Note that the directories used to store data are likely different on your computer, and such references will need to be changed before using any such code.

library(tidyverse)
df <- read.csv("../../Data/Session_2-1.csv", stringsAsFactors=FALSE)
df_full <- df
uol <- filter(df, isin == "SG1S83002349")
#clean_df <- subset(df,fyear==2017 & !is.na(revt) & !is.na(ni) & revt > 1)
# revt: Revenue, at: Assets
summary(uol[,c("revt", "at")])
      revt               at       
 Min.   :  94.78   Min.   : 1218  
 1st Qu.: 193.41   1st Qu.: 3044  
 Median : 427.44   Median : 3478  
 Mean   : 666.38   Mean   : 5534  
 3rd Qu.:1058.61   3rd Qu.: 7939  
 Max.   :2103.15   Max.   :19623  
mod1 <- lm(revt ~ at, data = uol)
summary(mod1)

Call:
lm(formula = revt ~ at, data = uol)

Residuals:
    Min      1Q  Median      3Q     Max 
-295.01 -101.29  -41.09   47.17  926.29 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -13.831399  67.491305  -0.205    0.839    
at            0.122914   0.009678  12.701  6.7e-13 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 221.2 on 27 degrees of freedom
Multiple R-squared:  0.8566,    Adjusted R-squared:  0.8513 
F-statistic: 161.3 on 1 and 27 DF,  p-value: 6.699e-13
# Graph showing squared error
uolg <- uol[,c("at","revt")]
uolg$resid <- mod1$residuals
uolg$xleft <- ifelse(uolg$resid < 0,uolg$at,uolg$at - uolg$resid)
uolg$xright <- ifelse(uolg$resid < 0,uolg$at - uolg$resid, uol$at)
uolg$ytop <- ifelse(uolg$resid < 0,uolg$revt - uolg$resid,uol$revt)
uolg$ybottom <- ifelse(uolg$resid < 0,uolg$revt, uolg$revt - uolg$resid)
uolg$point <- TRUE

uolg2 <- uolg
uolg2$point <- FALSE
uolg2$at <- ifelse(uolg$resid < 0,uolg2$xright,uolg2$xleft)
uolg2$revt <- ifelse(uolg$resid < 0,uolg2$ytop,uolg2$ybottom)

uolg <- rbind(uolg, uolg2)


uolg %>% ggplot(aes(y=revt, x=at)) + 
         geom_point(aes(shape=point, group=point)) + 
         scale_shape_manual(values=c(NA,18)) + 
         geom_smooth(method="lm", se=FALSE) +
         geom_errorbarh(aes(xmax=xright, xmin = xleft)) + 
         geom_errorbar(aes(ymax=ytop, ymin = ybottom)) + 
         theme(legend.position="none") + xlim(0, 20000) + ylim(0, 2500)
`geom_smooth()` using formula 'y ~ x'

```r
# tidyverse
uol <- uol %>%
  mutate(revt_growth1 = revt / lag(revt) - 1)

# R way
uol$revt_growth2 = uol$revt / c(NA, uol$revt[-length(uol$revt)]) - 1

identical(uol$revt_growth1, uol$revt_growth2)

<!-- rnb-source-end -->

<!-- rnb-output-begin eyJkYXRhIjoiWzFdIFRSVUVcbiJ9 -->

[1] TRUE




<!-- rnb-output-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->



<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxuIyBNYWtlIHRoZSBvdGhlciBuZWVkZWQgY2hhbmdlXG51b2wgPC0gdW9sICU+JVxuICBtdXRhdGUoYXRfZ3Jvd3RoID0gYXQgLyBsYWcoYXQpIC0gMSkgJT4lICAjIENhbGN1bGF0ZSBhc3NldCBncm93dGhcbiAgcmVuYW1lKHJldnRfZ3Jvd3RoID0gcmV2dF9ncm93dGgxKSAgICAgICAgIyBSZW5hbWUgZm9yIHJlYWRhYmlsaXR5XG4jIFJ1biB0aGUgT0xTIG1vZGVsXG5tb2QyIDwtIGxtKHJldnRfZ3Jvd3RoIH4gYXRfZ3Jvd3RoLCBkYXRhID0gdW9sKVxuc3VtbWFyeShtb2QyKVxuYGBgXG5gYGAifQ== -->

```r
```r
# Make the other needed change
uol <- uol %>%
  mutate(at_growth = at / lag(at) - 1) %>%  # Calculate asset growth
  rename(revt_growth = revt_growth1)        # Rename for readability
# Run the OLS model
mod2 <- lm(revt_growth ~ at_growth, data = uol)
summary(mod2)

<!-- rnb-source-end -->

<!-- rnb-output-begin eyJkYXRhIjoiXG5DYWxsOlxubG0oZm9ybXVsYSA9IHJldnRfZ3Jvd3RoIH4gYXRfZ3Jvd3RoLCBkYXRhID0gdW9sKVxuXG5SZXNpZHVhbHM6XG4gICAgIE1pbiAgICAgICAxUSAgIE1lZGlhbiAgICAgICAzUSAgICAgIE1heCBcbi0wLjU3NzM2IC0wLjEwNTM0IC0wLjAwOTUzICAwLjE1MTMyICAwLjQyMjg0IFxuXG5Db2VmZmljaWVudHM6XG4gICAgICAgICAgICBFc3RpbWF0ZSBTdGQuIEVycm9yIHQgdmFsdWUgUHIoPnx0fCkgIFxuKEludGVyY2VwdCkgIDAuMDkwMjQgICAgMC4wNTYyMCAgIDEuNjA2ICAgMC4xMjA0ICBcbmF0X2dyb3d0aCAgICAwLjUzODIxICAgIDAuMjc3MTcgICAxLjk0MiAgIDAuMDYzMSAuXG4tLS1cblNpZ25pZi4gY29kZXM6ICAwIMOi4oKsy5wqKirDouKCrOKEoiAwLjAwMSDDouKCrMucKirDouKCrOKEoiAwLjAxIMOi4oKsy5wqw6LigqzihKIgMC4wNSDDouKCrMucLsOi4oKs4oSiIDAuMSDDouKCrMucIMOi4oKs4oSiIDFcblxuUmVzaWR1YWwgc3RhbmRhcmQgZXJyb3I6IDAuMjQ0NCBvbiAyNiBkZWdyZWVzIG9mIGZyZWVkb21cbiAgKDEgb2JzZXJ2YXRpb24gZGVsZXRlZCBkdWUgdG8gbWlzc2luZ25lc3MpXG5NdWx0aXBsZSBSLXNxdWFyZWQ6ICAwLjEyNjcsXHRBZGp1c3RlZCBSLXNxdWFyZWQ6ICAwLjA5MzA3IFxuRi1zdGF0aXN0aWM6IDMuNzcxIG9uIDEgYW5kIDI2IERGLCAgcC12YWx1ZTogMC4wNjMwN1xuIn0= -->

Call: lm(formula = revt_growth ~ at_growth, data = uol)

Residuals: Min 1Q Median 3Q Max -0.57736 -0.10534 -0.00953 0.15132 0.42284

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.09024 0.05620 1.606 0.1204
at_growth 0.53821 0.27717 1.942 0.0631 . — Signif. codes: 0 ‘’ 0.001 ‘’ 0.01 ‘’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2444 on 26 degrees of freedom (1 observation deleted due to missingness) Multiple R-squared: 0.1267, Adjusted R-squared: 0.09307 F-statistic: 3.771 on 1 and 26 DF, p-value: 0.06307




<!-- rnb-output-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->



<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxuIyBsY3Q6IHNob3J0IHRlcm0gbGlhYmlsaXRpZXMsIGNoZTogY2FzaCBhbmQgZXF1aXZhbGVudHMsIGViaXQ6IEVCSVRcbnVvbCA8LSB1b2wgJT4lXG4gIG11dGF0ZV9hdCh2YXJzKGxjdCwgY2hlLCBlYml0KSwgbGlzdChncm93dGggPSB+LiAvIGxhZyguKSAtIDEpKSAgIyBDYWxjdWxhdGUgMyBncm93dGhzXG5tb2QzIDwtIGxtKHJldnRfZ3Jvd3RoIH4gbGN0X2dyb3d0aCArIGNoZV9ncm93dGggKyBlYml0X2dyb3d0aCwgZGF0YT11b2wpXG5zdW1tYXJ5KG1vZDMpXG5gYGBcbmBgYCJ9 -->

```r
```r
# lct: short term liabilities, che: cash and equivalents, ebit: EBIT
uol <- uol %>%
  mutate_at(vars(lct, che, ebit), list(growth = ~. / lag(.) - 1))  # Calculate 3 growths
mod3 <- lm(revt_growth ~ lct_growth + che_growth + ebit_growth, data=uol)
summary(mod3)

<!-- rnb-source-end -->

<!-- rnb-output-begin eyJkYXRhIjoiXG5DYWxsOlxubG0oZm9ybXVsYSA9IHJldnRfZ3Jvd3RoIH4gbGN0X2dyb3d0aCArIGNoZV9ncm93dGggKyBlYml0X2dyb3d0aCwgXG4gICAgZGF0YSA9IHVvbClcblxuUmVzaWR1YWxzOlxuICAgICBNaW4gICAgICAgMVEgICBNZWRpYW4gICAgICAgM1EgICAgICBNYXggXG4tMC40NjUzMSAtMC4xNTA5NyAgMC4wMDIwNSAgMC4xNzYwMSAgMC4zMTk5NyBcblxuQ29lZmZpY2llbnRzOlxuICAgICAgICAgICAgRXN0aW1hdGUgU3RkLiBFcnJvciB0IHZhbHVlIFByKD58dHwpICAgXG4oSW50ZXJjZXB0KSAgMC4wNzQ5OCAgICAwLjA0OTE1ICAgMS41MjYgIDAuMTQwMTggICBcbmxjdF9ncm93dGggICAwLjIzNDgyICAgIDAuMDczMTkgICAzLjIwOSAgMC4wMDM3NiAqKlxuY2hlX2dyb3d0aCAgLTAuMTE1NjEgICAgMC4wOTIyNyAgLTEuMjUzICAwLjIyMjMwICAgXG5lYml0X2dyb3d0aCAgMC4wMzgwOCAgICAwLjAyMjA4ICAgMS43MjQgIDAuMDk3NTEgLiBcbi0tLVxuU2lnbmlmLiBjb2RlczogIDAgw6LigqzLnCoqKsOi4oKs4oSiIDAuMDAxIMOi4oKsy5wqKsOi4oKs4oSiIDAuMDEgw6LigqzLnCrDouKCrOKEoiAwLjA1IMOi4oKsy5wuw6LigqzihKIgMC4xIMOi4oKsy5wgw6LigqzihKIgMVxuXG5SZXNpZHVhbCBzdGFuZGFyZCBlcnJvcjogMC4yMjI4IG9uIDI0IGRlZ3JlZXMgb2YgZnJlZWRvbVxuICAoMSBvYnNlcnZhdGlvbiBkZWxldGVkIGR1ZSB0byBtaXNzaW5nbmVzcylcbk11bHRpcGxlIFItc3F1YXJlZDogICAwLjMzLFx0QWRqdXN0ZWQgUi1zcXVhcmVkOiAgMC4yNDYyIFxuRi1zdGF0aXN0aWM6ICAzLjk0IG9uIDMgYW5kIDI0IERGLCAgcC12YWx1ZTogMC4wMjAzM1xuIn0= -->

Call: lm(formula = revt_growth ~ lct_growth + che_growth + ebit_growth, data = uol)

Residuals: Min 1Q Median 3Q Max -0.46531 -0.15097 0.00205 0.17601 0.31997

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.07498 0.04915 1.526 0.14018
lct_growth 0.23482 0.07319 3.209 0.00376 che_growth -0.11561 0.09227 -1.253 0.22230
ebit_growth 0.03808 0.02208 1.724 0.09751 . — Signif. codes: 0 ‘
*’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2228 on 24 degrees of freedom (1 observation deleted due to missingness) Multiple R-squared: 0.33, Adjusted R-squared: 0.2462 F-statistic: 3.94 on 3 and 24 DF, p-value: 0.02033




<!-- rnb-output-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->



<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxuZGV0ZWN0b3IgPC0gZnVuY3Rpb24oKSB7XG4gIGRpY2UgPC0gc2FtcGxlKDE6Niwgc2l6ZT0yLCByZXBsYWNlPVRSVUUpXG4gIGlmIChzdW0oZGljZSkgPT0gMTIpIHtcbiAgICBcXGV4cGxvZGVkXFxcbiAgfSBlbHNlIHtcbiAgICBcXHN0aWxsIHRoZXJlXFxcbiAgfVxufVxuXG5leHBlcmltZW50IDwtIHJlcGxpY2F0ZSgxMDAwLGRldGVjdG9yKCkpXG4jIHAgdmFsdWVcbnAgPC0gc3VtKGV4cGVyaW1lbnQgPT0gXFxzdGlsbCB0aGVyZVxcKSAvIDEwMDBcbmlmIChwIDwgMC4wNSkge1xuICBwYXN0ZShcXHAtdmFsdWU6IFxcLCBwLCBcXC0tIEZhaWwgdG8gcmVqZWN0IEhfQVxuYGBgIn0= -->

```r
```r
detector <- function() {
  dice <- sample(1:6, size=2, replace=TRUE)
  if (sum(dice) == 12) {
    \exploded\
  } else {
    \still there\
  }
}

experiment <- replicate(1000,detector())
# p value
p <- sum(experiment == \still there\) / 1000
if (p < 0.05) {
  paste(\p-value: \, p, \-- Fail to reject H_A
[1] \p-value:  0.974 -- Reject H_A that sun exploded\
```r
library(tidyverse)
read_csv('../../Data/Session_3-1.csv') %>%
  ggplot(aes(y=revtq, x=atq)) + 
  geom_point() + 
  geom_smooth(method=\lm\) + 
  xlab(\Assets\) + 
  ylab(\Revenue\)

<!-- rnb-source-end -->

<!-- rnb-plot-begin -->

<img src="" />

<!-- rnb-plot-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->



<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxucGxvdF9ub3JtIDwtIGZ1bmN0aW9uKGJvdW5kLCBvdXRlcikge1xuICB4IDwtIHNlcSgtb3V0ZXIsb3V0ZXIsbGVuZ3RoPTEwMClcbiAgaHggPC0gZG5vcm0oeClcbiAgcGxvdCh4LCBoeCwgdHlwZT1cXG5cXCwgeGxhYj1cXHogdmFsdWVzXFwsIHlsYWI9XFxOb3JtYWwgUERGXFwsIG1haW49XFxOb3JtYWwgRGlzdHJpYnV0aW9uXFwsIGF4ZXM9RkFMU0UpXG4gIGxpbmVzKHgsIGh4KVxuICBpIDwtIHggPCAtYm91bmRcbiAgcG9seWdvbihjKC1vdXRlcix4W2ldLC1ib3VuZCwtYm91bmQpLCBjKDAsaHhbaV0sbWF4KGh4W2ldKSwwKSwgY29sPVxccmVkXFwpXG4gIGkgPC0geCA+IGJvdW5kXG4gIHBvbHlnb24oYyhib3VuZCwgYm91bmQsIHhbaV0sb3V0ZXIpLCBjKDAsbWF4KGh4W2ldKSwgaHhbaV0sMCksIGNvbD1cXHJlZFxcKVxuICBheGlzKDEsIGF0PS1vdXRlcjpvdXRlciwgcG9zPTApXG59XG5wbG90X25vcm0oMS45NiwgNClcbmBgYFxuYGBgIn0= -->

```r
```r
plot_norm <- function(bound, outer) {
  x <- seq(-outer,outer,length=100)
  hx <- dnorm(x)
  plot(x, hx, type=\n\, xlab=\z values\, ylab=\Normal PDF\, main=\Normal Distribution\, axes=FALSE)
  lines(x, hx)
  i <- x < -bound
  polygon(c(-outer,x[i],-bound,-bound), c(0,hx[i],max(hx[i]),0), col=\red\)
  i <- x > bound
  polygon(c(bound, bound, x[i],outer), c(0,max(hx[i]), hx[i],0), col=\red\)
  axis(1, at=-outer:outer, pos=0)
}
plot_norm(1.96, 4)

<!-- rnb-source-end -->

<!-- rnb-plot-begin -->

<img src="" />

<!-- rnb-plot-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->



<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxuYW5vdmEobW9kMiwgbW9kMywgdGVzdD1cXENoaXNxXFwpXG5gYGBcbmBgYCJ9 -->

```r
```r
anova(mod2, mod3, test=\Chisq\)

<!-- rnb-source-end -->

<!-- rnb-output-begin eyJkYXRhIjoiQW5hbHlzaXMgb2YgVmFyaWFuY2UgVGFibGVcblxuTW9kZWwgMTogcmV2dF9ncm93dGggfiBhdF9ncm93dGhcbk1vZGVsIDI6IHJldnRfZ3Jvd3RoIH4gbGN0X2dyb3d0aCArIGNoZV9ncm93dGggKyBlYml0X2dyb3d0aFxuICBSZXMuRGYgICAgUlNTIERmIFN1bSBvZiBTcSBQcig+Q2hpKSAgXG4xICAgICAyNiAxLjU1MzQgICAgICAgICAgICAgICAgICAgICAgICBcbjIgICAgIDI0IDEuMTkxOCAgMiAgIDAuMzYxNjggICAwLjAyNjIgKlxuLS0tXG5TaWduaWYuIGNvZGVzOiAgMCDDouKCrMucKioqw6LigqzihKIgMC4wMDEgw6LigqzLnCoqw6LigqzihKIgMC4wMSDDouKCrMucKsOi4oKs4oSiIDAuMDUgw6LigqzLnC7DouKCrOKEoiAwLjEgw6LigqzLnCDDouKCrOKEoiAxXG4ifQ== -->

Analysis of Variance Table

Model 1: revt_growth ~ at_growth Model 2: revt_growth ~ lct_growth + che_growth + ebit_growth Res.Df RSS Df Sum of Sq Pr(>Chi)
1 26 1.5534
2 24 1.1918 2 0.36168 0.0262 — Signif. codes: 0 ‘’ 0.001 ‘’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1




<!-- rnb-output-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->



<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxuYGBgclxuIyBFbnN1cmUgZmlybXMgaGF2ZSBhdCBsZWFzdCAkMU0gKGxvY2FsIGN1cnJlbmN5KSwgYW5kIGhhdmUgcmV2ZW51ZVxuIyBkZiBjb250YWlucyBhbGwgcmVhbCBlc3RhdGUgY29tcGFuaWVzIGV4Y2x1ZGluZyBOb3J0aCBBbWVyaWNhXG5kZl9jbGVhbiA8LSBmaWx0ZXIoZGYsIGRmJGF0PjEsIGRmJHJldnQ+MClcbiMgV2UgY2xlYW5lZCBvdXQgNTc4IG9ic2VydmF0aW9ucyFcbnByaW50KGMobnJvdyhkZiksIG5yb3coZGZfY2xlYW4pKSlcbmBgYFxuYGBgXG5gYGAifQ== -->

```r
```r
```r
# Ensure firms have at least $1M (local currency), and have revenue
# df contains all real estate companies excluding North America
df_clean <- filter(df, df$at>1, df$revt>0)
# We cleaned out 578 observations!
print(c(nrow(df), nrow(df_clean)))
```r
```r
forecast4 <-
  lm(revt_lead ~ revt + act + che + lct + dp + ebit , data=df_clean)
tidy(forecast4)
```r
```r
forecast3.1 <-
  lm(revt_lead ~ revt + act + che + lct + dp + ebit + factor(isin),
     data=df_clean[df_clean$fic==\SGP\,])
# n=7 to prevent outputting every fixed effect
print(tidy(forecast3.1), n=15)
glance(forecast2)

anova(forecast1, forecast2, test="Chisq")
Analysis of Variance Table

Model 1: revt_lead ~ lct + che + ebit
Model 2: revt_lead ~ revt + act + che + lct + dp + ebit
  Res.Df     RSS Df Sum of Sq  Pr(>Chi)    
1     24 3059182                           
2     21  863005  3   2196177 1.477e-11 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# Note the group_by -- without it, lead() will pull from the subsequent firm!
# ungroup() tells R that we finished grouping
df_clean <- df_clean %>% 
  group_by(isin) %>% 
  mutate(revt_lead = lead(revt)) %>%
  ungroup()
forecast3 <-
  lm(revt_lead ~ revt + act + che + lct + dp + ebit,
     data=df_clean[df_clean$fic=="SGP",])
tidy(forecast3)
glance(forecast3)
forecast4 <-
  lm(revt_lead ~ revt + act + che + lct + dp + ebit , data=df_clean)
tidy(forecast4)
glance(forecast4)
forecast3.1 <-
  lm(revt_lead ~ revt + act + che + lct + dp + ebit + factor(isin),
     data=df_clean[df_clean$fic=="SGP",])
# n=7 to prevent outputting every fixed effect
print(tidy(forecast3.1), n=15)
glance(forecast3.1)
anova(forecast3, forecast3.1, test="Chisq")
Analysis of Variance Table

Model 1: revt_lead ~ revt + act + che + lct + dp + ebit
Model 2: revt_lead ~ revt + act + che + lct + dp + ebit + factor(isin)
  Res.Df      RSS Df Sum of Sq Pr(>Chi)
1    324 14331633                      
2    304 13215145 20   1116488   0.1765
library(fixest)
forecast3.2 <-
  feols(revt_lead ~ revt + act + che + lct + dp + ebit | isin,
       data=df_clean[df_clean$fic=="SGP",])
NOTE: 29 observations removed because of NA values (LHS: 21, RHS: 8).
summary(forecast3.2)
OLS estimation, Dep. Var.: revt_lead
Observations: 331 
Fixed-effects: isin: 21
Standard-errors: Clustered (isin) 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 199.8     Adj. R2: 0.843506
              Within R2: 0.780586
df_clean %>%
  filter(fic=="SGP") %>%
  group_by(isin) %>%
  mutate(mean_revt_lead=mean(revt_lead, na.rm=T)) %>%
  slice(1) %>%
  ungroup() %>%
  ggplot(aes(x=mean_revt_lead)) + geom_histogram(aes(y = ..density..)) +  geom_density(alpha=.4, fill="#FF6666")
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

# Exports for the following week
save(df_clean, forecast2, uol, forecast4, file = "../../Data/Session_2_export.RData")
LS0tDQp0aXRsZTogIkNvZGUgZm9yIFNlc3Npb24gMiINCmF1dGhvcjogIkRyLiBSaWNoYXJkIE0uIENyb3dsZXkiDQpkYXRlOiAiIg0Kb3V0cHV0Og0KICBodG1sX25vdGVib29rDQotLS0NCg0KTm90ZSB0aGF0IHRoZSBkaXJlY3RvcmllcyB1c2VkIHRvIHN0b3JlIGRhdGEgYXJlIGxpa2VseSBkaWZmZXJlbnQgb24geW91ciBjb21wdXRlciwgYW5kIHN1Y2ggcmVmZXJlbmNlcyB3aWxsIG5lZWQgdG8gYmUgY2hhbmdlZCBiZWZvcmUgdXNpbmcgYW55IHN1Y2ggY29kZS4NCg0KYGBge3IgaGVscGVycywgd2FybmluZz1GQUxTRSwgbWVzc2FnZT1GfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpkZiA8LSByZWFkLmNzdigiLi4vLi4vRGF0YS9TZXNzaW9uXzItMS5jc3YiLCBzdHJpbmdzQXNGYWN0b3JzPUZBTFNFKQ0KZGZfZnVsbCA8LSBkZg0KdW9sIDwtIGZpbHRlcihkZiwgaXNpbiA9PSAiU0cxUzgzMDAyMzQ5IikNCiNjbGVhbl9kZiA8LSBzdWJzZXQoZGYsZnllYXI9PTIwMTcgJiAhaXMubmEocmV2dCkgJiAhaXMubmEobmkpICYgcmV2dCA+IDEpDQpgYGANCg0KYGBge3J9DQojIHJldnQ6IFJldmVudWUsIGF0OiBBc3NldHMNCnN1bW1hcnkodW9sWyxjKCJyZXZ0IiwgImF0IildKQ0KYGBgDQoNCmBgYHtyfQ0KbW9kMSA8LSBsbShyZXZ0IH4gYXQsIGRhdGEgPSB1b2wpDQpzdW1tYXJ5KG1vZDEpDQpgYGANCg0KYGBge3IsIG1lc3NhZ2U9Riwgd2FybmluZz1GLCBmaWcud2lkdGg9MTIsIGZpZy5oZWlnaHQ9Mi4yNX0NCiMgR3JhcGggc2hvd2luZyBzcXVhcmVkIGVycm9yDQp1b2xnIDwtIHVvbFssYygiYXQiLCJyZXZ0IildDQp1b2xnJHJlc2lkIDwtIG1vZDEkcmVzaWR1YWxzDQp1b2xnJHhsZWZ0IDwtIGlmZWxzZSh1b2xnJHJlc2lkIDwgMCx1b2xnJGF0LHVvbGckYXQgLSB1b2xnJHJlc2lkKQ0KdW9sZyR4cmlnaHQgPC0gaWZlbHNlKHVvbGckcmVzaWQgPCAwLHVvbGckYXQgLSB1b2xnJHJlc2lkLCB1b2wkYXQpDQp1b2xnJHl0b3AgPC0gaWZlbHNlKHVvbGckcmVzaWQgPCAwLHVvbGckcmV2dCAtIHVvbGckcmVzaWQsdW9sJHJldnQpDQp1b2xnJHlib3R0b20gPC0gaWZlbHNlKHVvbGckcmVzaWQgPCAwLHVvbGckcmV2dCwgdW9sZyRyZXZ0IC0gdW9sZyRyZXNpZCkNCnVvbGckcG9pbnQgPC0gVFJVRQ0KDQp1b2xnMiA8LSB1b2xnDQp1b2xnMiRwb2ludCA8LSBGQUxTRQ0KdW9sZzIkYXQgPC0gaWZlbHNlKHVvbGckcmVzaWQgPCAwLHVvbGcyJHhyaWdodCx1b2xnMiR4bGVmdCkNCnVvbGcyJHJldnQgPC0gaWZlbHNlKHVvbGckcmVzaWQgPCAwLHVvbGcyJHl0b3AsdW9sZzIkeWJvdHRvbSkNCg0KdW9sZyA8LSByYmluZCh1b2xnLCB1b2xnMikNCg0KDQp1b2xnICU+JSBnZ3Bsb3QoYWVzKHk9cmV2dCwgeD1hdCkpICsgDQogICAgICAgICBnZW9tX3BvaW50KGFlcyhzaGFwZT1wb2ludCwgZ3JvdXA9cG9pbnQpKSArIA0KICAgICAgICAgc2NhbGVfc2hhcGVfbWFudWFsKHZhbHVlcz1jKE5BLDE4KSkgKyANCiAgICAgICAgIGdlb21fc21vb3RoKG1ldGhvZD0ibG0iLCBzZT1GQUxTRSkgKw0KICAgICAgICAgZ2VvbV9lcnJvcmJhcmgoYWVzKHhtYXg9eHJpZ2h0LCB4bWluID0geGxlZnQpKSArIA0KICAgICAgICAgZ2VvbV9lcnJvcmJhcihhZXMoeW1heD15dG9wLCB5bWluID0geWJvdHRvbSkpICsgDQogICAgICAgICB0aGVtZShsZWdlbmQucG9zaXRpb249Im5vbmUiKSArIHhsaW0oMCwgMjAwMDApICsgeWxpbSgwLCAyNTAwKQ0KYGBgDQoNCmBgYHtyLCBtZXNzYWdlPUZ9DQojIHRpZHl2ZXJzZQ0KdW9sIDwtIHVvbCAlPiUNCiAgbXV0YXRlKHJldnRfZ3Jvd3RoMSA9IHJldnQgLyBsYWcocmV2dCkgLSAxKQ0KDQojIFIgd2F5DQp1b2wkcmV2dF9ncm93dGgyID0gdW9sJHJldnQgLyBjKE5BLCB1b2wkcmV2dFstbGVuZ3RoKHVvbCRyZXZ0KV0pIC0gMQ0KDQojIENoZWNrIHRoYXQgYm90aCB3YXlzIGFyZSBlcXVpdmFsZW50DQppZGVudGljYWwodW9sJHJldnRfZ3Jvd3RoMSwgdW9sJHJldnRfZ3Jvd3RoMikNCmBgYA0KDQpgYGB7cn0NCiMgTWFrZSB0aGUgb3RoZXIgbmVlZGVkIGNoYW5nZQ0KdW9sIDwtIHVvbCAlPiUNCiAgbXV0YXRlKGF0X2dyb3d0aCA9IGF0IC8gbGFnKGF0KSAtIDEpICU+JSAgIyBDYWxjdWxhdGUgYXNzZXQgZ3Jvd3RoDQogIHJlbmFtZShyZXZ0X2dyb3d0aCA9IHJldnRfZ3Jvd3RoMSkgICAgICAgICMgUmVuYW1lIGZvciByZWFkYWJpbGl0eQ0KDQojIFJ1biB0aGUgT0xTIG1vZGVsDQptb2QyIDwtIGxtKHJldnRfZ3Jvd3RoIH4gYXRfZ3Jvd3RoLCBkYXRhID0gdW9sKQ0Kc3VtbWFyeShtb2QyKQ0KYGBgDQoNCmBgYHtyfQ0KIyBsY3Q6IHNob3J0IHRlcm0gbGlhYmlsaXRpZXMsIGNoZTogY2FzaCBhbmQgZXF1aXZhbGVudHMsIGViaXQ6IEVCSVQNCnVvbCA8LSB1b2wgJT4lDQogIG11dGF0ZV9hdCh2YXJzKGxjdCwgY2hlLCBlYml0KSwgbGlzdChncm93dGggPSB+LiAvIGxhZyguKSAtIDEpKSAgIyBDYWxjdWxhdGUgMyBncm93dGhzDQptb2QzIDwtIGxtKHJldnRfZ3Jvd3RoIH4gbGN0X2dyb3d0aCArIGNoZV9ncm93dGggKyBlYml0X2dyb3d0aCwgZGF0YT11b2wpDQpzdW1tYXJ5KG1vZDMpDQpgYGANCg0KYGBge3J9DQpkZXRlY3RvciA8LSBmdW5jdGlvbigpIHsNCiAgZGljZSA8LSBzYW1wbGUoMTo2LCBzaXplPTIsIHJlcGxhY2U9VFJVRSkNCiAgaWYgKHN1bShkaWNlKSA9PSAxMikgew0KICAgICJleHBsb2RlZCINCiAgfSBlbHNlIHsNCiAgICAic3RpbGwgdGhlcmUiDQogIH0NCn0NCg0KZXhwZXJpbWVudCA8LSByZXBsaWNhdGUoMTAwMCxkZXRlY3RvcigpKQ0KIyBwIHZhbHVlDQpwIDwtIHN1bShleHBlcmltZW50ID09ICJzdGlsbCB0aGVyZSIpIC8gMTAwMA0KaWYgKHAgPCAwLjA1KSB7DQogIHBhc3RlKCJwLXZhbHVlOiAiLCBwLCAiLS0gRmFpbCB0byByZWplY3QgSF9BLCBzdW4gYXBwZWFycyB0byBoYXZlIGV4cGxvZGVkIikNCn0gZWxzZSB7DQogIHBhc3RlKCJwLXZhbHVlOiAiLCBwLCAiLS0gUmVqZWN0IEhfQSB0aGF0IHN1biBleHBsb2RlZCIpDQp9DQpgYGANCg0KYGBge3IsIHdhcm5pbmc9RiwgbWVzc2FnZT1GfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpyZWFkX2NzdignLi4vLi4vRGF0YS9TZXNzaW9uXzMtMS5jc3YnKSAlPiUNCiAgZ2dwbG90KGFlcyh5PXJldnRxLCB4PWF0cSkpICsgDQogIGdlb21fcG9pbnQoKSArIA0KICBnZW9tX3Ntb290aChtZXRob2Q9ImxtIikgKyANCiAgeGxhYigiQXNzZXRzIikgKyANCiAgeWxhYigiUmV2ZW51ZSIpDQpgYGANCg0KYGBge3IsIGZpZy5oZWlnaHQ9MywgZmlnLndpZHRoPTR9DQpwbG90X25vcm0gPC0gZnVuY3Rpb24oYm91bmQsIG91dGVyKSB7DQogIHggPC0gc2VxKC1vdXRlcixvdXRlcixsZW5ndGg9MTAwKQ0KICBoeCA8LSBkbm9ybSh4KQ0KICBwbG90KHgsIGh4LCB0eXBlPSJuIiwgeGxhYj0ieiB2YWx1ZXMiLCB5bGFiPSJOb3JtYWwgUERGIiwgbWFpbj0iTm9ybWFsIERpc3RyaWJ1dGlvbiIsIGF4ZXM9RkFMU0UpDQogIGxpbmVzKHgsIGh4KQ0KICBpIDwtIHggPCAtYm91bmQNCiAgcG9seWdvbihjKC1vdXRlcix4W2ldLC1ib3VuZCwtYm91bmQpLCBjKDAsaHhbaV0sbWF4KGh4W2ldKSwwKSwgY29sPSJyZWQiKQ0KICBpIDwtIHggPiBib3VuZA0KICBwb2x5Z29uKGMoYm91bmQsIGJvdW5kLCB4W2ldLG91dGVyKSwgYygwLG1heChoeFtpXSksIGh4W2ldLDApLCBjb2w9InJlZCIpDQogIGF4aXMoMSwgYXQ9LW91dGVyOm91dGVyLCBwb3M9MCkNCn0NCnBsb3Rfbm9ybSgxLjk2LCA0KQ0KYGBgDQoNCmBgYHtyfQ0KYW5vdmEobW9kMiwgbW9kMywgdGVzdD0iQ2hpc3EiKQ0KYGBgDQoNCmBgYHtyfQ0KIyBFbnN1cmUgZmlybXMgaGF2ZSBhdCBsZWFzdCAkMU0gKGxvY2FsIGN1cnJlbmN5KSwgYW5kIGhhdmUgcmV2ZW51ZQ0KIyBkZiBjb250YWlucyBhbGwgcmVhbCBlc3RhdGUgY29tcGFuaWVzIGV4Y2x1ZGluZyBOb3J0aCBBbWVyaWNhDQpkZl9jbGVhbiA8LSBkZiAlPiUNCiAgZmlsdGVyKGF0PjEsIHJldnQ+MCkNCg0KIyBXZSBjbGVhbmVkIG91dCA1Nzggb2JzZXJ2YXRpb25zIQ0KcHJpbnQoYyhucm93KGRmKSwgbnJvdyhkZl9jbGVhbikpKQ0KDQojIEFub3RoZXIgdXNlZnVsIGNsZWFuaW5nIGZ1bnRpb246DQojIFJlcGxhY2VzIE5hTiwgSW5mLCBhbmQgLUluZiB3aXRoIE5BIGZvciBhbGwgbnVtZXJpYyB2YXJpYWJsZXMgaW4gdGhlIGRhdGEhDQpkZl9jbGVhbiA8LSBkZl9jbGVhbiAlPiUNCiAgbXV0YXRlX2lmKGlzLm51bWVyaWMsIGxpc3QofnJlcGxhY2UoLiwgIWlzLmZpbml0ZSguKSwgTkEpKSkNCmBgYA0KDQpgYGB7ciwgbWVzc2FnZT1GLCB3YXJuaW5nPUZ9DQp1b2wgPC0gdW9sICU+JSBtdXRhdGUocmV2dF9sZWFkID0gbGVhZChyZXZ0KSkgICMgRnJvbSBkcGx5cg0KZm9yZWNhc3QxIDwtIGxtKHJldnRfbGVhZCB+IGxjdCArIGNoZSArIGViaXQsIGRhdGE9dW9sKQ0KbGlicmFyeShicm9vbSkgICMgTGV0cyB1cyB2aWV3IGJpZ2dlciByZWdyZXNzaW9uIG91dHB1dHMgaW4gYSB0aWR5IGZhc2hpb24NCnRpZHkoZm9yZWNhc3QxKSAgIyBQcmVzZW50IHJlZ3Jlc3Npb24gb3V0cHV0DQpnbGFuY2UoZm9yZWNhc3QxKSAgIyBQcmVzZW50IHJlZ3Jlc3Npb24gc3RhdGlzdGljcw0KYGBgDQoNCmBgYHtyfQ0KZm9yZWNhc3QyIDwtIA0KICBsbShyZXZ0X2xlYWQgfiByZXZ0ICsgYWN0ICsgY2hlICsgbGN0ICsgZHAgKyBlYml0ICwgZGF0YT11b2wpDQp0aWR5KGZvcmVjYXN0MikNCmBgYA0KDQpgYGB7cn0NCmdsYW5jZShmb3JlY2FzdDIpDQoNCmFub3ZhKGZvcmVjYXN0MSwgZm9yZWNhc3QyLCB0ZXN0PSJDaGlzcSIpDQpgYGANCg0KYGBge3J9DQojIE5vdGUgdGhlIGdyb3VwX2J5IC0tIHdpdGhvdXQgaXQsIGxlYWQoKSB3aWxsIHB1bGwgZnJvbSB0aGUgc3Vic2VxdWVudCBmaXJtIQ0KIyB1bmdyb3VwKCkgdGVsbHMgUiB0aGF0IHdlIGZpbmlzaGVkIGdyb3VwaW5nDQpkZl9jbGVhbiA8LSBkZl9jbGVhbiAlPiUgDQogIGdyb3VwX2J5KGlzaW4pICU+JSANCiAgbXV0YXRlKHJldnRfbGVhZCA9IGxlYWQocmV2dCkpICU+JQ0KICB1bmdyb3VwKCkNCmBgYA0KDQpgYGB7cn0NCmZvcmVjYXN0MyA8LQ0KICBsbShyZXZ0X2xlYWQgfiByZXZ0ICsgYWN0ICsgY2hlICsgbGN0ICsgZHAgKyBlYml0LA0KICAgICBkYXRhPWRmX2NsZWFuW2RmX2NsZWFuJGZpYz09IlNHUCIsXSkNCnRpZHkoZm9yZWNhc3QzKQ0KYGBgDQoNCmBgYHtyfQ0KZ2xhbmNlKGZvcmVjYXN0MykNCmBgYA0KDQpgYGB7cn0NCmZvcmVjYXN0NCA8LQ0KICBsbShyZXZ0X2xlYWQgfiByZXZ0ICsgYWN0ICsgY2hlICsgbGN0ICsgZHAgKyBlYml0ICwgZGF0YT1kZl9jbGVhbikNCnRpZHkoZm9yZWNhc3Q0KQ0KYGBgDQoNCmBgYHtyfQ0KZ2xhbmNlKGZvcmVjYXN0NCkNCmBgYA0KDQpgYGB7cn0NCmZvcmVjYXN0My4xIDwtDQogIGxtKHJldnRfbGVhZCB+IHJldnQgKyBhY3QgKyBjaGUgKyBsY3QgKyBkcCArIGViaXQgKyBmYWN0b3IoaXNpbiksDQogICAgIGRhdGE9ZGZfY2xlYW5bZGZfY2xlYW4kZmljPT0iU0dQIixdKQ0KIyBuPTcgdG8gcHJldmVudCBvdXRwdXR0aW5nIGV2ZXJ5IGZpeGVkIGVmZmVjdA0KcHJpbnQodGlkeShmb3JlY2FzdDMuMSksIG49MTUpDQpgYGANCg0KYGBge3J9DQpnbGFuY2UoZm9yZWNhc3QzLjEpDQphbm92YShmb3JlY2FzdDMsIGZvcmVjYXN0My4xLCB0ZXN0PSJDaGlzcSIpDQpgYGANCg0KYGBge3IsIG1lc3NhZ2U9RiwgZXJyb3I9Riwgd2FybmluZz1GfQ0KbGlicmFyeShmaXhlc3QpDQpmb3JlY2FzdDMuMiA8LQ0KICBmZW9scyhyZXZ0X2xlYWQgfiByZXZ0ICsgYWN0ICsgY2hlICsgbGN0ICsgZHAgKyBlYml0IHwgaXNpbiwNCiAgICAgICBkYXRhPWRmX2NsZWFuW2RmX2NsZWFuJGZpYz09IlNHUCIsXSkNCnN1bW1hcnkoZm9yZWNhc3QzLjIpDQpgYGANCg0KYGBge3IsIG1lc3NhZ2U9RiwgZmlnLmhlaWdodD00fQ0KZGZfY2xlYW4gJT4lDQogIGZpbHRlcihmaWM9PSJTR1AiKSAlPiUNCiAgZ3JvdXBfYnkoaXNpbikgJT4lDQogIG11dGF0ZShtZWFuX3JldnRfbGVhZD1tZWFuKHJldnRfbGVhZCwgbmEucm09VCkpICU+JQ0KICBzbGljZSgxKSAlPiUNCiAgdW5ncm91cCgpICU+JQ0KICBnZ3Bsb3QoYWVzKHg9bWVhbl9yZXZ0X2xlYWQpKSArIGdlb21faGlzdG9ncmFtKGFlcyh5ID0gLi5kZW5zaXR5Li4pKSArICBnZW9tX2RlbnNpdHkoYWxwaGE9LjQsIGZpbGw9IiNGRjY2NjYiKQ0KYGBgDQoNCmBgYHtyfQ0KIyBFeHBvcnRzIGZvciB0aGUgZm9sbG93aW5nIHdlZWsNCnNhdmUoZGZfY2xlYW4sIGZvcmVjYXN0MiwgdW9sLCBmb3JlY2FzdDQsIGZpbGUgPSAiLi4vLi4vRGF0YS9TZXNzaW9uXzJfZXhwb3J0LlJEYXRhIikNCmBgYA0KDQo=