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▪ Theory:

▪ Neural Networks for…

▪ Images

▪ Audio

▪ Video

▪ Application:

▪ Handwriting recognition

▪ Identifying financial

information in images

▪ Methodology:

▪ Neural networks

▪ CNNs

Learning objectives
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Group project

▪ Next class you will have an opportunity to present your work

▪ ~15 minutes per group

▪ You will also need to submit your report & code on Tuesday

▪ Please submit as a zip file

▪ Be sure to include your report AND code AND slides

▪ Code should cover your final model

▪ Covering more is fine though

▪ Competitions close Sunday night!
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Image data
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Thinking about images as data

▪ Images are data, but they are very unstructured

▪ No instructions to say what is in them

▪ No common grammar across images

▪ Many, many possible subjects, objects, styles, etc.

▪ From a computer’s perspective, images are just 3-dimensional

matrices

▪ Rows (pixels)

▪ Columns (pixels)

▪ Color channels (usually Red, Green, and Blue)
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▪ Source: Twitter

▪ 798 rows

▪ 1200 columns

▪ 3 color channels

▪ 798  1,200  3  2,872,800

▪ The number of ‘variables’

per image like this!

Using images as data

▪ We can definitely use numeric matrices as data

▪ We did this plenty with XGBoost, for instance

▪ However, images have a lot of different numbers tied to each

observation.
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Using images in practice

▪ There are a number of strategies to shrink images’ dimensionality

1. Downsample the image to a smaller resolution like 256x256x3

2. Convert to grayscale

3. Cut the image up and use sections of the image as variables

instead of individual numbers in the matrix

▪ O�en done with convolutions in neural networks

4. Drop variables that aren’t needed, like LASSO
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Images in R using Keras
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For those using 

▪ CPU Based, works on any

computer

▪ Nvidia GPU based

▪ Install the 

 first

Using your own python setup

▪ Follow Google’s 

▪ Install keras from a terminal

with pip install keras

▪ R Studio’s keras package will

automatically find it

▪ May require a reboot to

work on Windows

R interface to Keras

▪ Install with:

devtools::install_github("rstudio/keras")

▪ Finish the install in one of two ways:

By R Studio: details here

Conda

library(keras) 
install_keras()

So�ware

requirements

library(keras) 
install_keras(tensorflow = "gpu")

install

instructions for Tensorflow
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https://keras.rstudio.com/index.html
https://docs.conda.io/en/latest/
https://www.tensorflow.org/install/gpu
https://www.tensorflow.org/install


The “hello world” of neural networks

▪ A “Hello world” is the standard first program one writes in a language

▪ In R, that could be:

▪ For neural networks, the “Hello world” is writing a handwriting

classification script

▪ We will use the MNIST database, which contains many writing

samples and the answers

▪ Keras provides this for us :)

print("Hello world!")

## [1] "Hello world!"

library(keras) 
mnist <- dataset_mnist()
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Set up and pre-processing

▪ We still do training and testing samples

▪ It is just as important here as before!

 

▪ Shape and scale the data into a big matrix with every value between 0

and 1

x_train <- mnist$train$x 
y_train <- mnist$train$y 
x_test <- mnist$test$x 
y_test <- mnist$test$y

# reshape 

x_train <- array_reshape(x_train, c(nrow(x_train), 784)) 
x_test <- array_reshape(x_test, c(nrow(x_test), 784)) 
# rescale 

x_train <- x_train / 255 
x_test <- x_test / 255
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Building a Neural Network

▪ Relu is the same as a call option payoff: 

▪ So�max approximates the  function

▪ Which input was highest?

model <- keras_model_sequential() # Open an interface to tensorflow 
# Set up the neural network 

model %>%  
    layer_dense(units = 256, activation = 'relu', input_shape = c(784)) %>%  
    layer_dropout(rate = 0.4) %>%  
    layer_dense(units = 128, activation = 'relu') %>% 
    layer_dropout(rate = 0.3) %>% 
    layer_dense(units = 10, activation = 'softmax')

That’s it. Keras makes it easy.
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The model

▪ We can just call  on the model to see what we builtsummary()

summary(model)

## Model: "sequential_1" 
## _______________________________________________________________________________
## Layer (type)                        Output Shape                    Param #    
## ===============================================================================
## dense (Dense)                       (None, 256)                     200960     
## _______________________________________________________________________________
## dropout (Dropout)                   (None, 256)                     0          
## _______________________________________________________________________________
## dense_1 (Dense)                     (None, 128)                     32896      
## _______________________________________________________________________________
## dropout_1 (Dropout)                 (None, 128)                     0          
## _______________________________________________________________________________
## dense_2 (Dense)                     (None, 10)                      1290       
## ===============================================================================
## Total params: 235,146 
## Trainable params: 235,146 
## Non-trainable params: 0 
## _______________________________________________________________________________
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https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/summary


Compile the model

▪ Tensorflow doesn’t compute anything until you tell it to

▪ A�er we have set up the instructions for the model, we compile it to

build our actual model

model %>% compile( 
    loss = 'sparse_categorical_crossentropy', 

    optimizer = optimizer_rmsprop(), 
    metrics = c('accuracy') 
)
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Running the model

▪ It takes about 1 minute to run on an Nvidia GTX 1080

history <- model %>% fit( 
    x_train, y_train,  

    epochs = 30, batch_size = 128,  

    validation_split = 0.2 

)

plot(history)

## `geom_smooth()` using formula 'y ~
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Out of sample testing

eval <- model %>% evaluate(x_test, y_test) 
eval

## $loss 
## [1] 0.1117176 
##  
## $accuracy 
## [1] 0.9812
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Saving the model

▪ Saving:

 

▪ Loading an already trained model:

model %>% save_model_hdf5("../../Data/Session_11-mnist_model.h5")

model <- load_model_hdf5("../../Data/Session_11-mnist_model.h5")
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More advanced image techniques
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How CNNs work

▪ CNNs use repeated convolution, usually looking at slightly bigger

chunks of data each iteration

▪ But what is convolution? It is illustrated by the following graphs (from

):

 

Wikipedia

Further reading
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https://en.wikipedia.org/wiki/Convolution
http://colah.github.io/posts/2014-07-Understanding-Convolutions/


Example output of AlexNet The first (of 5) layers learned

CNN

▪ AlexNet ( )paper
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http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
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Transfer Learning

▪ The previous slide is an example of style transfer

▪ This is also done using CNNs

▪ More details here
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https://medium.com/data-science-group-iitr/artistic-style-transfer-with-convolutional-neural-network-7ce2476039fd


What is transfer learning?

▪ It is a method of training an algorithm on one domain and then

applying the algorithm on another domain

▪ It is useful when…

▪ You don’t have enough data for your primary task

▪ And you have enough for a related task

▪ You want to augment a model with even more
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Inputs:

Try it out!

▪ Colab file available at 

▪ Largely based off of 

▪ It just took a few tweaks to get it working in a Google Colaboratory

environment properly

this link

dsgiitr/Neural-Style-Transfer
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https://colab.research.google.com/drive/1fepwhtxIyqE9VQ02Hb7A7RpMpVKBFGkp
https://github.com/dsgiitr/Neural-Style-Transfer


Input Output

Another generative use: Photography

▪ Creatism: Generating photography from Google Earth Panoramas
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https://google.github.io/creatism/


Try out a CNN in your browser!

▪

▪ : A dataset of clothing pictures

▪ Keras: An easier API for TensorFlow

▪ TPU: A “Tensor Processing Unit” – A custom processor built by

Google

▪ Python code

Fashion MNIST with Keras and TPUs

Fashion MNIST
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https://colab.research.google.com/drive/1U_GYz2NP1yVDKkqTTXa_GQN7OvY8CpnJ?usp=sharing
https://github.com/zalandoresearch/fashion-mnist


Recent attempts at explaining CNNs

▪ Google & Stanford’s “Automated Concept-based Explanation”
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https://venturebeat.com/2019/10/14/googles-ai-explains-how-image-classifiers-made-their-decisions/


Detecting financial content

6 . 1



The data

▪ 5,000 images that should not contain financial information

▪ 2,777 images that should contain financial information

▪ 500 of each type are held aside for testing

Goal: Build a classifier based on the images’ content
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Examples: Financial
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Examples: Non-financial
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The CNN

summary(model)

## Model: "sequential" 
## _______________________________________________________________________________
## Layer (type)                        Output Shape                    Param #    
## ===============================================================================
## conv2d (Conv2D)                     (None, 254, 254, 32)            896        
## _______________________________________________________________________________
## re_lu (ReLU)                        (None, 254, 254, 32)            0          
## _______________________________________________________________________________
## conv2d_1 (Conv2D)                   (None, 252, 252, 16)            4624       
## _______________________________________________________________________________
## leaky_re_lu (LeakyReLU)             (None, 252, 252, 16)            0          
## _______________________________________________________________________________
## batch_normalization (BatchNormaliza (None, 252, 252, 16)            64         
## _______________________________________________________________________________
## max_pooling2d (MaxPooling2D)        (None, 126, 126, 16)            0          
## _______________________________________________________________________________
## dropout (Dropout)                   (None, 126, 126, 16)            0          
## _______________________________________________________________________________
## flatten (Flatten)                   (None, 254016)                  0          
## _______________________________________________________________________________
## dense (Dense)                       (None, 20)                      5080340    
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Running the model

▪ It takes about 10 minutes to run on an Nvidia GTX 1080

history <- model %>% fit_generator( 
  img_train, # training data 

  epochs = 10, # epoch 

  steps_per_epoch = 

   as.integer(train_samples/batch_size
  # print progress 

  verbose = 2, 

)

plot(history)
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Out of sample testing

eval <- model %>% 
  evaluate_generator(img_test, 
                     steps = as.integer(test_samples / batch_size), 
                     workers = 4) 

eval

## $loss 
## [1] 0.7535837 
##  
## $accuracy 
## [1] 0.6572581
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Optimizing the CNN

▪ The model we saw was run for 10 epochs (iterations)

▪ Why not more? Why not less?

history <- readRDS('../../Data/Session_11-tweet_history-30epoch.rds') 
plot(history)
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AlexNet variant

summary(model)

## Model: "sequential_2" 
## _______________________________________________________________________________
## Layer (type)                        Output Shape                    Param #    
## ===============================================================================
## conv2d_4 (Conv2D)                   (None, 62, 62, 96)              34944      
## _______________________________________________________________________________
## re_lu_2 (ReLU)                      (None, 62, 62, 96)              0          
## _______________________________________________________________________________
## max_pooling2d_2 (MaxPooling2D)      (None, 31, 31, 96)              0          
## _______________________________________________________________________________
## batch_normalization_2 (BatchNormali (None, 31, 31, 96)              384        
## _______________________________________________________________________________
## conv2d_5 (Conv2D)                   (None, 21, 21, 256)             2973952    
## _______________________________________________________________________________
## re_lu_3 (ReLU)                      (None, 21, 21, 256)             0          
## _______________________________________________________________________________
## max_pooling2d_3 (MaxPooling2D)      (None, 10, 10, 256)             0          
## _______________________________________________________________________________
## batch_normalization_3 (BatchNormali (None, 10, 10, 256)             1024       
## _______________________________________________________________________________
## conv2d 6 (Conv2D)                   (None, 8, 8, 384)               885120     
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AlexNet performance

plot(history)
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Video data
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Working with video

▪ Video data is challenging – very storage intensive

▪ Ex.: Uber’s self driving cars would generate >100GB of data per hour

per car

▪ Video data is very promising

▪ Think of how many task involve vision!

▪ Driving

▪ Photography

▪ Warehouse auditing…

▪ At the end of the day though, video is just a sequence of images
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One method for video

▪ You

▪ Only

▪

▪ Once

YOLOv3

You Only Look Once: Because the algorithm only does one

pass (looks once) to classify any and all objects
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YOLOv3YOLOv3

opy linkopy link

Video link
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https://www.youtube.com/watch?v=MPU2HistivI
https://www.youtube.com/channel/UClVWrKrmoeNM7A9nkEMeYzA
https://www.youtube.com/watch?v=MPU2HistivI&feature=youtu.be


What does YOLO do?

▪ It spots objects in videos and labels them

▪ It also figures out a bounding box – a box containing the object

inside the video frame

▪ It can spot overlapping objects

▪ It can spot multiple of the same or different object types

▪ The baseline model (using the COCO dataset) can detect 80 different

object types

▪ There are other datasets with more objects
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How does Yolo do it? Map of Tiny YOLO

Yolo model and graphing tool from lutzroeder/netron
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https://github.com/lutzroeder/netron


How does Yolo do it?

Diagram from  by Ayoosh KathuriaWhat’s new in YOLO v3
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https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b


Final word on object detection

▪ An algorithm like YOLO v3 is somewhat tricky to run

▪ Preparing the algorithm takes a long time

▪ The final output, though, can run on much cheaper hardware

▪ These algorithms just recently became feasible so their impact has yet

to be felt so strongly

Think about how facial recognition showed up everywhere

for images over the past few years
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Where to get video data

▪ One extensive source is 

▪ 6.1M videos, 3-10 minutes each

▪ Each video has >1,000 views

▪ 350,000 hours of video

▪ 237,000 labeled 5 second segments

▪ 1.3B video features that are machine labeled

▪ 1.3B audio features that are machine labeled

Youtube-8M
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https://research.google.com/youtube8m/


End matter
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Final discussion

▪ 1 example: Using image recognition techniques, warehouse counting

for audit can be automated

▪ Strap a camera to a drone, have it fly all over the warehouse, and

process the video to get item counts

What creative uses for the techniques discussed today do

you expect to see become reality in accounting in the

next 3-5 years?
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Recap

Today, we:

▪ Learned about using images as data

▪ Constructed a simple handwriting recognition system

▪ Learned about more advanced image methods

▪ Applied CNNs to detect financial information in images on Twitter

▪ Learned about object detection in videos
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For next week

▪ For next week:

▪ Finish the group project!

1. Kaggle submission closes Sunday!

2. Turn in your code, presentation, and report through eLearn’s

dropbox

3. Prepare a short (~15 minute) presentation for class
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More fun examples

▪ Interactive:

▪

▪

▪ Others:

▪

▪

Performance RNN

TensorFlow.js examples

Google’s deepdream

Open NSynth Super
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https://magenta.tensorflow.org/demos/performance_rnn/index.html#2|2,0,1,0,1,1,0,1,0,1,0,1|1,1,1,1,1,1,1,1,1,1,1,1|1,1,1,1,1,1,1,1,1,1,1,1|false
https://js.tensorflow.org/
https://github.com/google/deepdream
https://github.com/googlecreativelab/open-nsynth-super


Fun machine learning examples

▪ Interactive:

▪

▪ click the images to try it out yourself!

▪

▪

▪

Draw together with a neural network

Google’s Quickdraw

Google’s Teachable Machine

Four experiments in handwriting with a neural network
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https://magenta.tensorflow.org/sketch-rnn-demo
https://quickdraw.withgoogle.com/
https://teachablemachine.withgoogle.com/
https://distill.pub/2016/handwriting/


Bonus: Neural networks in interactive media

▪

▪

▪

▪ Trained on 180 years of play

▪

▪ Trained on 200 years of play

Super Mario using MarI/O

Mario Kart using an RNN for controller prediction

Open AI’s Five tops Dota 2

Google Deepmind’s Alphastar AI on StarCra� II
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file:///D:/Dropbox/Teaching/Data_Analytics/2020_Fall/Slides/Session_11/Session_11_print.html
https://www.twitch.tv/sethbling/clip/FrigidBillowingBasenjiCopyThis?filter=clips&range=all&sort=time
https://openai.com/five/
https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement-learning


Packages used for these slides

▪

▪

▪

▪

kableExtra

keras

knitr

tidyverse
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https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_html.html
https://keras.rstudio.com/
https://yihui.name/knitr/
https://www.tidyverse.org/

