ACCT 420: ML and AI for numeric and text data

Session 10

Dr. Richard M. Crowley

rcrowley@smu.edu.sg http://rmc.link/

Front matter

Learning objectives

- Theory:
 - Neural Networks (broad overview)
 - Vector space methods
- Application:
 - Neural networks for understanding textual data
 - Top managements' tweets
- Methodology:
 - Vector methods
 - 6 types of neural networks
 - Others

Languages for ML/AI

R for ML/AI

Older methods

- caret
- randomForest
- nnet
- e1071

Best-in-class

- glmnet: LASSO and elastic nets
- xgboost:XGBoost
- Prophet: ML for time series forecasting
- keras: Plugs into python's Keras
- H2O4GPU: Plugs into python's H2O
- spacyr: Plugs into python's SpaCy

Python for ML/AI

Older methods

- Sci-kit learn one stop shop for most older libraries
- RPy2
- scipy + numpy + pandas + statsmodels
 - Add Theano in for GPU compute

Best-in-class

- TENSORFLOW (Google)
 - Can do everything
- pytorch python specific Torch port
- gensim: "Topic modelling for humans"
- H2O (H2O)
- caffe (Berkley)
- caffe2 (Facebook)
- SpaCy Fast NLP processing
- CoreNLP through various wrappers to the Java library

Others for ML/AI

- C/C++: Also a first class language for TensorFlow!
 - Really fast precompiled
 - Much more difficult to code in
- Swift: Strong TensorFlow support
- Javascript: Improving support from TensorFlow and others

Why do I keep mentioning TensorFlow?

- It can run almost ANY ML/AI/NN algorithm
- It has APIs for easier access like Keras
- Comparatively easy GPU setup
- It can deploy anywhere
 - Python & C/C++ built in
 - Swift, R Haskell, and Rust bindings
 - TensorFlow light for mobile deployment
 - TensorFlow.js for web deployment

Why do I keep mentioning TensorFlow?

- It has strong support from Google and others
 - TensorFlow Hub Premade algorithms for text, image, and video
 - tensorflow/models Premade code examples
 - The research folder contains an amazing set of resources
 - trax AI research models from Google Brain

Other notable frameworks

- Caffe
 - Python, C/C++, Matlab
 - Good for image processing
- Caffe2
 - C++ and Python
 - Still largely image oriented
- Microsoft Cognitive Toolkit
 - Python, C++
 - Scales well, good for NLP
- Torch and Pytorch
 - For Lua and python
 - fast.ai, ELF, and AllenNLP
- H20
 - Python based
 - Integration with R, Scala...

Neural Networks

What are neural networks?

- The phrase neural network is thrown around almost like a buzz word
- Neural networks are actually a specific type class algorithms
 - There are many implementations with different primary uses

What are neural networks?

- Originally, the goal was to construct an algorithm that behaves like a human brain
 - Thus the name
- Current methods don't quite reflect human brains, however:
 - 1. We don't fully understand how our brains work, which makes replication rather difficult
 - 2. Most neural networks are constructed for specialized tasks (not general tasks)
 - 3. Some (but not all) neural networks use tools our brain may not have
 - I.e., backpropogation is potentially possible in brains, but it is not pinned down how such a function occurs (if it does occur)

What are neural networks?

- Neural networks are a method by which a computer can learn from observational data
- In practice:
 - They were not computationally worthwhile until the mid 2000s
 - They have been known since the 1950s (perceptrons)
 - They can be used to construct algorithms that, at times, perform better than humans themselves
 - But these algorithms are often quite computationally intense, complex, and difficult to understand
 - Much work has been and is being done to make them more accessible

Types of neural networks

- There are a lot of neural network types
 - See The "Neural Network Zoo"
- Some of the more interesting ones which we will see or have seen:
 - RNN: Recurrent Neural Network
 - LSTM: Long/Short Term Memory
 - CNN: Convolutional Neural Network
 - DAN: Deep Averaging Network
 - GAN: Generative Adversarial Network
- Others worth noting
 - VAE (Variational Autoencoder): Generating new data from datasets
- Not in the Zoo, but of note:
 - Transformer: Networks with "attention"
 - From Attention is All You Need

RNN: Recurrent NN

- Recurrent neural networks embed a history of information in the network
 - The previous computation affects the next one
 - Leads to a short term memory
- Used for speech recognition, image captioning, anomaly detection, and many others
 - Also the foundation of LSTM
 - SketchRNN (live demo)

LSTM: Long Short Term Memory

- LSTM improves the long term memory of the network while explicitly modeling a short term memory
- Used wherever RNNs are used, and then some
 - Ex.: Seq2seq (machine translation)

CNN: Convolutional NN

- Networks that excel at object detection (in images)
- Can be applied to other data as well
- Ex.: Inception-v3

DAN: Deep Averaging Network

- DANs are simple networks that simply average their inputs
- Averaged inputs are then processed a few times
- These networks have found a home in NLP
 - Ex.: Universal Sentence Encoder

GAN: Generative Adversarial Network

- Feature two networks working against each other
- Many novel uses
 - Ex.: The anonymization GAN we saw
 - Ex.: Aging images

VAE: Variational Autoencoder

- An autoencoder (AE) is an algorithm that can recreate input data
- Variational means this type of AE can vary other aspects to generate completely new output
 - Good for creating fake data
- Like a simpler, noisier GAN

Transformer

- Shares some similarities with RNN and LSTM: Focuses on attention
- Currently being applied to solve many types of problems
- Examples: BERT, GPT-3, XLNEt

Vector space models

Motivating examples

What are "vector space models"

- Different ways of converting some abstract information into numeric information
 - Focus on maintaining some of the underlying structure of the abstract information
- Examples (in chronological order):
 - Word vectors:
 - Word2vec
 - GloVe
 - Paragraph/document vectors:
 - Doc2Vec
 - Sentence vectors:
 - Universal Sentence Encoder

Word vectors

- Instead of coding individual words, encode word meaning
- The idea:
 - Our old way (encode words as IDs from 1 to N) doesn't understand relationships such as:
 - Spatial
 - Categorical
 - Grammatical (weakly when using stemming)
 - Social
 - etc.
 - Word vectors try to encapsulate all of the above
 - They do this by encoding words as a vector of different features

Word vectors: Simple example

words	f_animal	f_people	f_location
dog	0.5	0.3	-0.3
cat	0.5	0.1	-0.3
Bill	0.1	0.9	-0.4
turkey	0.5	-0.2	-0.3
Turkey	-0.5	0.1	0.7
Singapore	-0.5	0.1	0.8

- The above is an idealized example
- Notice how we can tell apart different animals based on their relationship with people
- Notice how we can distinguish turkey (the animal) from Turkey (the country) as well

What it retains: word2vec

What it retains: GloVe

How to build word vectors

- Two ways:
 - 1. Word co-occurrence (like how LDA worked)
 - Global Vectors (GloVe) works this way
 - Available from the text2vec package
 - 2. Word order (using an NN)
 - word2vec works this way
 - Available from the rword2vec package
 - Uses a 2 layer neural network

How does word order work?

Infer a word's meaning from the words around it

Refered to as CBOW (continuous bag of words)

How else can word order work?

Infer a word's meaning by *generating* words around it

Refered to as the Skip-gram model

An example of using word2vec

- In the BCE paper from Session 6, word2vec was used to provide assurance that the LDA model works reasonably well on annual reports
 - 1. We trained a word2vec model on random issues of the Wall Street Journal (247.8M words)
 - 2. The resulting model "understood" words in the context of the WSJ
 - 3. We then ran a psychology experiment (word intrusion task) on the algorithm

Results

Implementing in R

- A few options:
 - The rword2vec package for word2vec
 - The text2vec package for GloVe
 - Rolling your own neural network for word2vec with keras (guide here)

When are vector embeddings useful?

- 1. You care about the words used, by not stylistic choices
- 2. You want to crunch down a bunch of words into a smaller number of dimensions without running any bigger models (like LDA) on the text.

An interactive demo of word similarity

Understanding phrases (or larger)

Document vectors

- Document vectors work very similarly to word vectors
 - 1 added twist: a document/paragraph/sentence level factor variable
 - This is used to learn a vector representation of each text chunk
 - Learned simultaneously with the word vectors
 - Caveat: it can also be learned independently using PV-DBOW
- This is quite related to what we learned with LDA as well!
 - Both can tell us the topics discussed

Wikipedia article categorization

Source article (colah.github.io)

Universal Sentence Encoder (USE)

- We saw this briefly last week
 - This is the algorithm with less bias
- Focused on representing sentence-length chunks of text

A fun example of with USE

Predict Shakespeare with Cloud TPUs and Keras

Cavaet on using USE

- One big caveat: USE only knows what it's trained on
 - Ex.: Feeding the same USE algorithm WSJ text

Samsung Electronics Co., suffering a handset sales slide, revealed a foldable-screen smartphone that folds like a book and opens up to tablet size. Ah, horror? I play Thee to her alone;

And when we have withdrom him, good all.

Come, go with no less through.

Enter Don Pedres. A flourish and my money. I will tarry. Well, you do!

LADY CAPULET.

Farewell; and you are

How does USE work?

- USE is based on DAN and Transformer
 - There is another specification as well
 - Learns the meaning of sentences via words' meanings
- Learn more: Original paper and TensorFlow site
- In practice, it works quite well

Understanding why stock markets respond strongly to CEOs and CFOs tweets:

- Crowley, Huang, and Lu 2020, "Executive Tweets"
- Data: Tweets for ~100 executives and their firms from 2011 through 2017
- Premise: Markets respond more strongly to executives' tweets than firms' tweets
- Idea: Do markets trust executives more or do executives post new useful information?

How can USE help us to solve this?

Use USE to determine if there is new content

- 1. Use USE to extract each tweet's meaning
- 2. See how similar executives' tweets are to their firms' tweets
 - Using the great RANN library in R to efficiently calculate this

1000

作品件以

3. See how markets respond conditional on tweet similarity

0011000

的時期

Mechanism: Market reaction to overnight financial tweets

Variable	$ MMR_t $	t-value
Exec fin tweets _{overnight}	-0.027^{***}	(-3.47)
$ ext{Similarity} imes ext{Exec fin tweets}_{overnight}$	0.059***	(3.49)
Firm tweet controls & interactions	Yes	
Matching controls & interactions	Yes	
Controls	Yes	
Firm FE	Yes	
Exec FE	Yes	
Year FE	Yes	
Month FE	Yes	

Result is consistent with *Trust* driving investor reaction to executive financial tweets.

Other Transformer models

- BERT
 - Optimized to mimic question and answer behavior (examples)
 - Now used in Google Search for at least 70 languages
 - Additional reading
 - Available in TensorFlow Hub
- XLNet
 - Similar objective to BERT, but with a focus on word order
- T5
 - A more extensible transformer model
 - Details

Other Transformer models

- GPT-2
 - A pretty good model for mimicking human speech patterns
 - Considered dangerous enough to not release initially (source)
 - Released 9 months later alongside a model to detect GPT-2 text
 - Demo: Talk to Transformer
- GPT-3
 - Follow-up to GPT-2, remarkably good at generating human-like text
 - A massive model containing 175 billion parameters inside
 - Exclusively licensed by Microsoft and available as an API

Discussion

What creative uses for the techniques discussed today do you expect to see become reality in accounting in the next 3-5 years?

- Brainstorm with your group and try to come up with 1 good use for some technique discussed today
- Each group will be asked to share 1 use

Recap

Today, we:

- Learned formally what neural networks (NNs) are
- Discussed a variety of NN-based algorithms
- Saw uses for word and sentence vectors in a financial context

For next week

- For next week:
 - Work on the group project!
 - Definitely try to get a submission in on Kaggle
 - We'll keep talking about neural networks
 - A bit more theory
 - A lot more examples
 - Some real neural networks coded in R

More fun examples

- Interactive:
 - TensorFlow.js examples
 - Semantris
 - A game based on the Universal Sentence Encoder
- Non-interactive
 - Predicting e-sports winners with Machine Learning

Packages used for these slides

- kableExtra
- knitr
- tidyverse

Generating Shakespeare

```
seed_txt = 'Looks it not like the king? Verily, we must go! ' # Original code
seed_txt = 'SCENE I. Elsinore. A platform before the Castle.\n\n Enter Francisco and Barnardo, two sentinels.\n\nBARNARDO.\nWh
seed_txt = 'Samsung Electronics Co., suffering a handset sales slide, revealed a foldable-screen smartphone that folds like a
# From: https://www.wsj.com/articles/samsung-unveils-foldable-screen-smartphone-1541632221
```