il

ACCT 420: ML and Al for |
visual data

Session 11

Dr. Richard M. Crowley

Learning objectives

= Theory:
= Neural Networks for...
= |mages
= Audio

Foundations

S
Al e
Forecasting e 0 +— | I e O
Al
ol —
02 04 0.6 0.8 1.0 a -

= Application:

» Handwriting recognition

classification £ L i - \“‘ " . I d e ntifyi N g fi N a n Ci a l
Lo information in images

* Methodology:

Advanced
methods

= Neural networks
= CNNs

Group project

= Next class you will have an opportunity to present your work

= ~15 minutes per group
= You will also need to submit your report & code on Tuesday

= Please submit as a zip file

» Besuretoinclude your report AND code AND slides

» Code should cover your final model
= Covering more is fine though

» Competitions close Sunday night!

—
_=‘

Thinking about images as data

* |mages are data, but they are very unstructured
= No instructions to say what is in them
= No common grammar across images
= Many, many possible subjects, objects, styles, etc.
* From a computer’s perspective, images are just 3-dimensional
matrices
= Rows (pixels)
(pixels)
(usually Red, Green, and Blue)

TN -y
_ﬁ.

Using images as data

» We can definitely use numeric matrices as data
* We did this plenty with XGBoost, for instance

= However, images have a lot of different numbers tied to each
observation.

= /98 rows
= 1200 columns
= 3 color channels
= 798 X 1,200 X 3 = 2,872,800
= The number of ‘variables’
per image like this!

= Source: Twitter

SN N &

N e =

Using images in practice

» There are a number of strategies to shrink images’ dimensionality
1. Downsample the image to a smaller resolution like 256x256x3
2. Convert to grayscale
3. Cut the image up and use sections of the image as variables
instead of individual numbers in the matrix
= Often done with convolutions in neural networks
4, Drop variables that aren’t needed, like LASSO

i

Images in R using Keras

TN -y
_ﬁ.

R interface to Keras

By R Studio: details here

= |nstall with:
devtools::install github ("rstudio/keras")
* Finish the install in one of two ways:

B

N\

For those using Conda

CPU Based, works on any
computer

library (keras)
install_keras()

Nvidia GPU based
= |nstall the Software
requirements first

library (keras)
install_keras(tensorflow = "gpu")

Using your own python setup

» Follow Google’s install
instructions for Tensorflow

* |nstall keras from a terminal
withpip install keras

» R Studio’s keras package will
automatically find it
= May require a reboot to

work on Windows

https://keras.rstudio.com/index.html
https://docs.conda.io/en/latest/
https://www.tensorflow.org/install/gpu
https://www.tensorflow.org/install

|

The “hello world” of neural networks vl
= A“Hello world” is the standard first program one writes in a language 'O“
= |n R, that could be: '

{
print ("Hello world!") .

{
[1] "Hello world!"

= For neural networks, the “Hello world” is writing a handwriting =4
classification script '
= We will use the MNIST database, which contains many writing
samples and the answers
= Keras provides this for us:)

o rw

library (keras)
mnist <- dataset mnist()

l

Set up and pre-processing

= We still do training and testing samples
= |tisjust asimportant here as before!

X train <- mnist$train$x
y train <- mnist$train$y
X test <- mnist$test$x
y test <- mnist$testSy

» Shape and scale the data into a big matrix with every value between 0
and 1

reshape

X train <- array reshape(x train, c(nrow(x train), 784))
X test <- array reshape (x test, c(nrow(x test), 784))

rescale

X train <- x train / 255

x test <- x test / 255

a1 LW -

Building a Neural Network

model <- keras model sequential () # Open an interface to tensorflow
Set up the neural network
model %>%

layer dense (units = 256, activation = 'relu', input shape = c(784)) $%>%
layer dropout (rate = 0.4) $>%

layer dense (units = 128, activation = 'relu') %>%

layer dropout (rate = 0.3) %>%

layer dense (units = 10, activation = 'softmax')

That’s it. Keras makes it easy.

« Relu is the same as a call option payoff: maz(z, 0)

= Softmax approximates the argmax function
= Which input was highest?

-.'— i ‘H_‘

The model

= We canjust call summary () onthe model to see what we built

summary (model)

Model: "sequential 1"

ii Layer (type) Output Shape Param #

ii dropout (Dropout) (None, 256) 0

ii dense 1 (Dense) (None, 128) 32896

ii dropout 1 (Dropout) (None, 128) 0

ii dense 2 (Dense) (None, 10) 1290

it S=========e=—=mm—ee=eee—=c=—c—cccc—c—cccc—cc—c———ccc——ccc———cc—————cc—=——cc—=—c—c====

Total params: 235,146
Trainable params: 235,146
Non-trainable params: O

ik

N N -y

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/summary

Compile the model wal

= Tensorflow doesn’t compute anything until you tell it to '.E_)ff{?"
= After we have set up the instructions for the model, we compile it to
build our actual model :
model %>% compile (i
loss = 'sparse categorical crossentropy',
optimizer = optimizer rmsprop (),
metrics = c('accuracy') .
)]
L1 4

Running the model weL

"-4._,.1
. L1 I0cm
= |t takes about 1 minute to run on an Nvidia GTX 1080 “ 2
s a4
history <- model %>% fit (plot (history) (
X train, y train, .
epochs = 30, batch size = 128, . . .
validation split = 0.2 ## "~geom smooth () wusing formula 'y ~ i
)
0.4-
..h__r!
"
0.3+ -
w
8 4
02- -
. data
0.99 - =%=fraining =
=e= validation .
096- X s
§ -
S 0.93- =
o
Qo
4]
0.90 -
0.87- o
0 5 10 15 20 25 34U

epoch

Out of sample testing waL

‘-,_..l
eval <- model %>% evaluate(x test, y test) E?f:$
eval 2% 804
Sloss {
[1] 0.1117176 -
#4 §
Saccuracy
$4 [1] 0.9812 ..

ind = s ‘h_.'!
20°C B: J

"| 1

Saving the model

MBL)
= Saving: '.'9.‘:;'3"

model %>% save model hdf5("../../Data/Session 1l-mnist model.h5") |
:

{

» Loading an already trained model:

model <- load model hdf5("../../Data/Session ll-mnist model.h5") .hh__,g
:

_ 4

A\
i
¥ ‘ L)

"! | |

F "
v, 1 !

How CNNs work

= CNNs use repeated convolution, usually looking at slightly bigger
chunks of data each iteration
» But whatis convolution? It is illustrated by the following graphs (from

Wikipedia):

] I | ! I] I | T
i __. I R : . e I:l Srea under fl:'r.:!;llft-'r.:l H I I T T T T T T T T
e, S AUUTUUUTNY ISP SUUUURI fix) | N P] e under fgtx) |
06k : : : at-e) : : : : : :)
. _| [: f*gnj _glj:"l'.:l
|:|4_- ---------- ‘ -------------------- ---------- . T Dﬁ_ D D I:f'i'g:lft:l
n_g_é e S EEETTTeS U A e I . : :
oL i i i i i i o L
-2 1.5 -1 0.5 1] 0.4 1 1.5 2 -1.4 1 0.5 1] 0.5 1 1.4 s x.Ah 3
&t &

Further reading

—

https://en.wikipedia.org/wiki/Convolution
http://colah.github.io/posts/2014-07-Understanding-Convolutions/

— | N\ Y/

CNN

= AlexNet (paper)

Example output of AlexNet The first (of 5) layers learned

adagascar cat
:qjuq_((ul monkey

spider monkey

elderberry
ngus |ffordshire bullterrier

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Transfer Learning

* The previous slide is an example of style transfer
» Thisis also done using CNNs
= More details here

https://medium.com/data-science-group-iitr/artistic-style-transfer-with-convolutional-neural-network-7ce2476039fd

N e =

What is transfer learning?

It is @ method of training an algorithm on one domain and then
applying the algorithm on another domain
It is useful when...
* You don’t have enough data for your primary task
= And you have enough for a related task
* You want to augment a model with even more

Try it out!

Colab file available at this link

» Largely based off of dsgiitr/Neural-Style-Transfer
» |t just took a few tweaks to get it working in a Google Colaboratory

environment properly

Inputs:

https://colab.research.google.com/drive/1fepwhtxIyqE9VQ02Hb7A7RpMpVKBFGkp
https://github.com/dsgiitr/Neural-Style-Transfer

N e =

Another generative use: Photography

» Creatism: Generating photography from Google Earth Panoramas

Input Output

https://google.github.io/creatism/

Try out a CNN in your browser! MBL
» Fashion MNIST with Keras and TPUs s
= Fashion MNIST: A dataset of clothing pictures
= Keras: An easier APl for TensorFlow

» TPU: A “Tensor Processing Unit” - A custom processor built by {

Google
= Python code

;_\ﬂf uiil IH--

https://colab.research.google.com/drive/1U_GYz2NP1yVDKkqTTXa_GQN7OvY8CpnJ?usp=sharing
https://github.com/zalandoresearch/fashion-mnist

Recent attempts at explaining CNNs

» Google & Stanford’s “Automated Concept-based Explanation”

Police Van Basketball

Most Salient
Most Salient
Most Salient

most salient

most salient
most salie nt

2nd
2.'1:

b

.- "
e P e
- Hagd iy L]
. g ¥ 4 A -
=l - — Fomp " 1 gt
= . R o :
I ! " B =
e K1
L. »
===

L

.

Figure 2: The output of ACE for three ImageNet classes. Here we depict three randomly selected
examples of the top-4 important concepts of each class (each example is shown above the original
image it was segmented from). Using this result, for instance, we could see that the network classifies
police vans using the van’s tire and the police logo.

https://venturebeat.com/2019/10/14/googles-ai-explains-how-image-classifiers-made-their-decisions/

il

Detecting financial content

The data

= 5,000 images that should not contain financial information
= 2,777 images that should contain financial information
= 500 of each type are held aside for testing

Goal: Build a classifier based on the images’ content

\ il
2002 PR ! . s lpac LR

Examples: Financial

We're committed to returning
cash to our shareholders.

® 0

We'll have paid a dividend We've increased our dividend
every year for 123 years — every year for 57 years —

98

BILLION

At the end of this fiscal year,
we'll have effectively returned

one of only 9 companies one of only 7 companies 598 billien in cash to

across all industries to across all industries to shareholders over the

have achieved this have achieved this. past 10 fiscal years,
Dividend per share over time: 52_29
Jom—
prm—
—
[r—

T—

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

V)% .]
i “'!a:}"?'\‘\,:;—:’r'f‘"" , ‘?&%c/' LG
) R -

World Regions
LT

RMEL FROSODS
BY THE NUMBE
- 52-Week Rangé: $50.06 - $69.44
- 5-Year Return: & 191%
- Market Cap: $18B (Approx.)
- Shares Outstanding: 264.32M

¥ 58P FUT (Dec)

CEN TRAL

,—'
[eamnines IDIGEST'NG HORMEL'S RESULTS e

Our results reflect our focus on
opportunities that can generate
sustainable value for society and
shareholders.

—Ken Frazier
Merck Chairman & CED

i
€ MERCK

Examples: Non-financial

n
W

Government public
services. An ided target

for paliica warfare

People matter, results count

,
A
; 3 R
2 3 il M |
by

i® Capgemini

summary (model)

Model: "sequential"

#4

Param
#4

conv2d (Conv2D)

#4

re lu (RelU)

#4

conv2d 1 (Conv2D)

H#
leaky re lu (LeakyReLU) 252, 252,

#4
batch normalization (BatchNormaliza 252, 252,
#4
max pooling2d (MaxPooling2D) 126, 126,
#4
dropout (Dropout) 126, 126,

H#
flatten (Flatten) 2540106)

H#
dense (Dense) 5080340

I

Running the model

= |t takes about 10 minutes to run on an Nvidia GTX 1080

history <- model %>% fit generator (plot (history)
img train, # training data
epochs = 10, # epoch
steps per epoch =
as.integer (train samples/batch siz
print progress
verbose = 2, 0.8 -

1.0- o

loss
)

0.6-

0.4-

0.85-

0.80 -

0.75-

accuracy
o

0.70 -

0.65 -

IL

Out of sample testing

eval <- model %>%
evaluate generator (img test,
steps = as.integer (test samples / batch size),
workers = 4)

Sloss
[1] 0.7535837

Saccuracy
[1] 0.6572581

1gdap. Af

history <- readRDS('../../Data/Session ll-tweet history-30epoch.rds"')
plot (history)

loss

accuracy

Optimizing the CNN

* The model we saw was run for 10 epochs (iterations)

= Why not more? Why not less?

2.0-
1:5%
1.0+

0:5-

3:8%
0.8-
0.7
0.6-

0.5-m

10

20

25

30

data
=2=fraining

=2=vyalidation

MBL)

"y
10cm
~ 207

s a4

"h._.'

O R

|'h

|1i1|-
1

ol

AlexNet variant

summary (model)

Model: "sequential 2"

#4

Layer (type) Output Shape Param
===s=s====s==s========s====================
conv2d 4 (Conv2D) (None, 62, 62, 906) 34944
#4

$# re lu 2 (ReLU) (None, 62, 62, 96) 0

#4

max pooling2d 2 (MaxPooling2D) (None, 31, 31, 96) 0

#4

batch normalization 2 (BatchNormali (None, 31, 31, 96) 384

#4

conv2d 5 (Conv2D) (None, 21, 21, 2506) 2973952
#4

re lu 3 (RelLU) (None, 21, 21, 256) 0

#4

max pooling2d 3 (MaxPooling2D) (None, 10, 10, 256) 0

#4

batch normalization 3 (BatchNormali (None, 10, 10, 256) 1024

#4

conv2d 6 (Conv2D) (None, 8, 8, 384) 885120

AlexNet performance mBL,
Ocm

85 604

plot (history)

0.8- i

) .
7)) ¢
e,
0.7+ '
! 1
-.h _g. k.,
A
0.6-
0.68 - o " =" 4
O \O
o
2 066~ T
T
= o
)
&)
@© ‘.
0.64 - —am
- -
2 < 6 8 10 »

epoch

—
_=‘

Working with video

» Video data is challenging - very storage intensive

= Ex.: Uber’s self driving cars would generate >100GB of data per hour
per car

= Video data is very promising
* Think of how many task involve vision!
= Driving
* Photography
P = Warehouse auditing...
.‘ » At the end of the day though, video is just a sequence of images

IS
%

\
N

F— I N

One method for video

YOLOvV3

= You
= Only

= Once

You Only Look Once: Because the algorithm only does one
pass (looks once) to classify any and all objects

\ 2 }lef’ .." i
§ i

MEiER. ¥

e T

T T e T

W i N

l“po- ._\1 , = St . >

T T g T e o =

https://www.youtube.com/watch?v=MPU2HistivI
https://www.youtube.com/channel/UClVWrKrmoeNM7A9nkEMeYzA
https://www.youtube.com/watch?v=MPU2HistivI&feature=youtu.be

N e
What does YOLO do?

It spots objects in videos and labels them

= |talso figures out a bounding box — a box containing the object
inside the video frame

It can spot overlapping objects

It can spot multiple of the same or different object types

The baseline model (using the COCO dataset) can detect 80 different

object types

= There are other datasets with more objects

input_1

md16x416%3

https://github.com/lutzroeder/netron

YOLO v3 network Architecture

https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b

Final word on object detection \ \

= An algorithm like YOLO v3 is somewhat tricky to run

* Preparing the algorithm takes a long time
» The final output, though, can run on much cheaper hardware y

» These algorithms just recently became feasible so their impact has yet
to be felt so strongly

N

Think about how facial recognition showed up everywhere
for images over the past few years

SRS
Where to get video data

One extensive source is Youtube-8M

= 6.1M videos, 3-10 minutes each

= Each video has>1,000 views

= 350,000 hours of video

= 237,000 labeled 5 second segments

= 1.3Bvideo features that are machine labeled
= 1.3B audio features that are machine labeled

https://research.google.com/youtube8m/

End matter

Final discussion

What creative uses for the techniques discussed today do
you expect to see become reality in accounting in the
next 3-5 years?

= 1 example: Using image recognition techniques, warehouse counting
for audit can be automated
= Strap a camera to a drone, have it fly all over the warehouse, and
process the video to get item counts

Recap

Today, we: v

Learned about using images as data

Constructed a simple handwriting recognition system

Learned about more advanced image methods

Lo ot Applied CNNs to detect financial information in images on Twitter
" Learned about object detection in videos

W
I
|

For next week

= For next week:
= Finish the group project! Y
1. Kaggle submission closes Sunday!
2. Turn in your code, presentation, and report through eLearn’s
dropbox
3. Prepare a short (~15 minute) presentation for class

A

N e =

More fun examples

* Interactive:

» Performance RNN

» TensorFlow.js examples
= Others:

» Google’s deepdream

= Open NSynth Super

https://magenta.tensorflow.org/demos/performance_rnn/index.html#2|2,0,1,0,1,1,0,1,0,1,0,1|1,1,1,1,1,1,1,1,1,1,1,1|1,1,1,1,1,1,1,1,1,1,1,1|false
https://js.tensorflow.org/
https://github.com/google/deepdream
https://github.com/googlecreativelab/open-nsynth-super

N e =

Fun machine learning examples

= |nteractive:
= Draw together with a neural network
= click the images to try it out yourself!
» Google’s Quickdraw
» Google’s Teachable Machine
» Four experiments in handwriting with a neural network

https://magenta.tensorflow.org/sketch-rnn-demo
https://quickdraw.withgoogle.com/
https://teachablemachine.withgoogle.com/
https://distill.pub/2016/handwriting/

N e =

Bonus: Neural networks in interactive media

= Super Mario using Marl/O
» Mario Kart using an RNN for controller prediction
= Open Al’s Five tops Dota 2
* Trained on 180 years of play
» Google Deepmind’s Alphastar Al on StarCraft Il
* Trained on 200 years of play

file:///D:/Dropbox/Teaching/Data_Analytics/2020_Fall/Slides/Session_11/Session_11_print.html
https://www.twitch.tv/sethbling/clip/FrigidBillowingBasenjiCopyThis?filter=clips&range=all&sort=time
https://openai.com/five/
https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement-learning

Packages used for these slides

» kableExtra
= keras
= knitr

= tidyverse

https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_html.html
https://keras.rstudio.com/
https://yihui.name/knitr/
https://www.tidyverse.org/

