
ACCT 420: ML and AI for numeric and

text data

Session 10

Dr. Richard M. Crowley
 rcrowley@smu.edu.sg

http://rmc.link/

1

mailto:rcrowley@smu.edu.sg
http://rmc.link/

Front matter

2 . 1

▪ Theory:

▪ Neural Networks (broad overview)

▪ Vector space methods

▪ Application:

▪ Neural networks for understanding textual

data

▪ Top managements’ tweets

▪ Methodology:

▪ Vector methods

▪ 6 types of neural networks

▪ Others

Learning objectives

2 . 2

Languages for ML/AI

3 . 1

Older methods

▪

▪

▪

▪

Best-in-class

▪ : LASSO and elastic nets

▪ : XGBoost

▪ : ML for time series forecasting

▪ : Plugs into python’s Keras

▪ : Plugs into python’s H2O

▪ : Plugs into python’s SpaCy

R for ML/AI

caret

randomForest

nnet

e1071

glmnet

xgboost

Prophet

keras

H2O4GPU

spacyr

3 . 2

http://topepo.github.io/caret/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/nnet/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
https://github.com/dmlc/xgboost
https://facebook.github.io/prophet/
https://keras.rstudio.com/
https://github.com/h2oai/h2o4gpu
https://github.com/quanteda/spacyr

Older methods

▪ Sci-kit learn – one stop shop for most older

libraries

▪ RPy2

▪ scipy + numpy + pandas + statsmodels

▪ Add in for GPU compute

Best-in-class

▪ (Google)

▪ Can do everything

▪ – python specific Torch port

▪ : “Topic modelling for humans”

▪ (H2O)

▪ (Berkley)

▪ (Facebook)

▪ – Fast NLP processing

▪ – through various wrappers to the Java

library

Python for ML/AI

Theano

TENSORFLOW

pytorch

gensim

H2O

caffe

caffe2

SpaCy

CoreNLP

3 . 3

http://deeplearning.net/software/theano/
https://www.tensorflow.org/
https://pytorch.org/
https://radimrehurek.com/gensim/
https://www.h2o.ai/
http://caffe.berkeleyvision.org/
https://caffe2.ai/
https://spacy.io/
https://stanfordnlp.github.io/CoreNLP/other-languages.html

Others for ML/AI

▪ C/C++: Also a first class language for TensorFlow!

▪ Really fast – precompiled

▪ Much more difficult to code in

▪ Swi�: Strong TensorFlow support

▪ Javascript: Improving support from TensorFlow and others

3 . 4

▪ It can run almost ANY ML/AI/NN algorithm

▪ It has APIs for easier access like Keras

▪ Comparatively easy GPU setup

▪ It can deploy anywhere

▪ Python & C/C++ built in

▪ Swi�, R Haskell, and Rust bindings

▪ TensorFlow light for mobile deployment

▪ TensorFlow.js for web deployment

Why do I keep mentioning TensorFlow?

3 . 5

https://www.tensorflow.org/lite/
https://js.tensorflow.org/
https://magenta.tensorflow.org/
https://tfhub.dev/

▪ It has strong support from Google and others

▪ – Premade algorithms for

text, image, and video

▪ – Premade code examples

▪ The folder contains an amazing

set of resources

▪ – AI research models from Google Brain

Why do I keep mentioning TensorFlow?

TensorFlow Hub

tensorflow/models

research

trax

3 . 6

https://tfhub.dev/
https://github.com/tensorflow/models
https://github.com/tensorflow/models/tree/master/research
https://github.com/google/trax
https://www.tensorflow.org/lite/
https://js.tensorflow.org/
https://magenta.tensorflow.org/
https://tfhub.dev/

▪

▪ Python, C/C++, Matlab

▪ Good for image processing

▪

▪ C++ and Python

▪ Still largely image oriented

▪

▪ Python, C++

▪ Scales well, good for NLP

▪ and

▪ For Lua and python

▪ , , and

▪

▪ Python based

▪ Integration with R, Scala…

Other notable frameworks

Caffe

Caffe2

Microso� Cognitive Toolkit

Torch Pytorch

fast.ai ELF AllenNLP

H20

3 . 7

http://caffe.berkeleyvision.org/
https://caffe2.ai/
https://www.microsoft.com/en-us/cognitive-toolkit/
http://torch.ch/
https://pytorch.org/
https://www.fast.ai/
https://github.com/pytorch/elf
https://allennlp.org/
https://www.h2o.ai/
https://caffe2.ai/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://pytorch.org/
https://www.h2o.ai/

Neural Networks

4 . 1

What are neural networks?

▪ The phrase neural network is thrown around almost like a buzz word

▪ Neural networks are actually a specific type class algorithms

▪ There are many implementations with different primary uses

4 . 2

What are neural networks?

▪ Originally, the goal was to construct an algorithm that behaves like a human brain

▪ Thus the name

▪ Current methods don’t quite reflect human brains, however:

1. We don’t fully understand how our brains work, which makes replication rather difficult

2. Most neural networks are constructed for specialized tasks (not general tasks)

3. Some (but not all) neural networks use tools our brain may not have

▪ I.e., backpropogation is , but it is not pinned down how such a function

occurs (if it does occur)

potentially possible in brains

4 . 3

https://www.frontiersin.org/articles/10.3389/fncom.2016.00094/full

What are neural networks?

▪ Neural networks are a method by which a computer can learn from observational data

▪ In practice:

▪ They were not computationally worthwhile until the mid 2000s

▪ They have been known since the 1950s (perceptrons)

▪ They can be used to construct algorithms that, at times, perform better than humans themselves

▪ But these algorithms are o�en quite computationally intense, complex, and difficult to understand

▪ Much work has been and is being done to make them more accessible

4 . 4

Types of neural networks

▪ There are a lot of neural network types

▪ See The

▪ Some of the more interesting ones which we will see or have seen:

▪ RNN: Recurrent Neural Network

▪ LSTM: Long/Short Term Memory

▪ CNN: Convolutional Neural Network

▪ DAN: Deep Averaging Network

▪ GAN: Generative Adversarial Network

▪ Others worth noting

▪ VAE (Variational Autoencoder): Generating new data from datasets

▪ Not in the Zoo, but of note:

▪ : Networks with “attention”

▪ From

“Neural Network Zoo”

Transformer

Attention is All You Need

4 . 5

http://www.asimovinstitute.org/neural-network-zoo/
http://jalammar.github.io/illustrated-transformer/
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

RNN: Recurrent NN

▪ Recurrent neural networks embed a history of information in the network

▪ The previous computation affects the next one

▪ Leads to a short term memory

▪ Used for speech recognition, image captioning, anomaly detection, and many others

▪ Also the foundation of LSTM

▪ ()SketchRNN live demo

4 . 6

https://ai.googleblog.com/2017/04/teaching-machines-to-draw.html
https://magenta.tensorflow.org/assets/sketch_rnn_demo/index.html

LSTM: Long Short Term Memory

▪ LSTM improves the long term memory of the network while explicitly modeling a short term memory

▪ Used wherever RNNs are used, and then some

▪ Ex.: (machine translation)Seq2seq

4 . 7

https://google.github.io/seq2seq/

CNN: Convolutional NN

▪ Networks that excel at object detection (in images)

▪ Can be applied to other data as well

▪ Ex.: Inception-v3

4 . 8

https://ai.googleblog.com/2016/03/train-your-own-image-classifier-with.html

DAN: Deep Averaging Network

▪ DANs are simple networks that simply average their inputs

▪ Averaged inputs are then processed a few times

▪ These networks have found a home in NLP

▪ Ex.: Universal Sentence Encoder

4 . 9

https://tfhub.dev/google/universal-sentence-encoder/2

GAN: Generative Adversarial Network

▪ Feature two networks working against each other

▪ Many novel uses

▪ Ex.: The anonymization GAN we saw

▪ Ex.: Aging images

4 . 10

https://medium.com/syncedreview/face-aging-with-conditional-generative-adversarial-networks-d41076379047

VAE: Variational Autoencoder

▪ An autoencoder (AE) is an algorithm that can recreate input data

▪ Variational means this type of AE can vary other aspects to generate completely new output

▪ Good for creating

▪ Like a simpler, noisier GAN

fake data

4 . 11

https://github.com/yzwxx/vae-celebA

Transformer

▪ Shares some similarities with RNN and LSTM: Focuses on attention

▪ Currently being applied to solve many types of problems

▪ Examples: BERT, GPT-3, XLNEt

4 . 12

Vector space models

5 . 1

Motivating examples

5 . 2

https://research.google.com/semantris/
https://books.google.com/talktobooks/

What are “vector space models”

▪ Different ways of converting some abstract information into numeric information

▪ Focus on maintaining some of the underlying structure of the abstract information

▪ Examples (in chronological order):

▪ Word vectors:

▪

▪

▪ Paragraph/document vectors:

▪

▪ Sentence vectors:

▪

Word2vec

GloVe

Doc2Vec

Universal Sentence Encoder

5 . 3

https://www.tensorflow.org/tutorials/representation/word2vec
https://nlp.stanford.edu/projects/glove/
https://medium.com/scaleabout/a-gentle-introduction-to-doc2vec-db3e8c0cce5
https://tfhub.dev/google/universal-sentence-encoder/2

Word vectors

▪ Instead of coding individual words, encode word meaning

▪ The idea:

▪ Our old way (encode words as IDs from 1 to N) doesn’t understand relationships such as:

▪ Spatial

▪ Categorical

▪ Grammatical (weakly when using stemming)

▪ Social

▪ etc.

▪ Word vectors try to encapsulate all of the above

▪ They do this by encoding words as a vector of different features

5 . 4

Word vectors: Simple example

words f_animal f_people f_location

dog 0.5 0.3 -0.3

cat 0.5 0.1 -0.3

Bill 0.1 0.9 -0.4

turkey 0.5 -0.2 -0.3

Turkey -0.5 0.1 0.7

Singapore -0.5 0.1 0.8

▪ The above is an idealized example

▪ Notice how we can tell apart different animals based on their relationship with people

▪ Notice how we can distinguish turkey (the animal) from Turkey (the country) as well

5 . 5

What it retains: word2vec

5 . 6

https://www.tensorflow.org/tutorials/representation/word2vec#visualizing_the_learned_embeddings

What it retains: GloVe

5 . 7

https://nlp.stanford.edu/projects/glove/

How to build word vectors

▪ Two ways:

1. Word co-occurrence (like how LDA worked)

▪ Global Vectors (GloVe) works this way

▪ Available from the package

2. Word order (using an NN)

▪ word2vec works this way

▪ Available from the package

▪ Uses a 2 layer neural network

text2vec

rword2vec

5 . 8

http://text2vec.org/
https://github.com/mukul13/rword2vec

How does word order work?

Infer a word’s meaning from the words around it

Refered to as CBOW (continuous bag of words)

5 . 9

How else can word order work?

Infer a word’s meaning by generating words around it

Refered to as the Skip-gram model

5 . 10

An example of using word2vec

▪ In the BCE paper from Session 6, word2vec was used to provide assurance that the LDA model works

reasonably well on annual reports

1. We trained a word2vec model on random issues of the Wall Street Journal (247.8M words)

2. The resulting model “understood” words in the context of the WSJ

3. We then ran a psychology experiment (word intrusion task) on the algorithm

5 . 11

Word intrusion task

▪ The task is to find which word doesn’t belong

▪ Each question consisted of 3 words from 1 topic and 1 intruded from another random topic

▪ Ex.:

▪ Laser, Drug, Viral, Therapeutic

▪ Supply, Steel, Capacity, Losses

▪ Relief, Lousisiana, Cargo, Assisted

5 . 12

Results

5 . 13

Implementing in R

▪ A few options:

▪ The for word2vec

▪ The for GloVe

▪ Rolling your own neural network for word2vec with ()

rword2vec package

text2vec package

keras guide here

5 . 14

https://github.com/mukul13/rword2vec
http://text2vec.org/glove.html
https://keras.rstudio.com/
https://blogs.rstudio.com/tensorflow/posts/2017-12-22-word-embeddings-with-keras/

When are vector embeddings useful?

1. You care about the words used, by not stylistic choices

2. You want to crunch down a bunch of words into a smaller number of dimensions without running any bigger

models (like LDA) on the text.

An interactive demo of word similarity

5 . 15

https://wordsimilarity.com/en/king

Understanding phrases (or larger)

6 . 1

Document vectors

▪ Document vectors work very similarly to word vectors

▪ 1 added twist: a document/paragraph/sentence level factor variable

▪ This is used to learn a vector representation of each text chunk

▪ Learned simultaneously with the word vectors

▪ Caveat: it can also be learned independently using

▪ This is quite related to what we learned with LDA as well!

▪ Both can tell us the topics discussed

PV-DBOW

6 . 2

https://cs.stanford.edu/~quocle/paragraph_vector.pdf

Wikipedia article categorization

 (colah.github.io)Source article

6 . 3

https://colah.github.io/posts/2015-01-Visualizing-Representations/big_vis/wiki.html

Universal Sentence Encoder (USE)

▪ We saw this briefly last week

▪ This is the algorithm with less bias

▪ Focused on representing sentence-length chunks of text

6 . 4

A fun example of with USE

▪ Predict Shakespeare with Cloud TPUs and Keras

6 . 5

https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/shakespeare_with_tpu_and_keras.ipynb

Cavaet on using USE

▪ One big caveat: USE only knows what it’s trained on

▪ Ex.: Feeding the same USE algorithm WSJ text

Samsung Electronics Co., suffering a handset sales slide, revealed a foldable-screen

smartphone that folds like a book and opens up to tablet size. Ah, horror? I play Thee to

her alone;

And when we have withdrom him, good all.

Come, go with no less through.

Enter Don Pedres. A flourish and my money. I will tarry. Well, you do!

LADY CAPULET.

Farewell; and you are

6 . 6

How does USE work?

▪ USE is based on DAN and Transformer

▪ There is another specification as well

▪ Learns the meaning of sentences via words’ meanings

▪ Learn more: and

▪ In practice, it works quite well

Original paper TensorFlow site

6 . 7

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46808.pdf
https://tfhub.dev/google/universal-sentence-encoder/4

Try it out!

▪ Run on

▪ Python code

▪ Just click the cells in order, and click run

▪ Colab provides free servers to run the code on

▪ It still takes a few minutes to run though

Google Colab

6 . 8

https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/semantic_similarity_with_tf_hub_universal_encoder.ipynb

Bringing this into accounting

▪ Crowley, Huang, and Lu 2020, “Executive Tweets”

▪ Data: Tweets for ~100 executives and their firms from 2011 through 2017

▪ Premise: Markets respond more strongly to executives’ tweets than firms’ tweets

▪ Idea: Do markets trust executives more or do executives post new useful information?

Understanding why stock markets respond strongly to CEOs and CFOs tweets:

6 . 9

1. Use USE to extract each tweet’s meaning

2. See how similar executives’ tweets are to their

firms’ tweets

▪ Using the great RANN library in R to

efficiently calculate this

3. See how markets respond conditional on tweet

similarity

How can USE help us to solve this?

Use USE to determine if there is new content

6 . 10

Mechanism: Market reaction to overnight financial tweets

Result is consistent with Trust driving investor reaction to executive financial tweets.

6 . 11

Other Transformer models

▪ BERT

▪ Optimized to mimic question and answer behavior ()

▪ Now used in for at least 70 languages

▪

▪ Available in

▪ XLNet

▪ Similar objective to BERT, but with a focus on word order

▪ T5

▪ A more extensible transformer model

▪

examples

Google Search

Additional reading

TensorFlow Hub

Details

6 . 12

https://rajpurkar.github.io/SQuAD-explorer/
https://www.blog.google/products/search/search-language-understanding-bert/
https://towardsdatascience.com/a-review-of-bert-based-models-4ffdc0f15d58
https://tfhub.dev/google/collections/bert/1
https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html

Other Transformer models

▪ GPT-2

▪ A pretty good model for mimicking human speech patterns

▪ Considered dangerous enough to not release initially ()

▪ Released 9 months later alongside a model to detect GPT-2 text

▪ Demo:

▪ GPT-3

▪ Follow-up to GPT-2, remarkably good at generating human-like text

▪ A massive model containing 175 billion parameters inside

▪ and available as an API

source

Talk to Transformer

Exclusively licensed by Microso�

6 . 13

https://openai.com/blog/better-language-models/
https://app.inferkit.com/demo
https://blogs.microsoft.com/blog/2020/09/22/microsoft-teams-up-with-openai-to-exclusively-license-gpt-3-language-model/

End matter

7 . 1

Discussion

▪ Brainstorm with your group and try to come up with 1 good use for some technique discussed today

▪ Each group will be asked to share 1 use

What creative uses for the techniques discussed today do you expect to see become

reality in accounting in the next 3-5 years?

7 . 2

Recap

Today, we:

▪ Learned formally what neural networks (NNs) are

▪ Discussed a variety of NN-based algorithms

▪ Saw uses for word and sentence vectors in a financial context

7 . 3

For next week

▪ For next week:

▪ Work on the group project!

▪ Definitely try to get a submission in on Kaggle

▪ We’ll keep talking about neural networks

▪ A bit more theory

▪ A lot more examples

▪ Some real neural networks coded in R

7 . 4

More fun examples

▪ Interactive:

▪

▪

▪ A game based on the Universal Sentence Encoder

▪ Non-interactive

▪

TensorFlow.js examples

Semantris

Predicting e-sports winners with Machine Learning

7 . 5

https://js.tensorflow.org/demos
https://research.google.com/semantris/
https://blog.insightdatascience.com/hero2vec-d42d6838c941

Packages used for these slides

▪

▪

▪

kableExtra

knitr

tidyverse

7 . 6

https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_html.html
https://yihui.name/knitr/
https://www.tidyverse.org/

Generating Shakespeare

seed_txt = 'Looks it not like the king? Verily, we must go! ' # Original code

seed_txt = 'SCENE I. Elsinore. A platform before the Castle.\n\n Enter Francisco and Barnardo, two sentinels.\n\nBARNARDO.\nWh

seed_txt = 'Samsung Electronics Co., suffering a handset sales slide, revealed a foldable-screen smartphone that folds like a

From: https://www.wsj.com/articles/samsung-unveils-foldable-screen-smartphone-1541632221

7 . 7

