ACCT 420: Advanced linear regression

Project example

Dr. Richard M. Crowley

Weekly revenue prediction at Walmart

The question

How can we predict weekly departmental revenue for Walmart, leveraging our knowledge of Walmart, its business, and some limited historical information?

- Predict weekly for 115,064 (Store, Department, Week) tuples
 - From 2012-11-02 to 2013-07-26
- Using [incomplete] weekly revenue data from 2010-02-015 to 2012-10-26
 - By department (some weeks missing for some departments)

More specifically...

- Consider time dimensions
 - What matters:
 - Time of the year?
 - Holidays?
 - Do different stores or departments behave differently?
- Wrinkles:
 - Walmart won't give us testing data
 - But they'll tell us how well the algorithm performs
 - We can't use past week sales for prediction because we won't have it for most of the prediction...

The data

- Revenue by week for each department of each of 45 stores
 - Department is just a number between 1 and 99
 - We don't know what these numbers mean
 - Date of that week
 - If the week is considered a holiday for sales purposes
 - Super Bowl, Labor Day, Black Friday, Christmas
- Store data:
 - Which store the data is for, 1 to 45
 - Store type (A, B, or C)
 - We don't know what these letters mean
 - Store size
- Other data, by week and location:
 - Temperature, gas price, sales (by department), CPI, Unemployment rate, Holidays

Walmart's evaluation metric

- Walmart uses MAE (mean absolute error), but with a twist:
 - They care more about holidays, so any error on holidays has 5
 times the penalty
 - They call this WMAE, for weighted mean absolute error

$$WMAE = rac{1}{\sum w_i} \sum_{i=1}^n w_i \left| y_i - \hat{y}_i
ight|$$

- n is the number of test data points
- \hat{y}_i is your prediction
- y_i is the actual sales
- w_i is 5 on holidays and 1 otherwise

```
wmae <- function(actual, predicted, holidays) {
   sum(abs(actual-predicted)*(holidays*4+1)) / (length(actual) + 4*sum(holidays))
}</pre>
```

Before we get started...

- The data isn't very clean:
 - Markdowns are given by 5 separate variables instead of 1
 - Date is text format instead of a date
 - CPI and unemployment data are missing in around a third of the testing data
 - There are some (week, store, department) groups missing from our training data!

We'll have to fix these

- Year
- Week
- A unique ID for tracking (week, firm, department) tuples
- The ID Walmart requests we use for submissions
- Average sales by (store, department)
- Average sales by (week, store, department)

Load data and packages

```
library(tidyverse) # we'll extensively use dplyr here
library(lubridate) # Great for simple date functions
library(broom)
weekly <- read.csv("../../Data/WMT_train.csv", stringsAsFactors=FALSE)
weekly.test <- read.csv("../../Data/WMT_test.csv", stringsAsFactors=FALSE)
weekly.features <- read.csv("../../Data/WMT_features.csv", stringsAsFactors=FALSE)
weekly.stores <- read.csv("../../Data/WMT_stores.csv", stringsAsFactors=FALSE)</pre>
```

- weekly is our training data
- weekly.test is our testing data no Weekly_Sales column
- weekly.features is general information about (week, store) pairs
 - Temperature, pricing, etc.
- weekly.stores is general information about each store

Cleaning

```
preprocess data <- function(df) {</pre>
  # Merge the data together (Pulled from outside of function -- "scoping")
  df <- inner_join(df, weekly.stores)</pre>
  df <- inner join(df, weekly.features[,1:11])</pre>
  # Compress the weird markdown information to 1 variable
  df$markdown <- 0
  df[!is.na(df$MarkDown1),]$markdown <- df[!is.na(df$MarkDown1),]$MarkDown1
  df[!is.na(df$MarkDown2),]$markdown <- df[!is.na(df$MarkDown2),]$MarkDown2
  df[!is.na(df$MarkDown3),]$markdown <- df[!is.na(df$MarkDown3),]$MarkDown3
  df[!is.na(df$MarkDown4),]$markdown <- df[!is.na(df$MarkDown4),]$MarkDown4
  df[!is.na(df$MarkDown5),]$markdown <- df[!is.na(df$MarkDown5),]$MarkDown5
  # Fix dates and add useful time variables
  df$date <- as.Date(df$Date)</pre>
  df$week <- week (df$date)</pre>
  df$year <- year(df$date)</pre>
  df
df <- preprocess data(weekly)</pre>
df test <- preprocess data(weekly.test)</pre>
```

Merge data, fix markdown, build time data

What this looks like

```
df[91:94,] %>%
    select(Store, date, markdown, MarkDown3, MarkDown4, MarkDown5) %>%
    html_df()
```

	Store	date	markdown	MarkDown3	MarkDown4	MarkDown5
91	1	2011-10-28	0.00	NA	NA	NA
92	1	2011-11-04	0.00	NA	NA	NA
93	1	2011-11-11	6551.42	215.07	2406.62	6551.42
94	1	2011-11-18	5988.57	51.98	427.39	5988.57

df[1:2,] %>% select(date, week, year) %>% html_df()

date	week	year
2010-02-05	6	2010
2010-02-12	7	2010

Cleaning: Missing CPI and Unemployment

Apply the (year, Store)'s CPI and Unemployment to missing data

Cleaning: Adding IDs

- Build a unique ID
 - Since Store, week, and department are all 2 digits, make a 6 digit number with 2 digits for each
 - sswwdd
- Build Walmart's requested ID for submissions
 - ss dd YYYY-MM-DD

```
# Unique IDs in the data
df$id <- df$Store *10000 + df$week * 100 + df$Dept
df_test$id <- df_test$Store *10000 + df_test$week * 100 + df_test$Dept

# Unique ID and factor building
swd <- c(df$id, df_test$id) # Pool all IDs
swd <- unique(swd) # Only keep unique elements
swd <- data.frame(id=swd) # Make a data frame
swd$swd <- factor(swd$id) # Extract factors for using later

# Add unique factors to data -- ensures same factors for both data sets
df <- left_join(df,swd)
df_test <- left_join(df_test,swd)

df test$Id <- pasteO(df test$Store,' ',df test$Dept," ",df test$date)</pre>
```

What the IDs look like

html_df(df_test[c(20000,40000,60000),c("Store","week","Dept","id","swd","Id")])

Store	week	Dept	id	swd	Id
8	27	33	82733	82733	8_33_2013-07-05
15	46	91	154691	154691	15_91_2012-11-16
23	52	25	235225	235225	23_25_2012-12-28

Add in (store, department) average sales

```
# Calculate average by store-dept and distribute to df test
df <- df %>%
 group by (Store, Dept) %>%
 mutate(store avg=mean(Weekly Sales, rm.na=T)) %>%
 ungroup()
df sa <- df %>%
  group by (Store, Dept) %>%
  slice(1) %>%
  select(Store, Dept, store avg) %>%
 ungroup()
df test <- left_join(df test, df sa)</pre>
## Joining, by = c("Store", "Dept")
# 36 observations have messed up department codes -- ignore (set to 0)
df test[is.na(df test$store avg),]$store avg <- 0</pre>
# Calculate multipliers based on store avg (and removing NaN and Inf)
df$Weekly mult <- df$Weekly Sales / df$store avg</pre>
df[!is.finite(df$Weekly mult),]$Weekly mult <- NA</pre>
```

Add in (week, store, dept) average sales

```
# Calculate mean by week-store-dept and distribute to df_test
df <- df %>%
    group_by(Store, Dept, week) %>%
    mutate(naive_mean=mean(Weekly_Sales, rm.na=T)) %>%
    ungroup()
df_wm <- df %>%
    group_by(Store, Dept, week) %>%
    slice(1) %>%
    ungroup() %>%
    select(Store, Dept, week, naive_mean)
df_test <- df_test %>% arrange(Store, Dept, week)
df_test <- left_join(df_test, df_wm)</pre>
```

Joining, by = c("Store", "Dept", "week")

ISSUE: New (week, store, dept) groups

- This is in our testing data!
 - So we'll need to predict out groups we haven't observed at all

```
table(is.na(df_test$naive_mean))

##
## FALSE TRUE
## 113827 1237
```

- Fix: Fill with 1 or 2 lags where possible using ifelse() and lag()
- Fix: Fill with 1 or 2 leads where possible using ifelse() and lag()
- Fill with store avg when the above fail
- Code is available in the code file a bunch of code like:

```
df_test <- df_test %>%
  arrange(Store, Dept, date) %>%
  group_by(Store, Dept) %>%
  mutate(naive_mean=ifelse(is.na(naive_mean), lag(naive_mean), naive_mean)) %>%
  ungroup()
```

Cleaning is done

- Data is in order
 - No missing values where data is needed
 - Needed values created

```
df %>%
  group_by(week, Store) %>%
  mutate(sales=mean(Weekly_Sales)) %>%
  slice(1) %>%
  ungroup() %>%
  ggplot(aes(y=sales, x=week, color=factor(Store))) +
  geom_line() + xlab("Week") + ylab("Sales for Store (dept average)") +
  theme(legend.position="none")
```


First try

 Ideal: Use last week to predict next week!

No data for testing...

• First instinct: try to use a linear regression to solve this

What to put in the model?

First model

```
## # A tibble: 8 x 5
## term
                                          std.error statistic p.value
                                estimate
                                              <dbl>
## <chr>
                                  <dbl>
                                                       <dbl>
                                                                <dbl>
## 1 (Intercept)
                                                      33.5 4.10e-245
                             1.24
                                        0.0370
## 2 factor(IsHoliday)TRUE
                           0.0868
                                        0.0124
                                                      6.99 2.67e- 12
## 3 factor(markdown > 0)TRUE 0.0531
                                                      6.00 2.00e- 9
                                        0.00885
                                                      0.847 3.97e- 1
## 4 markdown
                           0.000000741 0.000000875
                            -0.000763
                                        0.000181
                                                      -4.23 2.38e- 5
## 5 Temperature
                                                      -8.58 9.90e- 18
## 6 Fuel Price
                            -0.0706 0.00823
## 7 CPI
                            -0.0000837 0.0000887
                                                      -0.944 3.45e- 1
## 8 Unemployment
                            0.00410
                                        0.00182
                                                       2.25 2.45e- 2
```

glance (mod1)

Prep submission and check in sample WMAE

```
## Linear ## 3073.57
```

Performance for linear model

Visualizing in sample WMAE

Back to the drawing board...

Second model: Including week

```
## # A tibble: 60 x 5
                  estimate std.error statistic p.value
##
    term
                             <dbl>
## <chr>
                    <dbl>
                                       <dbl>
                                                <dbl>
                             0.0452
## 1 (Intercept) 1.00
                                       22.1 3.11e-108
                             0.0372
0.0373
## 2 factor(week)2
                   -0.0648
                                       -1.74 8.19e- 2
## 3 factor(week)3
                   -0.169
                                       -4.54 5.75e- 6
                             0.0373
## 4 factor(week)4
                   -0.0716
                                       -1.92 5.47e- 2
                   0.0544
                             0.0372
## 5 factor(week)5
                                       1.46 1.44e- 1
## 6 factor(week)6
                             0.0361
                  0.161
                                       4.45 8.79e- 6
                             0.0345
## 7 factor(week)7
                  0.265
                                       7.67 1.72e- 14
## 8 factor(week) 8 0.109
                             0.0340
                                        3.21 1.32e- 3
## 9 factor(week) 9 0.0823
                             0.0340
                                        2.42 1.55e- 2
                  0.101
## 10 factor(week)10
                             0.0341
                                        2.96 3.04e- 3
## # ... with 50 more rows
```

glance (mod2)

Prep submission and check in sample WMAE

```
## Linear Linear 2
## 3073.570 3230.643
```

Performance for linear model 2

466	===	Jesus Fernandez-Bes	*	5547.45068	12	4y
467	▼ 3	Carmine Genovese	9	5553.17509	8	4y
468	4	27685	P	5694.66116	5	4y
469	-	nini	9	5705.89035	12	4y

```
wmaes_out
```

```
## Linear Linear 2
## 4993.4 5618.4
```

Visualizing in sample WMAE

Visualizing in sample WMAE by Store

```
## Warning: Use of `df$Weekly_Sales` is discouraged. Use `Weekly_Sales` instead.
## Warning: Use of `df$WS_linear2` is discouraged. Use `WS_linear2` instead.
## Warning: Use of `df$IsHoliday` is discouraged. Use `IsHoliday` instead.
```

Visualizing in sample WMAE by Dept

```
## Warning: Use of `df$Weekly_Sales` is discouraged. Use `Weekly_Sales` instead.
## Warning: Use of `df$WS_linear2` is discouraged. Use `WS_linear2` instead.
## Warning: Use of `df$IsHoliday` is discouraged. Use `IsHoliday` instead.
```

Back to the drawing board...

Third model: Including week x Store x Dept

• • •

Third model: Including week x Store x Dept

Use lfe's felm() – it really is more efficient!

```
library(lfe)
mod3 <- felm(Weekly mult ~ markdown +</pre>
           Temperature +
           Fuel Price +
           CPI +
           Unemployment | swd, data=df)
tidy (mod3)
## # A tibble: 5 x 5
## term
                   estimate std.error statistic p.value
   <chr>
                                                  <dbl>
                      <dbl>
                                  <dbl>
                                           <dbl>
## 1 markdown
               -0.00000139 0.000000581
                                           -2.40 1.65e- 2
                                           3.05 2.28e- 3
## 2 Temperature 0.00135
                            0.000442
                 -0.0637
## 3 Fuel Price
                            0.00695
                                          -9.17 4.89e-20
                 0.00150
## 4 CPI
                            0.00102
                                         1.46 1.43e- 1
```

-7.70 1.32e-14

```
glance (mod3)
```

5 Unemployment -0.0303

```
## # A tibble: 1 x 8
    r.squared adj.r.squared sigma statistic p.value
                                                      df df.residual
                                                                      nobs
##
                     <dbl> <dbl>
                                            <dbl> <dbl>
                                    <dbl>
        <dbl>
                                                              <dbl> <int>
        0.823
## 1
                     0.712 1.09
                                 7.43
                                                0 259457
                                                             259457 421564
```

0.00393

PROBLEM

We need to be able to predict out of sample to make our submission

felm() models don't support predict

So build it:

```
predict.felm <- function(object, newdata, use.fe=T, ...) {</pre>
  # compatible with tibbles
  newdata <- as.data.frame(newdata)</pre>
  co <- coef(object)</pre>
  y.pred <- t(as.matrix(unname(co))) %*% t(as.matrix(newdata[,names(co)]))
  fe.vars <- names(object$fe)</pre>
  all.fe <- getfe(object)</pre>
  for (fe.var in fe.vars) {
    level <- all.fe[all.fe$fe == fe.var,]</pre>
    frows <- match (newdata[[fe.var]], level$idx)</pre>
    myfe <- level$effect[frows]</pre>
    myfe[is.na(myfe)] = 0
    y.pred <- y.pred + myfe</pre>
  as.vector(y.pred)
```

Prep submission and check in sample WMAE

```
## Linear Linear 2 FE
## 3073.570 3230.643 1552.173
```

Performance for FE model

267	▼ 10	Gautam Gogoi	- 0	3370.85784	38	4y
268	2	JunkyardTornado	A	3371.93323	25	4у
269	- 1	ChandraAbha singh	F	3386.35229	5	4у
270	▼ 3		4	3404.50484	3	4y

```
wmaes_out
```

```
## Linear Linear 2 FE
## 4993.4 5618.4 3378.8
```

Visualizing in sample WMAE

Maybe the data is part of the problem?

- What problems might there be for our testing sample?
 - What is different from testing to training?
- Can we fix them?
 - If so, how?

Problems with the data

- 1. The holidays are not always on the same week
 - The Super Bowl is in weeks 6, 6, 7, 6
 - Labor day isn't in our testing data at all!
 - Black Friday is in weeks 48, 47, and 47
 - Christmas is in weeks 53, 52, and 52
 - Manually adjust the data for these differences
- 2. Yearly growth we aren't capturing it, since we have such a small time span
 - We can manually adjust the data for this

Code is in the code file – a lot of dplyr

Performance overall


```
## Linear Linear 2 FE Shifted FE
## 4993.4 5618.4 3378.8 3274.2
```

This was a real problem!

- Walmart provided this data back in 2014 as part of a recruiting exercise
 - Details here
 - Discussion of first place entry
 - Code for first place entry
 - Discussion of second place entry
- This is what the group project will be like
 - 4 to 5 group members tackling a real life data problem
 - You will have training data but testing data will be withheld
 - Submit on Kaggle

Project deliverables

- 1. Kaggle submission
- 2. Your code for your submission, walking through what you did
- 3. A 15 minute presentation on the last day of class describing:
 - Your approach
- 4. A report discussing
 - Main points and findings
 - Exploratory analysis of the data used
 - Your model development, selection, implementation, evaluation, and refinement
 - A conclusion on how well your group did and what you learned in the process

