ACCT 420: Textual
analysis

Session 7

Dr. Richard M. Crowley

TN -y
_ﬁ.

Learning objectives

= Theory:
* Natural Language
Processing
= Application:
* Analyzing a Citigroup
annual report
» Methodology:
= Text analysis
* Machine learning

N e =

Datacamp

= Sentiment analysis in R the Tidy way
= Just the first chapter is required
= You are welcome to do more, of course
= | will generally follow the same “tidy text” principles as the Datacamp
course does - the structure keeps things easy to manage
= We will sometimes deviate to make use of certain libraries, which,
while less tidy, make our work easier than the corresponding tidy-
oriented packages (if they even exist!)

https://www.datacamp.com/courses/sentiment-analysis-in-r-the-tidy-way

Textual data and textual analysis

-

Review of Session 6

= Last session we saw that textual measures can help improve our fraud
detection algorithm
» We actually looked at a bunch of textual measures:
= Sentiment
= Readability
= Topic/content
 We didn’t see how to make these though...
» |nstead, we had a nice premade dataset with everything already
done

We’'ll get started on these today - sentiment and
readability

| We'll cover topic modeling next session

Why is textual analysis harder?

Thus far, everything we’ve worked with is what is known as structured
data
= Structured data is numeric, nicely indexed, and easy to use
Text data is unstructured
= If we get an annual report with 200 pages of text...
* Whereis the information we want?
 What do we want?
* How do we crunch 200 pages into something that is...
1. Manageable? (Structured)
2. Meaningful?

This is what we will work on today, and we will revist some
of this in the remaining class sessions

Structured data

= QOur long or wide format data

Wide format

A tibble: 3 x 3
quarter level 3
<chr> <chzr>

1995-01 Wholesale Trade

1995-01 Retail Trade
1995-01 Accommodation

Long format

A tibble: 3 x 4

RegionID 1996-04" "1996-05"

<dbl> <dbl>
84654 334200
90668 235700
91982 210400

<dbl>
335400
236900
212200

| The structure is given by the IDs, dates, and variables

Unstructured data

Text
= Open responses to question, reports, etc.
 Whatitisn’t:
= "JANUARY","ONE", "FEMALE"
= Months, numbers
= Anything with clear and concise categories
Images
= Satellite imagery
Audio
* Phone call recordings
Video
= Security camera footage

| All of these require us to determine and impose structure

Some ideas of what we can do

1. Text extraction

-ind all references to the CEO

~ind if the company talked about global warming

Pull all telephone numbers or emails from a document
2. Text characteristics

How varied is the vocabulary?

s it positive or negative (sentiment)

s it written in a strong manner?

3. Text summarization or meaning

nat is the content of the document?

nat is the most important content of the document?
nat other documents discuss similar issues?

N
Where might we encounter text data in
business

1. Business contracts
2. Legal documents
3. Any paperwork
4, News
5. Customer reviews or feedback
* Including transcription (call centers)
6. Consumer social media posts
7. Chatbots and Al assistants

N

Natural Language Processing (NLP)

NLP is the subfield of computer science focused on analyzing large

amounts of unstructured textual information

* Much of the work builds from computer science, linguistics, and
statistics

Unstructured text actually has some structure derived from language

itself

= Word selection

= Grammar

* Phrases

= |Implicit orderings

NLP utilizes this implicit structure to better understand textual data

—
_ﬁ.

NLP in everyday life

AN

Autocomplete of the next word in phone keyboards

» Demo below from Google’s blog

Voice assistants like Google Assistant, Siri, Cortana, and Alexa
Article suggestions on websites

Search engine queries

Email features like missing attachment detection

AZ

https://www.blog.google/products/search/gboard-now-on-android/

Gartner Hype Cycle for
Artificial Intelligence, 2019

AutoML
L 1 Chatbots
Digital \ !
E“‘H{:S '|II |II Cg nuﬁrs_atigna|
Intelligent | Il" User Interfaces
Applications \ /
Q Deep Neural Networks
uantum (Deep Learning)
Computing _ / .

Deep Meural —— Graph Analytics
Metwork ASICs
Smart Robotics \\ - Machine Learning
. Al Paas
Edge Al
- MLP
Al Developer
Toolkits
Al-Related VEA-Enabled Wireless Speakers

T Explainable Al

Speech Recognition

CA&S| Services \\\
—— Robotic Process Automation Software

Data Labeling and
Annotation Services

Expectations

. J T Knowledge

Al Cloud Graphics —— FPGA Accelerators

Senvices —_

Decision = Wirtual Assistants
Intelligence —

Meuromorphic _—

Hardyﬁare Computer Vision
Augmented . ,
|ntg||igence Insight Engines

Al Governance

Reinforcement -~
Learning e

Al Marketplaces
-

Artificial General .
Intelligence Autonomous Vehicles

- Cognitive Computing

GPU Accelerators

Peak of
Innovation Inflated Trough of Slope of Plateau of
Trigger Expectations Disillusionment Enlightenment Productivity
r -,
L]
Time
Plateau will be reached:
() less than 2 years @ 2105 years @ 51010 years @ more than 10 years B cbsclets before plateau As of July 2019

gartner.com/SmarterWithGartner

Source: Gartner
© 2019 Gartner, Inc. and/or its affiliates. All rights reserved.

Gartner

Case: How leveraging NLP helps call centers

* Natural Language Processing in Call Centres
= Short link: rmc.link/420class7

What are call centers using NLP for?

How does NLP help call centers with their business?

https://medium.com/syncedreview/natural-language-processing-in-call-centres-b572da4da5dc
https://rmc.link/420class7

Consider

Where an we make use of NLP in business?

= We can use it for call centers

= We can make products out of it (like Google Duplex and other tech
firms)

= Where else?

https://youtu.be/D5VN56jQMWM?t=68

il

Working with 1 text file

Before we begin: Special characters

= Some characters in R have special meanings for string functions
iy () LT © EEEEES Y .
» To type a special character, we need to precede it with a \
= Since \ is a special character, we’ll need to put \ before \...
= Totype $, we would use \\'$

= Also, some spacing characters have special symbols:
* \tistab

= \risnewline (files from Macs)

= \r\nisnewline (files from Windows)

= \nis newline (files from Unix, Linux, etc.)

* You’ll need to write \ \ to get the backslashes though

Loading in text data from files

Use read file () from tidyverse’s readr package to readin
text data
We’ll use Citigroup’s annual report from 2014
* Note that thereis a full text link at the bottom which is a .txt file
= | will instead use a cleaner version derived from the linked file

» The cleaner version can be made using the same techniques we

will discuss today

Read text from a .txt file using read file()
doc <- read file("../../Data/0001104659-14-015152.txt")
str wrap 1s from stringr from tidyverse
cat (str wrap (substring(doc,1,500), 80))

i
ik
i
ik
i
ik
i

UNITED STATES SECURITIES AND EXCHANGE COMMISSION WASHINGTON, D.C. 20549 FORM

10-K ANNUAL REPORT PURSUANT TO SECTION 13 OR 15 (d)
ACT OF 1934 For the fiscal year ended December 31,
1-9924 Citigroup Inc. (Exact name of registrant as
Securities registered pursuant to Section 12 (b) of
Securities registered pursuant to Section 12 (g) of
check mark 1if the registrant 1s a

OF THE SECURITIES EXCHANGE
2013 Commission file number
specified in its charter)
the Act: See Exhibit 99.01
the Act: none Indicate by

https://www.rdocumentation.org/packages/readr/versions/1.3.1/topics/read_file
https://www.tidyverse.org/
https://readr.tidyverse.org/
https://www.sec.gov/Archives/edgar/data/831001/000110465914015152/0001104659-14-015152-index.htm

Loading from other file types

Ideally you have a .txt file already - such files are generally just the
text of the documents

Other common file types:
= HTML files (particularly common from web data)

* You can load it as a text file - just note that there are html tags
embedded in it

» Things like <a>, <table>, , etc.

You can load from a URL using httr orRCurl

n R, you can use XML or rvest to parse out specific pieces of
ntml files

f you use python, use Ixml or BeautifulSoup 4 (bs4) to quickly
turn these into structured documents

In R, you can process JSON data using jsonlite

\/

https://cran.r-project.org/web/packages/httr/index.html
https://cran.r-project.org/web/packages/RCurl/index.html
https://cran.r-project.org/web/packages/XML/index.html
https://github.com/hadley/rvest
https://github.com/jeroen/jsonlite

—
_=‘

Loading from other file types

Ideally you have a .txt file already - such files are generally just the
text of the documents
Other common file types:

= PDF files
» Usepdftools to extract text into a vector of pages of text

» Use tabulizer to extract tables straight from PDF files!

= This is very painful to code by hand without this package
» The package itself is a bit difficult to install, requiring Java and

) cTavva though
DS

https://cran.r-project.org/web/packages/pdftools/index.html
https://github.com/ropensci/tabulizer
http://rforge.net/rJava/

Example using html

library (httr)
library (XML)

httpResponse <- GET ('https://coinmarketcap.com/currencies/ethereum/")
html = httr::content (httpResponse, "text")
paste0('...', str wrap (substring(html, 135418, 135480), 80), '...")

[1] "...div>$349.36 USD /</div><div>$352.16 USD</div></td></tr><tr><th..."

xpath <= '"//*[@id=" next"]/div[1l]/div[2]/div[1l]/div[2]/div[1l]/div/div[2]/span[l]/
hdoc = htmlParse (html, asText=TRUE) # from XML
price <- xpathSApply (hdoc, xpath, xmlValue)
print (pastel ("Ethereum was priced at $", price,
" when these slides were compiled"))

[1] "Ethereum was priced at $$349.39 when these slides were compiled"

Automating crypto pricing in a document

The actual version I use (with caching to avoid repeated lookups) 1s in the appe
cryptoMC <- function (name) {
httpResponse <- GET (paste('https://coinmarketcap.com/currencies/',name,'/"', sep="
xpath <= '//*[@id=" next"]/div[1l]/div[2]/div([1l]/div([2]/div[1l]/div/div[2]/span]l
hdoc = htmlParse (html, asText=TRUE)
plain.text <- xpathSApply (hdoc, xpath, xmlValue)
plain.text

paste ("Ethereum was priced at", cryptoMC ("ethereum"))
[1] "Ethereum was priced at $349.39"
paste("Litecoln was priced at", cryptoMC("litecoin"))

[1] "Litecoin was priced at $349.39"

Basic text functions in R

= Subsetting text
» Transformation
* Changing case
= Adding or combining text
» Replacing text
» Breaking text apart
* Finding text

We will cover these using stringr as opposed to base R
- stringr’s commands are much more consistent

‘ = Every function in stringr can take a vector of strings for the first
\ argument, which is tidy

NN

https://stringr.tidyverse.org/
https://stringr.tidyverse.org/
https://stringr.tidyverse.org/

Subsetting text

= BaseR:Use substr () orsubstring ()

" stringr:usestr sub ()
= First argument is a vector of strings
= Second argument is the starting position (inclusive)
* Third argument is that ending position (inclusive)

cat (str_wrap (str_sub(doc, 9896, 9929), 80))
Citis net income was $13.5 billion
cat (str_wrap (str_sub (doc, 28900,29052), 80))

Net income decreased 14%, mainly driven by lower revenues and lower loan loss
reserve releases, partially offset by lower net credit losses and expenses.

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/substr
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/substr
https://stringr.tidyverse.org/
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/str_sub

Transforming text

 Commonly used functions:
= tolower () orstr to lower ():make the textlowercase

= toupper () orstr to lower ():MAKE THE TEXT UPPERCASE
= str to title ():Makethe Text Titlecase
= paste () tocombine text

* |t puts spaces between by default
* You can change this with the sep= option

= |f everything to combineisin 1 vector, use collapse= with the
desired separator

» pasteO () is paste with sep=""

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/chartr
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/case
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/chartr
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/case
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/case
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/paste
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/paste

Examples: Case

sentence <- str sub(doc, 9896, 9929)
str to lower (sentence)

[1] "citis net income was $13.5 billion"
str to_upper (sentence)
[1] "CITIS NET INCOME WAS $13.5 BILLION"
str to title (sentence)

[1] "Citis Net Income Was $13.5 Billion"

= The str prefixed functions support non-English languages as well

You can run this in an R terminal! (It doesn't work in Rmarkdown though)
str to upper ("Citis net income was $13.5 billion", locale='tr') # Turkish

Examples: paste

board is a 1ist of director names
titles is a 1ist of the director's titles
paste (board, titles, sep=", ")

[1] "Michael L. Corbat, CEO"

[2] "Michael E. O’Neill, Chairman"

[3] "Anthony M. Santomero, Former president, Fed (Philidelphia)"
[4] "William S. Thompson, Jr., CEO, Retired, PIMCO"

[5] "Duncan P. Hennes, Co-Founder/Partner, Atrevida Partners"

[6] "Gary M. Reiner, Operating Partner, General Atlantic"

[7] "Joan E. Spero, Senior Research Scholar, Columbia University"
[8] "James S. Turley, Former Chairman & CEO, E&Y"

[9] "Franz B. Humer, Chairman, Roche"

[10] "Judith Rodin, President, Rockefeller Foundation"

[11] "Robert L. Ryan, CFO, Retired, Medtronic"

[12] "Diana L. Taylor, MD, Wolfensohn Fund Management"

[13] "Ernesto Zedillo Ponce de Leon, Professor, Yale University"
[14] "Robert L. Joss, Professor/Dean Emeritus, Stanford GSB"

cat (str wrap (pasteO ("Citi's board consists of: ",
paste (board[1l:1length (board)-1], collapse=", "),
", and ", board[length(board)], "."), 80))

Citi's board consists of: Michael L. Corbat, Michael E. O’Neill, Anthony M.

Santomero, William S. Thompson, Jr., Duncan P. Hennes, Gary M. Reiner, Joan E.
Spero, James S. Turley, Franz B. Humer, Judith Rodin, Robert L. Ryan, Diana L.
Taylor, Ernesto Zedillo Ponce de Leon, and Robert L. Joss.

= e

Transforming text

= Replacetextwithstr replace all ()
= First argument is text data
= Second argument is what you want to remove
* Third argument is the replacement
= If you only want to replace the first occurrence, use str replace ()

instead

sentence
[1] "Citis net income was $13.5 billion"
str replace all (sentence, "\\$13.5", "over $10")

[1] "Citis net income was over $10 billion"

https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/str_replace
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/str_replace

Transforming text

= Splittextusing str split ()
» This function returns a list of vectors!
» This is because it will turn every string passed to it into a vector,
and R can’t have a vector of vectors
= [[1]] canextract the first vector
= You can also limit the number of splits using n=
= Abit more elegant solutionisusing str split fixed() with
=

= Returns a character matrix (nicer than a list)

https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/str_split
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/str_split

Example: Splitting text

paragraphs <- str split(doc, '\n'")[[1]]

number of paragraphs
length (paragraphs)

ik

[1] 206

Last paragraph
cat (str wrap (paragraphs[206], 80))

i
ik
i
ik
i
ik
i
ik
i
ik

The total amount of securities authorized pursuant to any instrument defining
rights of holders of long-term debt of the Company does not exceed 10% of the
total assets of the Company and its consolidated subsidiaries. The Company
will furnish copies of any such instrument to the SEC upon request. Copilies of
any of the exhibits referred to above will be furnished at a cost of $0.25 per
page (although no charge will be made for the 2013 Annual Report on Form 10-
K) to security holders who make written request to Citigroup Inc., Corporate
Governance, 153 East 53 rd Street, 19 th Floor, New York, New York 10022. *
Denotes a management contract or compensatory plan or arrangement. + Filed
herewith.

Finding phrases in text

= How did | find the previous examples?

str locate all (tolower (doc), "net income")

ik
ik
ik
ik
ik
ik
ik
ik
ik

—
—

|_\
—_
—_

W O J oy U1 i W N E O WOwJo) Ok W N
N N N N N N N N N N N N N N _N_N_SN_SN_~N

r r — — /) /) D

Finding phrases in text

* 4 primary functions:
1. str detect ():Reports TRUE or FALSE for the presence of a
string in the text
2.str count ():Reportsthe number of times a string is in the text
3.str locate ():Reportsthefirst location of a string in the text
= str locate all ():Reportseverylocation as a list of
matrices
4. str extract ():Reportsthe matched phrases
= All take a character vector as the first argument, and something to
match for the second argument

https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/str_detect
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/str_count
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/str_locate
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/str_locate
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/str_extract

Example: Finding phrases

 How many paragraphs mention net income in any case?

x <- str detect(str to lower (paragraphs), "net income")
x[1:10]

[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE

sum (X)

» What is the most net income is mentioned in any paragraph

x <- str count(str to lower (paragraphs), "net income")
x[1:10]

[1] 00 0O 0O 0 400 2 2

max (x)

Example: Finding phrases

= Whereis netincome first mentioned in the document?

str locate(str to lower (doc), "net income")

F# start end
[1,] 8508 8517

= First mention of net income
= This function may look useless now, but it’ll be on of the most
useful later

str extract(str to lower(doc), "net income™)

[1] "net income"

R Practice

= Text data is already loaded, as if it was loaded using read file ()
= Try:
= Subsetting the text data
* Transforming the text data
= To all upper case
» Replacing a phrase
* Finding specific text in the document

* Do exercises 1 through 3 in today’s practice file
= R Practice

= Shortlink: rmc.link/420r7

https://www.rdocumentation.org/packages/readr/versions/1.3.1/topics/read_file
http://rmc.link/Slides/acct420v3/Session_7/Session_7_R.html
http://rmc.link/Slides/acct420v3/Session_7/Session_7_R.html

————

Finding patterns in the text (regex)

Regular expressions, aka regex or regexp, are ways of finding patterns

In text
This means that instead of looking for a specific phrase, we can match

a set of phrases
Most of the functions we discussed accept regexes for matching

" str replace(),str split(),str detect (),
str count (),str locate(),andstr extract (), plus

their variants
Thisiswhy str extract () isso great - we can extract anything

from a document with it!

https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/str_replace
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/str_split
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/str_detect
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/str_count
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/str_locate
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/str_extract
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/str_extract

TN -y
_=‘

Regex example

* Breaking down an email
1. Alocal name
2. An @ sign
3. Adomain, which will have a . init
= Local names can have many different characters in them
= Matchitwith [:graph:]+
» The domain is pretty restrictive, generally just alphanumeric and .
» There can be multiple . though
= Matchitwith [:alnum:1+\\.[.[:alnum:]]+

Extract all emails from the annual report
str extract all (doc, '[:graph:]+@[:alnum:]J+\\.[.[:alnum:]]+")

[[1]]

[1
[1] "shareholder@computershare.com" "shareholder@computershare.com"
[3] "docserve@citi.com" "shareholderrelations@citi.com"

@ was itself - it

—
_=‘

Breaking down the example

iIsn’t a special character in strings in R

\\ . isjust a period - we need to escape . because it is special
Anything in brackets with colons, [: :1,is aset of characters

= [:graph:]
= [:alnum: |

+ is used to inc

means any letter, number, or punctuation
means any letter or number
icate that we want 1 or more of the preceding element

—as many as it can match

= [:graph:]
punctuation

+ meant “Give us every letter, number, and
you can, but make sure thereis at least 1.”

Brackets with no colons, [1, ask for anything inside
= [.[:alnum:]]+ meant “Give us every letter, number, and . you
can, but make sure there is at least 1.”

Breaking down the example

» Let’s examine the output shareholder@computershare.com
= Qurregexwas [:graph:]+@[:alnum:]+\\.[.[:alnum:]]+
» Matching regex components to output:
| tgraph:]+ = shareholder
= =0
| :alnum: |+ = computershare
= \\. =>.
. [:alnum:] |+ = com

Useful regex components: Content

There’s a nice cheat sheet here

More detailed documentation here
Matching collections of characters

. matches everything

:alpha:
: lower:
s upper:
:digit:
:alnum:
tpunct:
:graph:

: space: |

] matc
] matc
] matc
] matc
] matc
] matc
] matc
] or \'s matc

nesS atl
nes all
nes all
nesS atl
NesS atl
nes all

nes all

etters

owercase letters

UPPERCASE letters

numbers 0 through 9

etters and numbers

ounctuation

etters, numbers, and punctuation

n ANY whitespace

- \S is the exact opposite
[:blank:] matches whitespace except newlines

https://github.com/rstudio/cheatsheets/raw/master/strings.pdf
https://cran.r-project.org/web/packages/stringr/vignettes/regular-expressions.html

Example: Regex content

text <- ¢ ("abcde", 'ABCDE',

html df (data.frame (
text=text,
alpha=str detect (text, '
lower=str detect (text,'
upper=str detect (text, '
digit=str detect (text,'
alnum=str detect (text, '

text

[2
[:
[:
[:
[:

'12345",

alpha:
lower:
upper:
digit:
alnum:

alpha

T1ro>1 > 0
’

'ABC1237?"',

digit

"With space",

alnum

"New\nline" \

abcde

TRUE

FALSE

TRUE

ABCDE

TRUE

FALSE

TRUE

12345

FALSE

TRUE

TRUE

FALSE

FALSE

FALSE

ABC123?

TRUE

TRUE

TRUE

With space

TRUE

FALSE

TRUE

New line

TRUE

FALSE

TRUE

\

\
Example: Regex content \“

text <- e¢("abcde", 'ABCDE', '12345', 'I?2!?2_. ', 'ABC123?', "With space",
html df (data.frame (
text=text,
punct=str detect (text,'[:punct:
graph=str_ detect(text, '[:graph:
space=str detect(text, '[:space:
blank=str detect (text,'[:blank:

period=str detect (text,'.")

text

punct

graph

abcde

FALSE

TRUE

ABCDE

FALSE

TRUE

12345

FALSE

TRUE

TRUE

TRUE

ABC123?

TRUE

TRUE

With space

FALSE

TRUE

New line

FALSE

TRUE

Useful regex components: Form

[] can be used to create a class of characters to look for
* [abc] matches anything thatis a, b, c

[

can be used to create a class of everything else

* [~abc] matches anything thatisn’t a, b, or c
Quantity, where x is some element

. X7
m X*

o <&

ooks forOor1 of x
ooks for 0 or more of x

looks for 1 or more of x

= x{n} looks forn (a number) of x

= x{n, } looksforatleastn of x

= x{n,m} looks for at least n and at most m of x
Lazy operators

» Regexes always prefer the longest match by default

* Append ? to any quantity operator to make it prefer the shortest

match possible

Useful regex components: Form

= Position
= ~indicates the start of the string
= S indicates the end of the string
= Grouping
= () can beusedto group components
= | can be used within groups as a logical or
= Groups can be referenced later using the position of the group
within the regex
= \\1 refers to the first group
= \\2 refers to the second group

Example: Regexes on real estate firm names

Real estate firm names with 3 vowels 1in a row
str subset (RE names, '[AEIOU]{3}")

[1] "STADLAUER MALZFABRIK" "JOAO FORTES ENGENHARIA SA"

Real estate firm names with no vowels
str subset (RE names, '“["AEIOU]+S")

[1] "FGP LTD" "MBK PCL" "MYP LTD" "MCT BHD" "R T C L LTD"

Real estate firm names with at least 12 vowels
str subset (RE names, ' ([7AEIOU]*[AEIOU]) {11,}")

[1] "INTERNATIONAL ENTERTAINMENT" "PREMIERE HORIZON ALLIANCE"

[3] "JOAO FORTES ENGENHARIA SA" "OVERSEAS CHINESE TOWN (ASIA)"
[5] "COOPERATIVE CONSTRUCTION CO" "FRANCE TOURISME IMMOBILIER"
[7] "BONEI HATICHON CIVIL ENGINE"

Real estate firm names with a repeated 4 letter pattern
str subset (RE names, '([:upper:]{4}).*\\1")

[1] "INTERNATIONAL ENTERTAINMENT" "CHONG HONG CONSTRUCTION CO"
[3] "ZHONGHONG HOLDING CO LTD" "DEUTSCHE GEOTHERMISCHE IMMOB"

nl-m";

Why is regex so important?

* Regex can be used to match anything in text
= Simple things like phone numbers
= More complex things like addresses
» |t can be used to parse through large markup documents
= HTML, XML, LaTeX, etc.
= Very good for validating the format of text
» For birthday in the format YYYYMMDD, you could validate with:
= YYYY: [12] [90] [:digit:] [:digit:]
= MM: [01] [:digit:]
= DD: [0123] [:digit:]

Cavaet: Regexes are generally slow. If you can code
something to avoid them, that is often better. But often

that may be infeasible.

Some extras

= Whilethe str * () functions use regex by default, they actually have
four modes
1. You can specify a regex normally
* Oryou can use regex () to construct more customized ones,
such as regexes that operate by line in a string
2. You can specify an exact string to match using fixed () - fast but
fragile
3. You can specify an exact string to match using col1 () - slow but
robust; recognizes characters that are equivalent
* Important when dealing with non-English words, since certain
characters can be encoded in multiple ways
4.You can ask for boundaries with boundary () such as words,
using boundary ("word")

https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/modifiers
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/modifiers
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/modifiers
https://www.rdocumentation.org/packages/stringr/versions/1.4.0/topics/modifiers

Expanding usage

= Anything covered so far can be used for text in data
= Ex.: Firm names or addresses in Compustat

Compustat firm names example
df RE names <- df RE %>%
group by (isin) %>%
slice(l) %>%
mutate (SG_in name = str detect (conm, " (SG|SINGAPORE)"),
name length = str length (conm),
SG firm = ifelse(fic=="SGP",1,0)) %>%
ungroup ()

df RE names %>%
group by (SG firm) $>%
mutate (pct SG = mean(SG in name) * 100) 3%>%
slice(l) %>%
ungroup () %>%

select (SG firm, pct SG)

A tibble: 2 x 2
SG firm pct SG
<dbl> <dbl>
0 0.369
1 4.76

N —R

Expanding usage

library (DT)
df RE names %>%
group by (fic) %>%

mutate (avg name length = mean(name length)) %>%
slice(l) %>%

ungroup () %>%

select(fic, avg name length) 3%>%

arrange (desc (avg name length), fic) $%>%

datatable (options = list (pagelLength = 5))

Show . entries Search:
~ fic avg_name_length
1 TUR 27
2 VNM 25.5
3 EGY 25
4 CHN 24.5714285714286
5 ISR 24.3333333333333

Showing 1 to 5 of 41 entries

Previous 1 2 3 4 5 9 Next

AN

R Practice 2

This practice explores the previously used practice data using regular
expressions for various purposes

Do exercises 4 and 5 in today’s practice file
= R Practice
= Shortlink: rmc.link/420r7

http://rmc.link/Slides/acct420v3/Session_7/Session_7_R.html
http://rmc.link/Slides/acct420v3/Session_7/Session_7_R.html

Readability and Sentiment

g

Readability

Thanks to the quanteda package, readability is very easy to

calculatein R

* Usethetextstat readability () function

There are many readability measures, however

» Flesch Kinkaid grade level: A measure of readability developed for
the U.S. Navy to ensure manuals were written at a level any 15 year

old should be able to understand
* Fog: A grade level index that was commonly used in business and
olishing
eman-Liau: An index with a unique calculation method, relying
y on character counts

https://quanteda.io/
https://www.rdocumentation.org/packages/quanteda/versions/1.5.1/topics/textstat_readability

N
Readability: Flesch Kincaid \

d llabl
0.39(7 words)+11.8<#8y e 63) — 15.59

+# sentences +# words

= An approximate grade level required for reading a document
= [ower is more readable
= A JCor poly graduate should read at a level of 12
= New York Times articles are usually around 13
» A Bachelor’s degree could be necessary for anything 16 or above

i

library (quanteda)

textstat readability(doc, "Flesch.Kincaid")
‘ ## document Flesch.Kincaid

1 textl 17.685

7
AZANRN

Readability: Fog

\Mean(Words per sentence)-+
(% of words > 3 syllables)]| x 0.4

* An approximate grade level required for reading a document
= Lower is more readable

textstat readability (doc, "FOG")

Eh document FOG

‘-. b e
ﬁ'z
S

SN

Readability: Coleman-Liau

letters +# sentences
5.88 — 29.6 — 15.8
(# words # words

* An approximate grade level required for reading a document
= Lower is more readable

textstat readability (doc, "Coleman.Liau.short")

Eh document Coleman.Liau.short

NS
4

\

SN

Converting text to words

= Tidy text is when you have one token per document per row, in a data
frame
= Token is the unit of text you are interested in
= Words: “New”
* Phrases: “New York Times”
= Sentences: “The New York Times is a publication.”
= etc.
* The tidytext package can handle this conversion for us!
= Usetheunnest tokens () function
* Note: it also converts to lowercase. Use the option
to lower=FALSE to avoid this if needed

Example of "tokenizing"

library (tidytext)

df doc <- data.frame (ID=c("0001104659-14-015152"), text=c(doc)) 3%>%
unnest tokens (word, text)

word is the name for the new column

text is the name of the string column in the input data

S

https://github.com/juliasilge/tidytext
https://www.rdocumentation.org/packages/tidytext/versions/0.2.2/topics/unnest_tokens

N e =

The detalils

html df (head(df doc))

ID
- 0001104659-14-015152

- 0001104659-14-015152 commission

N e =

The detalils

tidytext usesthe tokenizers packagein the backend to do the
conversion

* You can call that package directly instead if you want to

Available tokenizers include: (specify with token=)

= “word”: The default, individual words

= “ngram”: Collections of words (default of 2, specify with n=)

» Afew other less commonly used tokenizers

https://github.com/juliasilge/tidytext
https://cran.r-project.org/web/packages/tokenizers/index.html

Word case

= Why convert to lowercase?
* How much of a difference is there between “The” and “the”?
= “Singapore” and “singapore” - still not much difference
= Only words like “new” versus “New” matter
= “New York” versus “new yorkshire terrier”
= Benefit: We get rid of a bunch of distinct words!
» Helps with the curse of dimensionality

The Curse of dimensionality

There are a lot of words

A LOT OF WORDS

At least 171,476 according to Oxford Dictionary

What happens if we make a matrix of words per document?

For right now, not much

* |f we have every publicly available government filed press release in

the US?
= 1,479,068 files through July 2018...
= ~2TB if we include all English words
= ~70GB if we restrict just to the 5,884 words in the Citigroup

annual report...

https://en.oxforddictionaries.com/explore/how-many-words-are-there-in-the-english-language/

Stopwords

= Stopwords - words we remove because they have little content
= the, a,an, and, ...

= Also helps with our curse a bit - removes the words entirely

» We'll use the stopword package to remove stopwords

get a list of stopwords
stop en <- stopwords::stopwords ("english") # Snowball English
paste0l (length (stop en), " words: ", paste(stop en[1l:5], collapse=", "))

[1] "175 words: 1, me, my, myself, we"

stop SMART <- stopwords::stopwords (source="smart") # SMART English
pastel (length (stop SMART), " words: ", paste(stop SMART[1:5], collapse=", "))

[1] "571 words: a, a's, able, about, above"

stop fr <- stopwords: :stopwords ("french") # Snowball French
paste0l (length (stop fr), " words: ", paste(stop fr[l1:5], collapse=", "))

[1] "164 words: au, aux, avec, ce, ces"

N\ |

Applying stopwords to a corpus

* When we have a tidy set of text, we can just use dplyr for this!
* dplyr’santi join () functionis like a merge, but where all
matches are deleted

df doc stop <- df doc %>%
anti join (data.frame (word=stop SMART))

Joining, by = "word"
nrow (df doc)
[1] 128728

nrow (df doc stop)

https://dplyr.tidyverse.org/index.html
https://dplyr.tidyverse.org/index.html
https://www.rdocumentation.org/packages/dplyr/versions/0.7.8/topics/join

Converting to term frequency

terms <- df doc stop %>%

count (ID,
ungroup ()

word, sort=TRUE)

total terms <- terms %>%

tf

ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik

O J oy O W DN

N N el el e e el e
O W oW -Joy U b WN P O

group by (ID) %>%
summarize (total = sum(n))
tf <- left join(terms, total terms)

ID
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152
0001104659-14-015152

word

citi

2013
credit
citis
risk
december
financial
31

loans
assets
fair
securitiles
billion
citigroup
2012

u.s
interest
company
net
related

%$>% mutate (tf=n/total)

826
743
704
660
624
523
513
505
495
488
453
440
435
420
412
390
373
371
324
323

total
74985
74985
74985
74985
74985
74985
74985
74985
74985
74985
74985
74985
74985
74985
74985
74985
74985
74985
74985
74985

O O O O O OO OO OO oooooo

tf

.011015536
.0099086048
.009388544
.008801760
.008321664
.006974728
.006841368
.006734680
.006601320
.006507968
.006041208
.005867840
.005801160
.005601120
.005494432
.005201040
.004974328
.004947656
.004320864
.004307528

Sentiment

= Sentiment works similarly to stopwords, except we are identifying
words with specific, useful meanings
= We can grab off-the-shelf sentiment measures using
get sentiments () fromtidytext

get sentiments ("afinn") %>% get sentiments ("bing") %>%
group by (value) $%>% group by (sentiment) $%>%
slice(l) %>% slice(l) %>%
ungroup () ungroup ()
~
2
A tibble: 11 x 2 ## # A tibble: 2 x 2
‘ ## word value 4+ word sentiment
#4# <chr> <dbl> #4# <chr> <chr>
1 bastard -5 ## 1 2-faces negative
2 ass -4 ## 2 abound positive
3 abhor -3
4 abandon -2
5 absentee -1
6 some kind 0
7 aboard 1
8 abilities 2
9 admire 3
‘ ## 10 amazing 4
11 breathtaking 5

https://www.rdocumentation.org/packages/tidytext/versions/0.2.2/topics/get_sentiments
https://github.com/juliasilge/tidytext

Sentiment

get sentiments ("nrc")

group_by (sentiment) Loughran & McDonald dictionary

slice(l) %>%

ungroup () - finance specific, targeted at

annual reports
A tibble: 10 x 2

word sentiment

i <chr> <chr> get sentiments ("loughran") %>%
abandoned anger group by (sentiment) $%>%

abundance anticipation slice(l) %>%

idii aberration disgust ungroup ()

abandon fear

absolution joy

4 abandon negative A tibble: 6 x 2

abba positive word sentiment
abandon sadness <chr> <chr>

abandonment surprise abide constraining
abacus trust abovementioned litigious

abandon negative
able positive
aegis superfluous
abeyance uncertainty

O OW O J o U b Ww DN+

Merging in sentiment data

tf sent <- tf %$>% left join(get sentiments ("loughran"))

Joining, by = "word"

tf sent[1l:5,]

4 ID word tf sentiment
1 0001104659-14-015152 citi .011015536 <NA>
2 0001104659-14-015152 2013 .009908648 <NA>
3 0001104659-14-015152 credit .009388544 <NA>
4 0001104659-14-015152 citis .008801760 <NA>
5 0001104659-14-015152 risk .008321664 uncertainty

tf sent(['!'is.na(tf sent$sentiment),][1:5,]

ID word tf sentiment
5 0001104659-14-015152 risk .008321664 uncertainty
28 0001104659-14-015152 loss .003560712 negative
29 0001104659-14-015152 losses .003534040 negative
36 0001104659-14-015152 approximately .003093952 uncertainty
37 0001104659-14-015152 regulatory .002880576 litigious

N e =

Summarizing document sentiment

>%

sentiment, tf, f£ill=0) %>%

constraining, litigious, negative, positive, superfluous, uncertainty) %>
(

)

tf sent %
spread (
select (
colSums

constraining litigious negative positive superfluous uncertainty
0.013242649 0.020750817 0.034780289 0.007054744 0.000373408 0.025325065

K
. _swie|d
. _linejsp
. _Jusuuredw
- _ssals

- _Kjannebau
- _sjuepusjep

- _ uonebi|

I _Aiojeinbau
. _swie|d
. _unod
. _|ebs|
. _ SjoeJjjuod

- _luswepes

- _ suonaipsun(

negative
uncertainty

Iment

t

litigious
superfluous

- _|enjoenuod

izing sen

- _ sjuepusjep

I _pauinbai
. _ Sjuswialinbal
. _Jusuuredw
- _suonebiqo

- _ SjuswlWWod

- _adinbal

- _ paliedwi
- _ papiwied

— _ SHw

1
o

T

ViSUa

constraining
positive

600 -
400 -
200 -
600 -
400 -
200 -

b I

Ajorewixoidde

. _S)ysu

. _ainsodxa

. _sainsodxa
- _SaAallaq

- _suondwnsse

- _9|qeleA

— _3lqibueul

_aAnend

_ Ssajayjauou

_psjealniiq

word

_saziuboosusp

_ uoneainyiq

. BCLURETTE)
. _Jausq
- _sureb

— _Juswaaoidwl
— _ureb

— _9|qels

_ _Jojealb

_ _KRousroye

_ _analyoe

1
o

Visualizing a document as a word cloud

= quanteda provides textplot wordcloud ()
= cast dfm() converts tidy term frequencies to Quanteda
* There are also the wordcloud and wordcloud2 packages for this

corp <- cast dfm(tf, ID, word, n)
textplot wordcloud (dfm(corp), color = RColorBrewer::brewer.pal(9, "Setl"))

https://quanteda.io/
https://www.rdocumentation.org/packages/quanteda/versions/1.5.1/topics/textplot_wordcloud
https://cran.r-project.org/web/packages/wordcloud/index.html
https://cran.r-project.org/web/packages/wordcloud2/vignettes/wordcloud.html

Another reason to use stopwords

« Without removing stopwords, the word cloud shows almost nothing

useful

corp no stop <- cast dfm(tf no stop,

ID, wor

textplot wordcloud(dfm(corp no stop), color

countries independent

YOrk continues Provide ju

d, n)
= RColorBrewer: :brewer.pal (9,

risdictions

september gecreased comprehensive gsn typically

e AGENCY provides
;i likely ~datesiress extentevents
options uutstaﬁding applicable I:agll'le ability
quality o cked purchased hedgs estim
analysis Ut jycjydes againsteales UNderlyingna rules . o
rating ., €xpense B clents businesses -
respect MY weighted B _ i 5

b o << COMpan
reported expecied current _derivatives 5 qdition Teg
short com

pension

obligations
forward

nated resp

when each followingre stafements

twa

limited

ations
agencies
pursuart,

final Com™ON additionaltable actmanagement

form collateral pagel s requlatory approximately

inte g, t cli interest
alance ransaclions

stpricederivative Company20{2 3 Clidrou

costs panking decembernskassets i

i
forth £instruments cC T
accountnew losses fair not

= 35U deposits 2014 atﬁ.?:” loan an
g mpaiment o pusiness billion OF1d

example threehedges [= onlvincluding
i @

driven
increase

t'r%rlliuns

sacUritiz
&
|
a
El
=1

individual taples gither purchase

espactively gyerage

Citisfilwaﬂcial
T _rate subject further
tloans at G

committes

payments must associated

across Spread general

Employees country o

9% products abiity
nized jonding defned 2 E
¥5 holdings excluding testing 2
uirements legal o qan oo security

quarter e, 25

1_ E‘Fgf”r"‘le'»'e_ﬂt statement
ciigroups mode valison **({ng

foreign tential Enad assumptions
quLI{Tr'corporate SHpon
mpact ;- iBsued @ ratio

"Zhelow inc first

information awards

n

a

var

irth

Eterma

2 out lecal
gontlnus
2 portfolios

residertial

usedcva period defﬁun_ financing
2 based zginbal one USING second

districy Pvate claims @ £ I:IE'DTEi.LiCh 2. =i ':—resultm 2 federalcustomersreview
ongoingpeneft = & = ter OMN%i = aoinese @ o0 A
preferrad investments © SWaslUs .— £0 o @ T FfUlure there require
fees MESTETS = 2 certain 2 | et B0 S reporting PrOlEClo £
pD!ICIESﬂndCQnﬁnued activities i i d (3] = s 31 = ;E';t: in . SOME =]
model %M "banks pagie term A€ under = 1S non-c g gbank13 transaction o &
translation g .. T party2011 ggpe My ave zforbethan E] markets hedging e
remaining & payment results generally, o B YT hejhighercontracts
advanced Sommercialcourt more Where has ’ aSIt_S “tould E,r..iccel'lftamsrsme o=
considered 23S g r'ﬁﬁff"”r_“”'é” may which BY that with cv million S€8 Eooy e actions fled, 2
possible artially 5 @ required . _ securities above grevenues =
et W B B Uaiape income related Value =y accrual class

2 B S
lganes . Sflows primarily § marketall "
discussion afteripg | included :
matters ® "= internal durin cor i
pretax peg similar endeij usgg nperatioﬂc significant Over
= elieves Tunas
i can ent'rtiesthm'-@hprlsru « mortgage oo

5. il
: cash were liabilities ppth e
lated alsp consumer offset gy gidiaries ® cdo SO0
would stock january,grn,s gstates

pa &

I y is =8 Ecitibank operational
capital anylossthjs =8 E ibankyptign 0P |

omake
america |

earnings
guidelines government 2 2 amount l & growth = thay
home repurchase exchange »@ £ 3 re%ﬂﬁ'g,—?&?“"”s Cc'f‘t“es settlement
regarding securitization principal B S accounting bl 'ﬁrgnu%tctur" trusts Tow
" o - T g funding ©- periods. G EES : -
provisions Commiments agreements = HEAD exposure | C o estimates retyrn SUTENtly
\ces positigne_ TAliDs expenses change CiBssified standard
prices positions. St g £ put ranoe andards
substantially " control S0k performance = between .
ot i parties overall whether pdeferredrelating citicorp
= ry ore i e £
e -{ notes annual goodwil however = be,catusv!e\.erage
adjusiments received process specific el S varabirights
" YN E & cases
contractual POSMON oorocte inputs 7 8 ot
guarantees insurance < 4 narth

framework

hedged Sinstrument

proceedings . companies

"Setl"))

R Practice 3

= Using the same data as before, we will explore
= Readability
= Sentiment
= Word clouds
* Note: Due to missing packages, you will need to run the code in
RStudio, not in the DataCamp light console

» Do exercises 6 through 8 in today’s practice file
= R Practice
= Shortlink: rmc.link/420r7

http://rmc.link/Slides/acct420v3/Session_7/Session_7_R.html
http://rmc.link/Slides/acct420v3/Session_7/Session_7_R.html

N e
What’s next \

Armed with an understanding of how to process unstructured data, all ‘

'

of the sudden the amount of data available to us is expanding rapidly

To an extent, anything in the world can be viewed as data, which can

get overwhelming pretty fast

We’ll require some better and newer tools to deal with this e
Revisiting last session...

= Last session we used topics in our analysis

» Topics were derived from the 10-Ks we have been working with

End matter

For next week

For next week:

Finish the third assignment
* Submit on eLearn

Datacamp
* Do the assigned chapter on text analysis

Start on the group project

Packages used for these slides

httr
kableExtra
knitr
magrittr
quanteda
RColorBrewer
readtext
revealjs
tidytext
tidyverse

* dplyr, readr,stringr
XML

https://cran.r-project.org/web/packages/httr/index.html
https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_html.html
https://yihui.name/knitr/
https://magrittr.tidyverse.org/
https://quanteda.io/
https://cran.r-project.org/web/packages/RColorBrewer/index.html
https://readtext.quanteda.io/
https://github.com/rstudio/revealjs
https://github.com/juliasilge/tidytext
https://www.tidyverse.org/
https://dplyr.tidyverse.org/index.html
https://readr.tidyverse.org/
https://stringr.tidyverse.org/
https://cran.r-project.org/web/packages/XML/index.html

Custom code

library (knitr)
library (kableExtra)
html df <- function (text, cols=NULL, coll=FALSE, full=F) {

if (!length(cols)) {
cols=colnames (text)

}
if('coll) {

kable (text, "html", col.names = cols, align = c("1",rep('c',length(cols)-1))) %>%
kable styling(bootstrap options = c("striped","hover"), full width=full)
} else {
kable (text, "html", col.names = cols, align = c("1",rep('c',length(cols)-1)) $>%

)
kable styling(bootstrap options = c("striped","hover"), full width=full) %>%
column_spec(1l,bold=T)

cryptoMC <- function (name) {

if (exists(name)) {
get (name)
} else{
html <- getURL (paste('https://coinmarketcap.com/currencies/',name,"'/"',sep=""))
xpath <- '//*[@id=" next"]/div([1l]/div[2]/div[1]/div[2]/div[1l]/div/div[2]/span[l]/span[l]/text ()"

doc = htmlParse (html, asText=TRUE)
plain.text <- xpathSApply(doc, xpath, xmlValue)
assign (name, gsub("\n","",gsub(" ", "", paste(plain.text, collapse = ""), fixed = TRUE), fixed = TRUE),envir

get (name)

}

Create a plot of the top words by sentiment
tf sent %>%

o

filter('is.na(sentiment)) %>
group_ by (sentiment) %>%
arrange (desc (n)) %>%

mutate (row = row_number ()) %>%

filter (row < 10) %>%

ungroup () %>%

mutate (word = reorder (word, n)) $%$>%

ggplot (aes (y=n, x=word)) + geom col() + theme(axis.text.x = element text(angle=90, hjust=1)) +
facet wrap (~sentiment, ncol=3, scales="free x")

.GlobalEnv)

