> //,,,«"’f | \ . \
ACCT 420: R Supplement

Session 1 Supplement

Dr. Richard M. Crowley
rcrowley@smu.edu.sg
http://rmc.link/

mailto:rcrowley@smu.edu.sg
http://rmc.link/

Vectors: What are they?

= Remember back to linear algebra...

Examples:

or (1 2 3 4)

A row (or column) of data

Vector creation

= Vectors are entered using the ¢ () command
= Any data type is fine, but all elements must be the same type

company <- c("Google", "Microsoft", "Goldman")
company
I## [1] "Google" "Microsoft" "Goldman"
tech firm <- c(TRUE, TRUE, FALSE) R
tech firm

A vectorin Ris a 1 dimensional collection of 1 or more of the same data type

N
N I## [1] TRUE TRUE FALSE
earnings <- c (12662, 21204, 4286) R
earnings
‘ I## [1] 12662 21204 4286

k_ (T /e e e

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/c

Special cases for vectors

= Counting between integers * Repeating something
= :,eg.1:50r22:500 " rep(),e.grep(l,times=10) or
= seqg(),e.g.seg(from=0, to=100, by=5) rep("hi", times=5)

Irep(l, 10)
I## (11 1111111111
Irep("hi", 9)

0 5 10 15 20 25 30 35 40 45 50 55 I## [1] "hi"™ "hi"™ "hi"™ "hi" "hi"
95 100

1 note that [18] means the 18th output

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/seq
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/rep

Vector math

Works the same as scalars, but applies element-wise

= First element with first element,
= Second element with second element,

Ieﬁrnings # previously defined

I## [1] 12662 21204 4286

Ieﬁrnings + earnings # Add element-wise

I#H# [1] 25324 42408 8572

Iearnings * earnings # multiply element-wise

[1] 160326244 449609616 18369796

Vector math

Can also use 1 vector and 1 scalar

= Scalaris applied to all vector elements
Ieﬁrnings + 10000 # Adding a scalar to a vector
I#H#[l] 22662 31204 14286
IilOOOO + earnings # Order doesn't matter
I## [1] 22662 31204 14286
Ieﬁrnings / 1000 # Dividing a vector by a scalar

[1] 12.662 21.204 4.286

Vector math

= From linear algebra remember multiplication as a dot product. That can be done with $*%

I# Dot product: sum of product of elements R

earnings $*% earnings # returns a matrix though. ..
I## [, 1]

[1,] 628305656
Idrop(earnings $%% earnings) # Drop drops excess dimensions R
I## [1] 628305656

= Other useful functions, length () and sum () :

Ilength(earnings) # returns the number of elements R
R
Isum(earnings) # returns the sum of all elements R

I## [1] 38152

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/length
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/sum

Naming vectors

= Vectors allow us to include a lot of information
in one object
= |tisn’t easy to read though
= We can make things more readable by assigning
names () I## [1] 12662 21204 4286
= Names provide a way to easily work with and
understand the data

Hard to read:

I earnings

Easy to read:

names (earnings) <- c("Google",
"Microsoft",

"Goldman")
earnings
Google Microsoft Goldman

Equivalently:
names (earnings) <- company
earnings

id
12662 21204 4286
(

Google Microsoft Goldman
12662 21204 4286

id
#

ik
ik

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/names

Selecting and combining vectors

= Selecting can be done a few ways. = Multiple selection:
= Byindex,suchas [1] * earnings[c(1l,2)]
= Byname,suchas ["Google"] * earnings[l:2]
= earnings|c ("Google",

earnings (1] R "MiCIOSOft")]

Each of the above 3 is equivalent
earnings[1:2]

Google
B4 12662 I

Google Microsoft
#i# 12662 21204

Google
£ 12662 * Combiningis doneusing c ()

Iearnings ["Google"] R I

cl <- c¢c(1,2,3)
c2 <- c(4,5,06)
c3 <= c(cl,c2)
c3

IiH% [1] 1 2 3 4 5 6

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/c

Vector example: Profit margin for tech firms

Calculating proit margin for all public US tech firms
715 tech firms with >1IM sales in 2017

summary (earnings 2017) # Cleaned data from Compustat, in $M USD
Min. 1st Qu. Median Mean 3rd Qu. Max.

-4307.49 -15.98 1.84 296.84 91.36 48351.00
summary (revenue 2017) # Cleaned data from Compustat, in $M USD
4 Min. 1st Qu. Median Mean 3rd Qu. Max .
ki 1.06 102.62 397.57 3023.78 1531.59 229234.00

summary (profit margin)

Min. 1st Qu. Median
-13.97960 -0.10253 0.01353

These are the worst, midpoint,

profit margin[order (profit margin)] [c

HELIOS AND MATHESON ANALYTIC
#4# -13.97960161
#H# CCUR HOLDINGS INC
1.02654899

Ipmoflt margin <- earnings 2017 /

revenue_2017

Mean
-0.10967

and best profit margin firms in 2017.
(1,length(profit_margin)/2,length(profit_margin))]

3rd Qu. Max.
0.09295 1.02655

NLIGHT INC
0.01325588

Our names carried over

Practice: Vectors

= This practice explores the ROA of Goldman Sachs, JPMorgan, and Citigroup in 2017
= Do exercise 2 on the supplementary R practice file:
= R Practice

00000 ©

/
_
P D

http://rmc.link/Slides/acct420v4/Session_1_Sup/Session_1_Sup_R.html

(7))
Q
®)
-
e
(qv)
=

Matrices: What are they?

= Remember back to linear algebra...

Example:

1 2 3 4
5 6 7 8
9 10 11 12

A rows and columns of data

Matrix creation

= Matrices are entered using thematrix () command
= Any data type is fine, but all elements must be the same type

columns <- c("Google", "Microsoft", "Goldman")
rows <- c("Earnings", "Revenue")

equivalent: matrix (data=c (12662, 21204, 4286, 110855, 89950, 42254) ,ncol=3)
firm data <- matrix(c(l2062, 21204, 4286, 110855, 89950, 42254), 2)
firm data

#4# [,1] [,2] [,3]
[1,] 12662 4286 89950
[2,] 21204 110855 42254

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/matrix

IiﬁlﬂLdata + firm_data

il [, 1] [,2] [,3]
[1,] 25324 8572 179900
[2,] 42408 221710 84508

I:firm_data / 1000

[, 1] [,2] [,3]
[1,] 12.662 4.286 89.950
[2,] 21.204 110.855 42.254

Math with matrices

Everything with matrices works just like vectors

Matrix math with matrices

= Matrix transposing, AT, uses t ()

firm data T <- t(firm data)
firm data T

#if [, 1] [,2]
[1,] 12662 21204
[2,] 4286 110855
[3,] 89950 42254

= Matrix multiplication, A B, uses $*%
N

N\ Ifirm_data $*% firm data T R

#4# [,1] [,2]
[1,] 8269698540 4544356878
[2,] 4544356878 14523841157

We won’t use these much, but they can be useful

AT RN

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/t

Matrix naming

= We can name matrix rows and columns, much like we named vector elements
= Use rownames () forrows
= Use colnames () for columns

rownames (firm data) <- rows
colnames (firm data) <- columns
firm data

Google Microsoft Goldman
Earnings 12662 4286 89950
Revenue 21204 110855 42254

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/rownames
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/colnames

Selecting from matrices

= Select using 2 indexes instead of 1:
" matrix name[rows, columns]

= To select all rows or columns, leave that index blanks

I firm data[2,3]

l## (1] 42254

I firm datal[,c("Google","Microsoft")] R
‘ ## Google Microsoft
Earnings 12662 4286
Revenue 21204 110855

I firm datall,] R

#i# Google Microsoft Goldman
12662 4286 89950

T RN

Combining matrices

= Matrices are combined top to bottom as rows with rbind ()
= Matrices are combined side-by-side as columns with cbind ()

Preloaded: industry codes as indcode (vector)

- GICS codes: 40=Financials, 45=Information Technology

- See: https://en.wikipedia.org/wiki/Global Industry Classification Standard
Preloaded: JPMorgan data as jpdata (vector)

mat <- rbind(firm data, indcode) # Add a row
rownames (mat) [3] <- "Industry" # Name the new row
mat

Google Microsoft Goldman
Earnings 12662 4286 89950
Revenue 21204 110855 42254
Industry 45 45 40

mat <- cbind(firm data, jpdata) # Add a column
colnames (mat) [4] <- "JPMorgan" # Name the new column
mat

Google Microsoft Goldman JPMorgan
Earnings 12662 4286 89950 17370
Revenue 21204 110855 42254 115475

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/cbind
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/cbind

Lists: What are they?

= Like vectors, but with mixed types
= Generally not something we will create
= Often returned by analysis functionsin R
= Such as the linear models we will look at next week

Ignore this code for now...

model <- summary (lm(earnings ~ revenue, tech df))
#Note that this function is hiding something...

model

Call:
Im(formula = earnings ~ revenue, data = tech df)

Residuals:
Min 10 Median 30 Max
-16045.0 20.0 141.6 177.1 12104.6

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) -1.837e+02 4.491e+01 -4.091 4.79e-05 **x*
revenue 1.589%9e-01 3.564e-03 44.585 < 2e-16 *x**

Signif. codes: 0 '***x' (0.001 '**' 0.01 '*' 0.05 '." 0.1 ' ' 1

Residual standard error: 1166 on 713 degrees of freedom
Multiple R-squared: 0.736, Adjusted R-squared: 0.7356
F-statistic: 1988 on 1 and 713 DF, p-value: < 2.2e-16

Looking into lists

Lists generally use double square brackets, [[index]]
» Used for pulling individual elements out of a list

[[c ()]] willdrill through lists, as opposed to pulling multiple values

Single square brackets pull out elements as is
Double square brackets extract just the element

For 1 level, we can also use $

Inmdel["r.squared"]

Sr.squared
0.7360059

Q
Inmdel[["r.squared"]]

‘ I## [1] 0.7360059

‘ Inmdel$r.squared

I## [1] 0.7360059

Ieﬁrnings["Google"]

Google
12662

Ieﬁrnings[["Google"]]
I## (1] 12662

I-#Can't use S with vectors

Structure of a list

= str () will tell us what’s in this list
Istr(model)

List of 11
S call : language lm(formula = earnings ~ revenue, data = tech df)
S terms :Classes 'terms', 'formula' language earnings ~ revenue
.— attr(*, "variables")= language list(earnings, revenue)
.— attr(*, "factors")= int [1:2, 1] O 1
.— attr(*, "dimnames")=List of 2
$: chr [1:2] "earnings" "revenue"
chr "revenue"
, "term.labels")= chr "revenue"
, "order")= int 1
, "intercept")= int 1
, "response")= int 1
’
’
’

.. .8
attr (
attr(
attr(
attr(
attr (".Environment")=<environment: R GlobalEnv>
attr ("predvars")= language list (earnings, revenue)
attr ("dataClasses")= Named chr [1:2] "numeric" "numeric"
e . .— attr(*, "names")= chr [1:2] "earnings" "revenue"
S residuals : Named num [1:715] -59.7 173.8 -620.2 586.7 613.6
.— attr(*, "names")= chr [1:715] "1" "2m™ w3w w4qn"r .
S coefficients : num [1:2, 1:4] -1.84e+02 1.59e-01 4.49e+01 3.56e-03 -4.09
.— attr(*, "dimnames")=List of 2
.$: chr [1:2] " (Intercept)" "revenue"

*

https://www.rdocumentation.org/packages/utils/versions/3.6.2/topics/str

Practice: Lists

= |n this practice, we will explore lists and how to parse them
= Do exercise 3 on the supplementary R practice file:
= R Practice

00000 ©

/
_
P D

http://rmc.link/Slides/acct420v4/Session_1_Sup/Session_1_Sup_R.html

(7))
=
(4v)
-
(
(qv)
o
(qv)
o

What are data frames?

= Data frames are like a hybrid between lists and matrices

Like a matrix: Like a list:

= 2 dimensional like matrices = Can have different data types for different
= Can access data with [] columns
= All elements in a column must be the same data = Can access data with $

type

=
5N
ii | Think of columns as variables, rows as observations

Example of a data frame
library(DT) # This library is great for including larger collections of data in output R
datatable (tech df[1:20,c("conm","tic", "margin")], FALSE)
Show o v entries Search:
conm tic margin

AVX CORP AVX 0.00314245229040611 N
BK TECHNOLOGIES BKTI -0.0920421373270719
ADVANCED MICRO DEVICES AMD 0.00806905610808782
N ASM INTERNATIONAL NV ASMIY 0.613509486149511
N SKYWORKS SOLUTIONS INC SWKS 0.276661006737142
ANALOG DEVICES ADI 0.142390322629277
ANDREA ELECTRONICS CORP ANDR -0.1661866359447
APPLE INC AAPL 0.210924208450753
APPLIED MATERIALS INC AMAT 0.236224805668295
ARROW ELECTRONICS INC ARW 0.014991585270576
‘ Showing 1 to 10 of 20 entries Previous 1 2 Next

k_'n-;‘

How to create data frames

1. On import of data, usually you will get a data frame
2. Usingthe data. frame () function

company,
earnings,
tech firm)

companyName earnings tech firm
Google Google 12662 TRUE
Microsoft Microsoft 21204 TRUE
Goldman Goldman 4286 FALSE

Note: stringsAsFactors=FALSE is no longer needed as of R 4.0.0

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/data.frame

Selecting from data frames

= Access like a matrix

Idf[,l]

I## [1] "Google" "Microsoft" "Goldman"

= Access like a list
I df$companyName R

I## [1] "Google" "Microsoft" "Goldman"

~
. N
Jocor R
I## [1] "Google" "Microsoft" "Goldman"
All are relatively equivalent. Using $ is generally most natural. Using [,] is good for

complex references.

k\h (A A NS

Making new columns in a data frame

Suggested method: use $

dfsall zero <- O

dfSrevenue <- ¢ (110855, 89950, 42254)

df$margin <- dfSearnings / dfSrevenue

Custom function for small tables —-- see last slide for code
html df (df)

companyName earnings tech_firm all_zero revenue margin

Google Google 12662 TRUE 0 110855 0.1142213
Microsoft Microsoft 21204 TRUE 0 89950 0.2357310
Goldman Goldman 4286 FALSE 0 42254 0.1014342

Alternative method: use cbind () just like with matrices

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/cbind

Sorting data frames

= To sort a vector, we could use the sort ()

I sort (df$earnings)

I## [1] 4286 12662 21204

| THIS CAN’T SORT DATA FRAMES

= Acolumn of a data frame is fine, but it can’t sort the whole thing!

<7

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/sort

Sorting data frames

= To sort a data frame, we use the order () function
= It returns the order of each element in increasing value
= listhe lowest value
* Then we pass the new order like we are selecting elements

ordering <- order (dfSearnings) R
ordering

I:## [1] 3 1 2

df <- dflordering,] R
df

~
companyName earnings tech firm all zero revenue margin
Goldman Goldman 4286 FALSE 0 42254 0.1014342
Google Google 12662 TRUE 0O 110855 0.1142213
Microsoft Microsoft 21204 TRUE 0 89950 0.2357310
Llh 'l‘k

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/order

Sorting data frames

= Order can sort by multiple levels
* order (levell,level?2,...),wherelevel arevectorsordataframe columns

Example of multicolumn sorting:
example <- data.frame (c("Google","Microsoft","Google", "Microsoft"),

c(2017,2017,2016,2016))

example

firm
1 Google
2 Microsoft
3 Google
4 Microsoft

with() allows us to avoiding prepending each column with "exampleS"
ordering <- order (exampleS$firm, example$year)

example <- examplel[ordering,]

example

firm
Google
Google
Microsoft
Microsoft

Subsetting data frames

1. We can use the selecting methods from before
2. We can pass a vector of logical values telling R what to keep
= This is pretty useful!

I(jf[df$tech_firm,] # Remember the comma!
companyName earnings tech firm all zero revenue margin
Google Google 12662 TRUE 0O 110855 0.1142213
Microsoft Microsoft 21204 TRUE 0 89950 0.2357310

3. We can use the subset () function
N * | don’trecommend this function, as it does not always work
= There are times where it is useful though

Isubset(df,earnings < 20000) R
#i# companyName earnings tech firm all zero revenue margin
Goldman Goldman 4286 FALSE 0 42254 0.1014342
Google Google 12662 TRUE O 110855 0.1142213

Seavme

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/subset
http://adv-r.had.co.nz/Computing-on-the-language.html

Practice: Data frames

= This exercise explores the nature of banks’ deposits
= We will see which of Goldman, JPMorgan, and Citigroup have (since 2010):
= The least of their assets in deposits
= The most of their assets in deposits

= Do exercise 4 on the supplementary R practice file:
= R Practice

http://rmc.link/Slides/acct420v4/Session_1_Sup/Session_1_Sup_R.html

(Vg
c
k=
7y
(Vg
()
-
Q.
X
()
©
O
o1y
@)
-

I df$earnings
I## [1] 4286 12662 21204
Idf$earnings < 20000

I## [1] TRUE TRUE FALSE

Why use logical expressions?

» We just saw an example in our subsetting function
= earnings < 20000
= Logical expressions give us more control over the data
* They let us easily create logical vectors for subsetting data

Logical operators

* Equals: == * Notequals: !=
= 2 == 2—>TRUE * The opposite of ==
= 2 == 3 — FALSE = 2 1= 2 — FALSE
= 'dog'=='dog' — TRUE = 2 !'= 3—TRUE
= 'dog'=='cat' — FALSE = 'dog'!='cat' — TRUE

= Comparing strings is done character by character
= Bevery careful with it

= Greater than: > Less than: >
= 2 > 1 —TRUE = 2 < 1—FALSE
= 2 > 2 — FALSE = 2 < 2 — FALSE
= 2 > 3 — FALSE = 2 < 3—TRUE
= 'dog'>'cat' — TRUE 'dog'<'cat' — FALSE

= Greater than or equal to: > Less than or equal to: >
= 2 >= 1 —TRUE = 2 <= 1 — FALSE
= 2 >= 2 — TRUE = 2 <= 2—TRUE
= 2 >= 3 — FALSE = 2 <= 3—TRUE

Logical operators

Not: !

= This simply inverts everything

| TRUE — FALSE

 |FALSE — TRUE

And: &

= TRUE & TRUE — TRUE

= TRUE & FALSE — FALSE

= FALSE & FALSE — FALSE

Or: | (pipe, same key as ‘\))

* Notethat | is evaluated after all &s
= TRUE | TRUE — TRUE

= TRUE | FALSE — TRUE

= FALSE | FALSE — FALSE

You can mix in parentheses for grouping as needed

Examples for logical operators

* How many tech firms had >$10B in revenue in 20177

Isuthech_derevenue > 10000)

l## (1] 46

= How many tech firms had >$10B in revenue but had negative earnings in 20177

Iswmwtech_df$revenue > 10000 & tech dfSearnings < 0)

R

= Who are those 4 with high revenue and negative earnings?

columns <- c("conm","tic","earnings", "revenue")
tech df[tech dfS$Srevenue > 10000 & tech dfS$Searnings < 0, columns]

conm tic earnings revenue
35 CORNING INC GLW -497.000 10116.00
45 TELEFONAKTIEBOLAGET LM ERICS ERIC -4307.493 24629.64
120 DELL TECHNOLOGIES INC 7732B -3728.000 78660.00
214 NOKIA CORP NOK -1796.087 27917.49

Other special values

= We know TRUE and FALSE already
= Notethat FALSE can be represented as 0
= Note that TRUE can be represented as any non-zero number
= There are also:
= Inf:Infinity, often caused by dividing something by 0
= NaN: “Not a number,” likely that the expression 0/0 occurred
= NA: Amissing value, usually not due to a mathematical error
= Null:Indicates avariable has nothingin it
= We can check for these with:

N
N » is.inf ()
= 1s.nan ()
= 1s.na ()
= 1s.null ()
S ‘L

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/is.finite
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/is.finite
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/NA
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/NULL

Practice: Subsetting our data frame

» This practice focuses on subsetting out potentially interesting parts of our data frame

= We will also see which of Goldman, JPMorgan, and Citigroup, in which year, had the lowest earnings since
2010

= Do exercise 5 on the supplementary R practice file:
= R Practice

« 00000000000 0!

http://rmc.link/Slides/acct420v4/Session_1_Sup/Session_1_Sup_R.html

Other uses

= Conditional statements (used for programming)

condl, cond?2, etc. can be any logical expression
if (condl) {
Code runs if condl is TRUE
} else if (cond2) { # Can repeat 'else if' as needed
Code runs 1if this is the first condition that is TRUE
} else {
Code runs if none of the above conditions TRUE

}

= Vectorized conditional statements using i felse ()

= |f else takes 3 vectors and returns 1 vector
= Avector of TRUE or FALSE

= Avector of elements to return from when TRUE
= Avector of elements to return from when FALSE

Outputs odd for odd numbers and even for even numbers
even <- rep("even",)5)

odd <- rep("odd", 5)

numbers <- 1:5

ifelse (numbers %% 2, odd, even)

I## [l] "odd" "aeven" "odd" "aven" "odd"

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/ifelse

=
Q.
Q.
©

5
c
S
(%)
Q.
O
@)
-

Looping: While loop

* Awhile () loop executes code repeatedly
While loop until a specified condition is FALSE

i =20

while (i < 5) {
print (1)
i=1i+ 2

Run Code

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Control

= Afor () loop executes code repeatedly until a
For loop specified condition is FALSE, while
incrementing a given variable

print (i)

Ifor(i in c(0,2,4)) {

Next value

.

Run Code

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Control

Dangers of looping in R

* LoopsinR are very slow - they do one calculation at a time, but R is best for doing many calculations at
once

Profit margin, all US tech firms # Profit margin, all US tech firms
start <- Sys.time () start <- Sys.time ()
margin 1 <- rep(0,length(tech df$ni)) margin 2 <- tech dfSearnings /
for (i in seq along(tech dfsSni)) { tech dfSrevenue

margin 1[i] <- tech dfSearnings[i] / end <- Sys.time()

tech dfSrevenuel[i] time 2 <- end - start

} time 2
end <- Sys.time ()
time 1 <- end - start

time 1 I## Time difference of 0.0009999275 secs

I## Time difference of 0.004503012 secs

Ijkatical(margin_l, margin 2) # Are these calculations identical? Yes they are.

I## [1] TRUE

Ipmste(as.numeric(time_l) / as.numeric(time 2), "times") # How much slower is the loop?

(7))
c
k=
)
®
C
-
Y
-
Y
Q
(7))
>

Help functions

* There are two equivalent ways to quickly access help files:
= 2andhelp ()
= Usage to get the help file fordata. frame ():
= ?data.frame
* help(data.frame)
= To see the options for a function, use args ()

Ieargs(data.frame)

fix.empty.names = TRUE, stringsAsFactors = FALSE)

I## function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,
##

NULL

https://www.rdocumentation.org/packages/utils/versions/3.6.2/topics/help
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/data.frame
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/args

A note on using functions

Iaargs(data.frame)

fix.empty.names = TRUE, stringsAsFactors = FALSE)

NULL

I## function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,
##

The . . . represents a series of inputs

= |n this case, inputs like name=data, where name is the column name and data is a vector
The = arguments are options for the function

* The default is prespecified, but you can overwrite it

Options can be very useful or save us a lot of time!

You can always find them by:

= Using the ? command

» Checking other documentation like www.rdocumentation.org

= Usingthe args () function

s YW W R $WA WY W

file:///M:/Dropbox/Teaching/Data_Analytics/2021_Fall/Slides/Session_1_Sup/www.rdocumentation.org
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/args

Installing more functions

* R Provides an easy way to install packages without ever leaving R
= Theinstall.packages () command
= Caninstall a single package or a vector of packages

To install the tidyverse package: R
install.packages ("tidyverse")

To install ggplot2, dplyr, and magrittr packages:
install.packages (c("ggplot2", "dplyr", "magrittr"))

» Load packages using library ()
* Need to do this each time you open a new instance of R

Load the tidyverse package R
library (tidyverse)

https://www.rdocumentation.org/packages/utils/versions/3.6.2/topics/install.packages
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/library

Pipe notation

Pipe notation is never necessary and not builtinto R

= Pipe notation is provided by the magrittr package

» Partof tidyverse, an extremely popular collection of packages
* Pipe notation is done using $>%

* Left %>% Right (arg2, ...) isthesameasRight (Left,

Piping can drastically improve code readability

ardgy,

https://magrittr.tidyverse.org/
https://www.tidyverse.org/

Piping example
Plot tech firms’ earnings vs revenue, >S10B in revenue

library(tidyverse)
library (plotly)

plot <- tech df %>%
subset (revenue > 10000) %>%
ggplot (aes (x=revenue, y=earnings)) + # ggplot comes from ggplot2, part of tidyverse
geom point (1, aes(sprintf ("Ticker: %s", tic))) # Adds point, and ticker
ggplotly(plot) # Makes the plot interactive

wn
(@)]
c
c
-
O
)

100000 150000 200000
revenue

Piping example: Without piping

library(tidyverse)
library(plotly)

plot <- ggplot (subset (tech df, revenue > 10000), aes(x=revenue,y=earnings)) +

geom_ point (1, aes(sprintf ("Ticker: %s", tic)))
ggplotly (plot) # Makes the plot interactive

50000-
40000-
30000-
20000-

(o]
10000- o O

. R o

o

n
®)]
cC
c
-
©
)

0 50000 100000 150000 200000
revenue

Practice: External library usage

* This practice focuses on using an external library

= We will also see which of Goldman, JPMorgan, and Citigroup, in which year, had the lowest earnings since
2010

» Do exercise 6 on the supplementary R practice file:
= R Practice

| Note: The ~ indicates a formula the left side is the y-axis and the right side is the x-axis

| Note: The | tells lattice to make panels based on the variable(s) to the right

http://rmc.link/Slides/acct420v4/Session_1_Sup/Session_1_Sup_R.html

vector = ¢(-2,-1,0,1,2)
sum (vector)

J++ 1o

I abs (vector)

I## (1] 210 1 2
I sdam (vectos)

I## (1] -1 -1 0 1 1

Math functions

= sum ():Sum of a vector
= abs ():Absolute value
* sign ():Thesign of a number

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/sum
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/MathFun
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/sign

Stats functions

mean () : Calculates the mean of a vector

median (): Calculates the median of a vector

sd () : Calculates the sample standard deviation of a vector
quantile (): Providesthe guartiles of a vector

range () : Gives the minimum and maximum of a vector

= Related: min () and max ()

I quantile (tech dfSearnings)

0% 25% 50% 715% 100%
-4307.4930 -15.9765 1.8370 91.3550 48351.0000

I range (tech dfSearnings)

I## [1] -4307.493 48351.000

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/mean
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/median
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/sd
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/quantile
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/range
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Extremes
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Extremes

Make your own functions!

= Usethe function () function!
* my func <- function (agruments) {code}

Simple function: Add 2 to a number

add two <- function (n) {
n + 2

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/function

Slightly more complex function example

mult together <- function (nl, 0,
if (!square) {
nl * n2
} else {
nl * nl
}
}

mult together (5, 6)
J++ 0 s0
Inmlt_together(5,6,
Joe 025

Inmlt_together(S,

Practice: Functions

= This practice focuses on making a custom function
= Currency conversion between USD and SGD!
* Aweb-based exampleisin the end notes

= Do exercise 7 on the supplementary R practice file:
= R Practice

http://rmc.link/Slides/acct420v4/Session_1_Sup/Session_1_Sup_R.html

-
()
i
)
©
=
O
[e
LLl

9.1

Wrap up

Having completed these slides, you should be ready for any R code in the class!

Packages used for these slides

= DT

= kableExtra

= knitr

= plotly

= gquantmod

= reveal]s

= RColorBrewer
= tidyverse

https://rstudio.github.io/DT/
https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_html.html
https://yihui.name/knitr/
https://plot.ly/r/
https://github.com/joshuaulrich/quantmod
https://github.com/rstudio/revealjs
https://cran.r-project.org/web/packages/RColorBrewer/index.html
https://www.tidyverse.org/

Custom functions

Custom code for small tables from dataframes
library(knitr)
library (kableExtra)
html df <- function (text, NULL,
if(!length(cols)) {
cols=colnames (text)
}

if(!coll) {
kable (text, "html", cols, c("1l", rep('c',length(cols)-1))) %>
kable styling(c("striped", "hover", "responsive"),

} else {
c("1l", rep('c',length(cols)-1))) %>

kable (text, "html", cols,
kable styling(c("striped", "hover","responsive"),

column_ spec (1,

FALSE,

Custom code for pulling 1 day of ForEx data from OANDA

FXRate <- function ("usp", "SGD", Sys.Date()) {

options ("getSymbols.warning4.0"=FALSE)

require (quantmod)
data <- getSymbols (pastel (from, "/", to), dt-1, dt, "oanda",

return (data[[1]])

