.io/r/base/NA.html
https://rdrr.io/r/base/NULL.html

Practice: Subsetting our data frame
This practice focuses on subsetting out potentially interesting parts of our data frame

We will also see which of Goldman, JPMorgan, and Citigroup, in which year, had the
lowest earnings since 2010

Do exercise 5 on the supplementary R practice file:

Short link:
R Practice

rmc.link/acct420r1sup

https://rmc.link/acct420r1sup
https://rmc.link/acct420r1sup

Other uses
Conditional statements (used for programming)

Vectorized conditional statements using
If else takes 3 vectors and returns 1 vector
1. A vector of TRUE or FALSE
2. A vector of elements to return from when TRUE
3. A vector of elements to return from when FALSE

cond1, cond2, etc. can be any logical expression
if(cond1) {
 # Code runs if cond1 is TRUE
} else if (cond2) { # Can repeat 'else if' as needed
 # Code runs if this is the first condition that is TRUE
} else {
 # Code runs if none of the above conditions TRUE
}

ifelse()

Outputs odd for odd numbers and even for even numbers
even <- ("even",5)
odd <- ("odd",5)
numbers <- 1:5

(numbers 2, odd, even)

rep
rep

ifelse %%
[1] "odd" "even" "odd" "even" "odd"

https://rdrr.io/r/base/ifelse.html
https://rdrr.io/r/base/rep.html
https://rdrr.io/r/base/rep.html
https://rdrr.io/r/base/ifelse.html
https://rdrr.io/r/base/Arithmetic.html

Loops and apply

Looping: While loop
A while() loop executes code
repeatedly until a specified condition
is FALSE

i = 0
while(i < 5) {
 (i)
 i = i + 2
}

print

[1] 0
[1] 2
[1] 4

https://rdrr.io/r/base/print.html

Looping: For loop
A for() loop executes code
repeatedly until a specified condition
is FALSE, while incrementing a given
variable

for(i in (0,2,4)) {
 (i)
}

c
print

[1] 0
[1] 2
[1] 4

https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/print.html

Dangers of looping in R
Loops in R are very slow – they do one calculation at a time, but R is best for doing
many calculations at once

Profit margin, all US tech firms
start <- ()
margin_1 <- (0, (tech_df$ni))
for(i in (tech_df$ni)) {
 margin_1[i] <- tech_df$earnings[i] /
 tech_df$revenue[i]
}
end <- ()
time_1 <- end - start
time_1

Sys.time
rep length

seq_along

Sys.time

Time difference of 0.005000114 secs

Profit margin, all US tech firms
start <- ()
margin_2 <- tech_df$earnings /
 tech_df$revenue
end <- ()
time_2 <- end - start
time_2

Sys.time

Sys.time

Time difference of 0.0009999275 secs

(margin_1, margin_2) # Are these calculations identical? Yes they are.identical
[1] TRUE

((time_1) / (time_2), "times") # How much slower is the loop?paste as.numeric as.numeric
[1] "5.00047687172151 times"

https://rdrr.io/r/base/Sys.time.html
https://rdrr.io/r/base/rep.html
https://rdrr.io/r/base/length.html
https://rdrr.io/r/base/seq.html
https://rdrr.io/r/base/Sys.time.html
https://rdrr.io/r/base/Sys.time.html
https://rdrr.io/r/base/Sys.time.html
https://rdrr.io/r/base/identical.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/numeric.html
https://rdrr.io/r/base/numeric.html

Useful functions

Help functions
There are two equivalent ways to quickly access help files:
? and
Usage to get the help file for :

To see the options for a function, use

help()
data.frame()

?data.frame
help(data.frame)

args()

(data.frame)args
function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,
 fix.empty.names = TRUE, stringsAsFactors = FALSE)
NULL

https://rdrr.io/r/utils/help.html
https://rdrr.io/r/base/data.frame.html
https://rdrr.io/r/base/data.frame.html
https://rdrr.io/r/base/data.frame.html
https://rdrr.io/r/base/args.html
https://rdrr.io/r/base/args.html

A note on using functions

The ... represents a series of inputs
In this case, inputs like name=data, where name is the column name and data is a
vector

The ____ = ____ arguments are options for the function
The default is prespecified, but you can overwrite it

Options can be very useful or save us a lot of time!
You can always find them by:

Using the ? command
Checking other documentation like
Using the function

(data.frame)args
function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,
 fix.empty.names = TRUE, stringsAsFactors = FALSE)
NULL

www.rdocumentation.org
args()

https://rdrr.io/r/base/args.html
file:///M:/Dropbox/Teaching/Data_Analytics/2023_Fall/Slides/Session_1_Sup/www.rdocumentation.org
https://rdrr.io/r/base/args.html

Installing more functions
R Provides an easy way to install packages without ever leaving R

The command
Can install a single package or a vector of packages

Load packages using
Need to do this each time you open a new instance of R

install.packages()

To install the tidyverse package:
("tidyverse")

To install ggplot2, dplyr, and magrittr packages:
(("ggplot2", "dplyr", "magrittr"))

install.packages

install.packages c

library()

Load the tidyverse package
()library tidyverse

https://rdrr.io/r/utils/install.packages.html
https://rdrr.io/r/utils/install.packages.html
https://rdrr.io/r/utils/install.packages.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/library.html
https://rdrr.io/r/base/library.html
https://tidyverse.tidyverse.org/

Pipe notation

Pipe notation is provided by the package
Part of , an extremely popular collection of packages

Pipe notation is done using %>%
Left %>% Right(arg2, ...) is the same as Right(Left, arg2, ...)

Pipe notation is never necessary and not built in to R

magrittr
tidyverse

Piping can drastically improve code readability

https://magrittr.tidyverse.org/
https://tidyverse.tidyverse.org/

Piping example
Plot tech firms’ earnings vs revenue, >$10B in revenue

()
()

plot <- tech_df
 (revenue > 10000)
 ((x=revenue,y=earnings)) + # ggplot comes from ggplot2, part of tidyverse
 (shape=1, (text= ("Ticker: %s", tic))) # Adds point, and ticker

(plot) # Makes the plot interactive

library tidyverse
library plotly

%>%
subset %>%
ggplot aes
geom_point aes sprintf

ggplotly

0 50000 100000 150000 200000

0

10000

20000

30000

40000

50000

revenue

ea
rn
in
gs

https://rdrr.io/r/base/library.html
https://tidyverse.tidyverse.org/
https://rdrr.io/r/base/library.html
https://plotly-r.com/
https://magrittr.tidyverse.org/reference/pipe.html
https://rdrr.io/r/base/subset.html
https://magrittr.tidyverse.org/reference/pipe.html
https://ggplot2.tidyverse.org/reference/ggplot.html
https://ggplot2.tidyverse.org/reference/aes.html
https://ggplot2.tidyverse.org/reference/geom_point.html
https://ggplot2.tidyverse.org/reference/aes.html
https://rdrr.io/r/base/sprintf.html
https://rdrr.io/pkg/plotly/man/ggplotly.html

Piping example: Without piping
()
()

plot <- ((tech_df, revenue > 10000), (x=revenue,y=earnings)) +
 (shape=1, (text= ("Ticker: %s", tic)))

(plot) # Makes the plot interactive

library tidyverse
library plotly

ggplot subset aes
geom_point aes sprintf

ggplotly

0 50000 100000 150000 200000

0

10000

20000

30000

40000

50000

revenue

ea
rn
in
gs

https://rdrr.io/r/base/library.html
https://tidyverse.tidyverse.org/
https://rdrr.io/r/base/library.html
https://plotly-r.com/
https://ggplot2.tidyverse.org/reference/ggplot.html
https://rdrr.io/r/base/subset.html
https://ggplot2.tidyverse.org/reference/aes.html
https://ggplot2.tidyverse.org/reference/geom_point.html
https://ggplot2.tidyverse.org/reference/aes.html
https://rdrr.io/r/base/sprintf.html
https://rdrr.io/pkg/plotly/man/ggplotly.html

Practice: External library usage
This practice focuses on using an external library

We will chart each banks’ earnings over time
Do exercise 6 on the supplementary R practice file:

Short link:
R Practice

rmc.link/acct420r1sup

Note: The ~ indicates a formula the le� side is the y-axis and the right side is
the x-axis

Note: The | tells lattice to make panels based on the variable(s) to the right

https://rmc.link/acct420r1sup
https://rmc.link/acct420r1sup

Math functions
: Sum of a vector
: Absolute value

: The sign of a number

sum()
abs()
sign()

vector = (-2,-1,0,1,2)
(vector)

c
sum

[1] 0
(vector)abs

[1] 2 1 0 1 2
(vector)sign

[1] -1 -1 0 1 1

https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/MathFun.html
https://rdrr.io/r/base/sign.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/MathFun.html
https://rdrr.io/r/base/sign.html

Stats functions
: Calculates the mean of a vector

: Calculates the median of a vector
: Calculates the sample standard deviation of a vector

: Provides the quartiles of a vector
: Gives the minimum and maximum of a vector

Related: and

mean()
median()
sd()
quantile()
range()

min() max()

(tech_df$earnings)quantile
 0% 25% 50% 75% 100%
-4307.4930 -15.9765 1.8370 91.3550 48351.0000

(tech_df$earnings)range
[1] -4307.493 48351.000

https://rdrr.io/r/base/mean.html
https://rdrr.io/r/stats/median.html
https://rdrr.io/r/stats/sd.html
https://rdrr.io/r/stats/quantile.html
https://rdrr.io/r/base/range.html
https://rdrr.io/r/base/Extremes.html
https://rdrr.io/r/base/Extremes.html
https://rdrr.io/r/stats/quantile.html
https://rdrr.io/r/base/range.html

Make your own functions!
Use the function() function!
my_func <- function(agruments) {code}

Simple function: Add 2 to a number

add_two <- function(n) {
 n + 2
}

add_two(500)
[1] 502

Slightly more complex function example
mult_together <- function(n1, n2=0, square=FALSE) {
 if (!square) {
 n1 * n2
 } else {
 n1 * n1
 }
}

mult_together(5,6)
[1] 30

mult_together(5,6,square=TRUE)
[1] 25

mult_together(5,square=TRUE)
[1] 25

Practice: Functions
This practice focuses on making a custom function

Currency conversion between USD and SGD!
A web-based example is in the end notes

Do exercise 7 on the supplementary R practice file:

Short link:
R Practice

rmc.link/acct420r1sup

https://rmc.link/acct420r1sup
https://rmc.link/acct420r1sup

End Matter

Wrap up
Having completed these slides, you should be ready for any R code in the
class!

Packages used for these slides

RColorBrewer

DT
downlit
kableExtra
knitr
plotly
quantmod
quarto
revealjs

tidyverse

https://github.com/rstudio/DT
https://downlit.r-lib.org/
http://haozhu233.github.io/kableExtra/
https://yihui.org/knitr/
https://plotly-r.com/
http://www.quantmod.com/
https://github.com/quarto-dev/quarto-r
https://github.com/rstudio/revealjs
https://tidyverse.tidyverse.org/

Custom functions
Custom code for pulling 1 day of ForEx data from OANDA
FXRate <- function(from="USD", to="SGD", dt= ()) {
 ("getSymbols.warning4.0"=FALSE)
 ()
 data <- ((from, "/", to), from=dt-1, to=dt, src="oanda", auto.assign=F)
 (data[[1]])
}

Sys.Date
options
require quantmod

getSymbols paste0
return

https://rdrr.io/r/base/Sys.time.html
https://rdrr.io/r/base/options.html
https://rdrr.io/r/base/library.html
http://www.quantmod.com/
https://rdrr.io/pkg/quantmod/man/getSymbols.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/function.html

