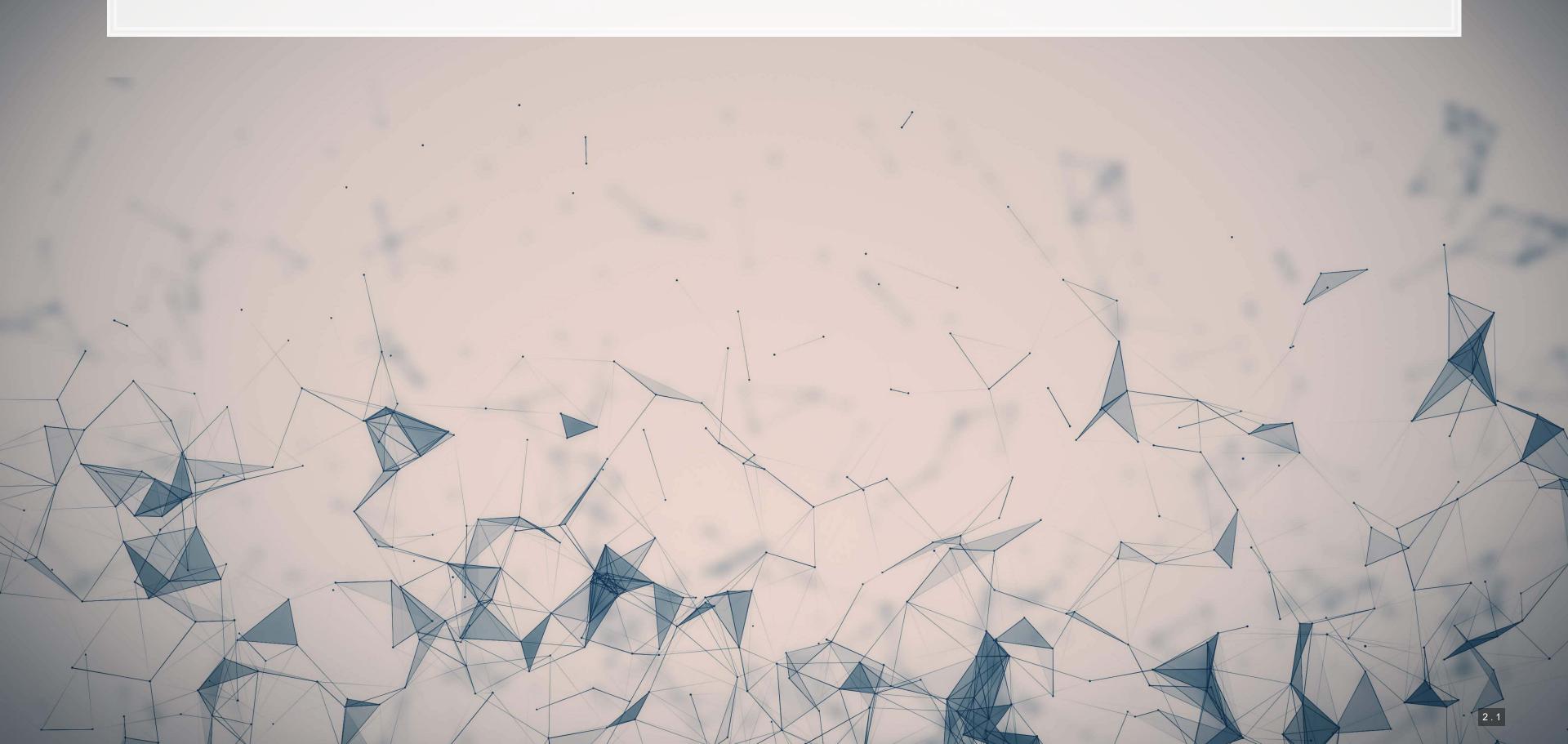
ACCT 420: Logistic Regression

Session 4

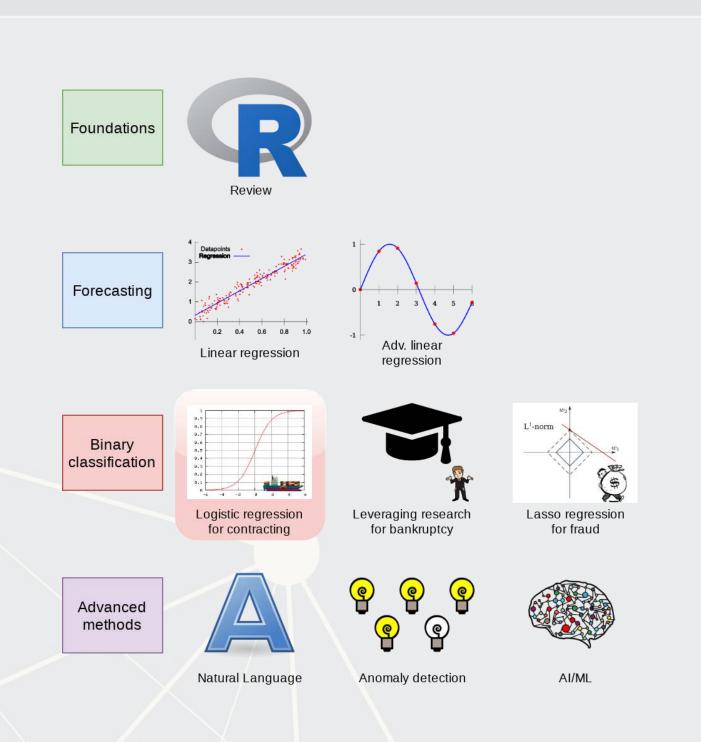
Dr. Richard M. Crowley

rcrowley@smu.edu.sg http://rmc.link/

Front matter



Learning objectives



- Theory:
 - Understanding binary problems
- Application:
 - Detecting shipping delays caused by typhoons
- Methodology:
 - Logistic regression
 - Spatial visualization

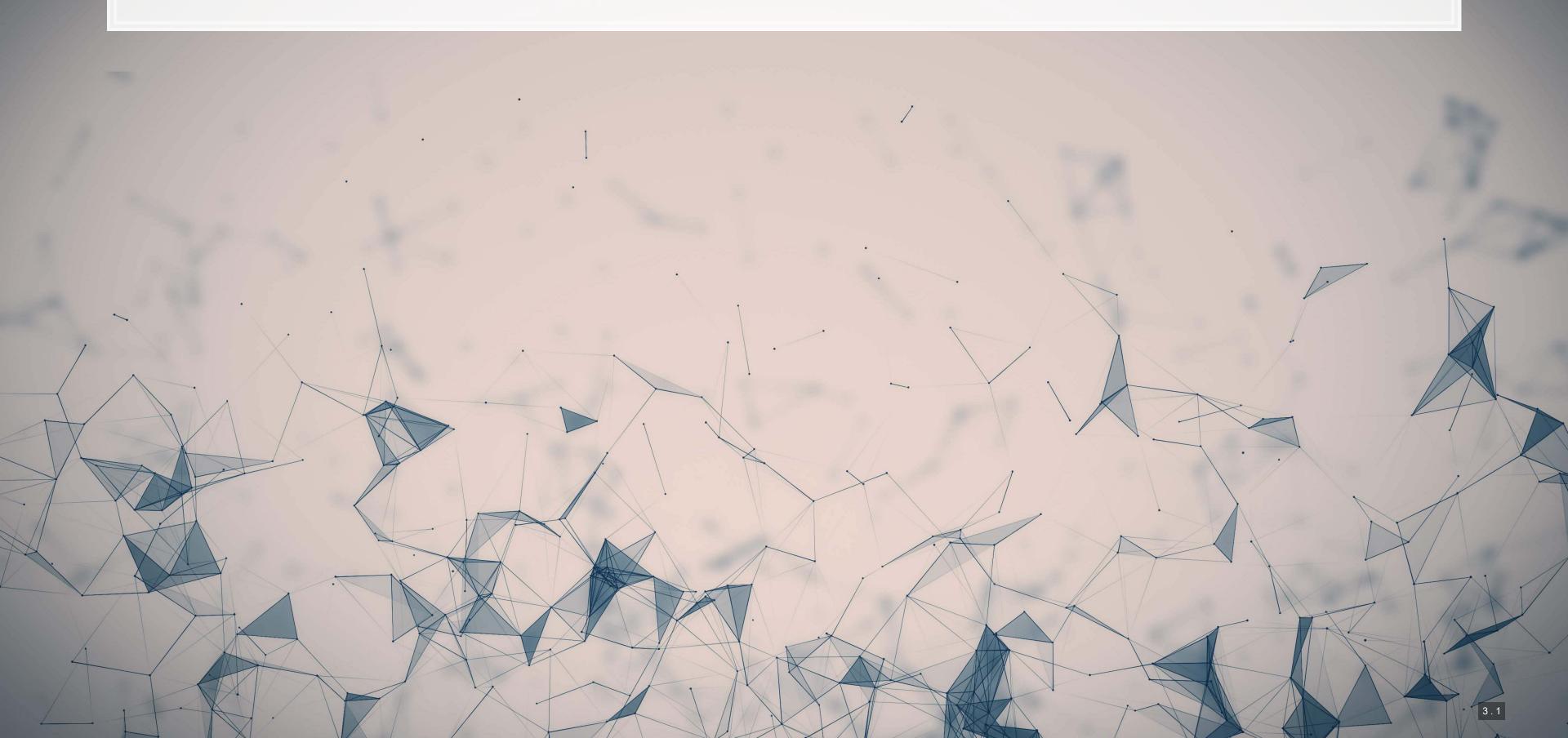
Datacamp

- Explore on your own
- No specific required class this week

Assignment 2

- Looking at Singaporean retail firms
 - Mostly focused on time and cyclicality
 - Some visualization
 - A little of what we cover today
- Optional (but encouraged):
 - You can work in pairs on this assignment
 - If you choose to do this, please only make 1 submission and include both your names on the submission

Binary outcomes



What are binary outcomes?

- Thus far we have talked about events with continuous outcomes
 - Revenue: Some positive number
 - Earnings: Some number
 - ROA: Some percentage
- Binary outcomes only have two possible outcomes
 - Did something happen, *yes* or *no*?
 - Is a statement *true* or *false*?

Accounting examples of binary outcomes

- Financial accounting:
 - Will the company's earnings meet analysts' expectations?
 - Will the company have positive earnings?
- Managerial accounting:
 - Will we have ____ problem with our supply chain?
 - Will our customer go bankrupt?
- Audit:
 - Is the company committing fraud?
- Taxation:
 - Is the company too aggressive in their tax positions?

We can assign a probability to any of these

Brainstorming...

What types of business problems or outcomes are binary?

Regression approach: Logistic regression

- When modeling a binary outcome, we use logistic regression
 - A.k.a. logit model
- The *logit* function is $logit(x) = log(\frac{x}{1-x})$
 - Also called log odds

$$\log\left(rac{ ext{Prob}(y=1|X)}{1- ext{Prob}(y=1|X)}
ight)=lpha+eta_1x_1+eta_2x_2+\ldots+arepsilon$$

There are other ways to model this though, such as probit

Implementation: Logistic regression

The logistic model is related to our previous linear models as such:

Both linear and logit models are under the class of General Linear Models (GLMs)

- To regress a GLM, we use the glm() command.
 - In fact, the lm() command we have been using is actually glm() when you specify the option family=gaussian
- To run a logit regression:

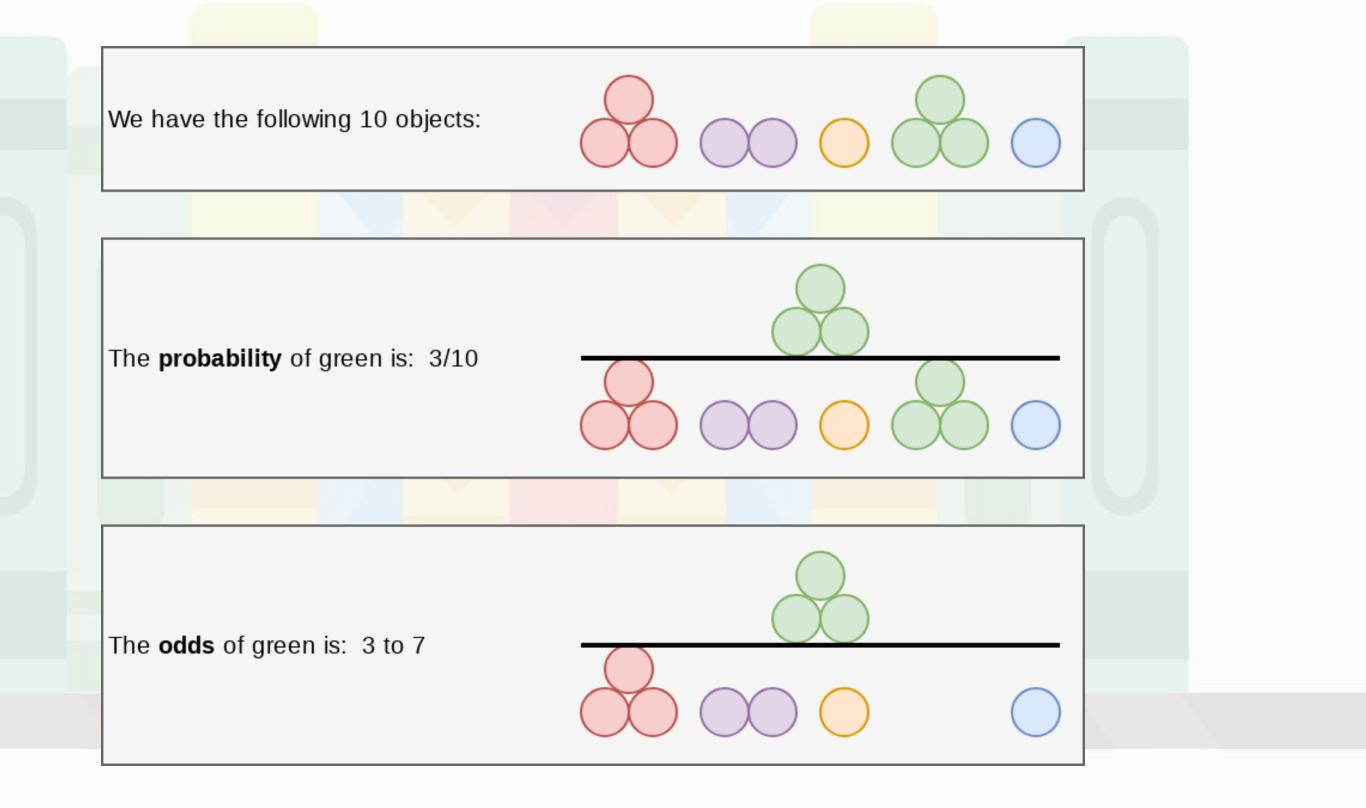
```
mod <- glm(y ~ x1 + x2 + x3 + ..., data=df, family=binomial)
summary(mod)</pre>
```

family=binomial is what sets the model to be a logit

Interpreting logit values

- The sign of the coefficients means the same as before
 - +: increases the likelihood of y occurring
 - -: decreases the likelihood of y occurring
- The level of a coefficient is different
 - The relationship isn't linear between x_i and y now
 - Instead, coefficients are in log odds
 - Thus, e^{β_i} gives you the odds, o
- You can interpret the odds for a coefficient
 - Increased by [o-1]%
- You need to sum all relevant log odds before converting to a probability!

Odds vs probability



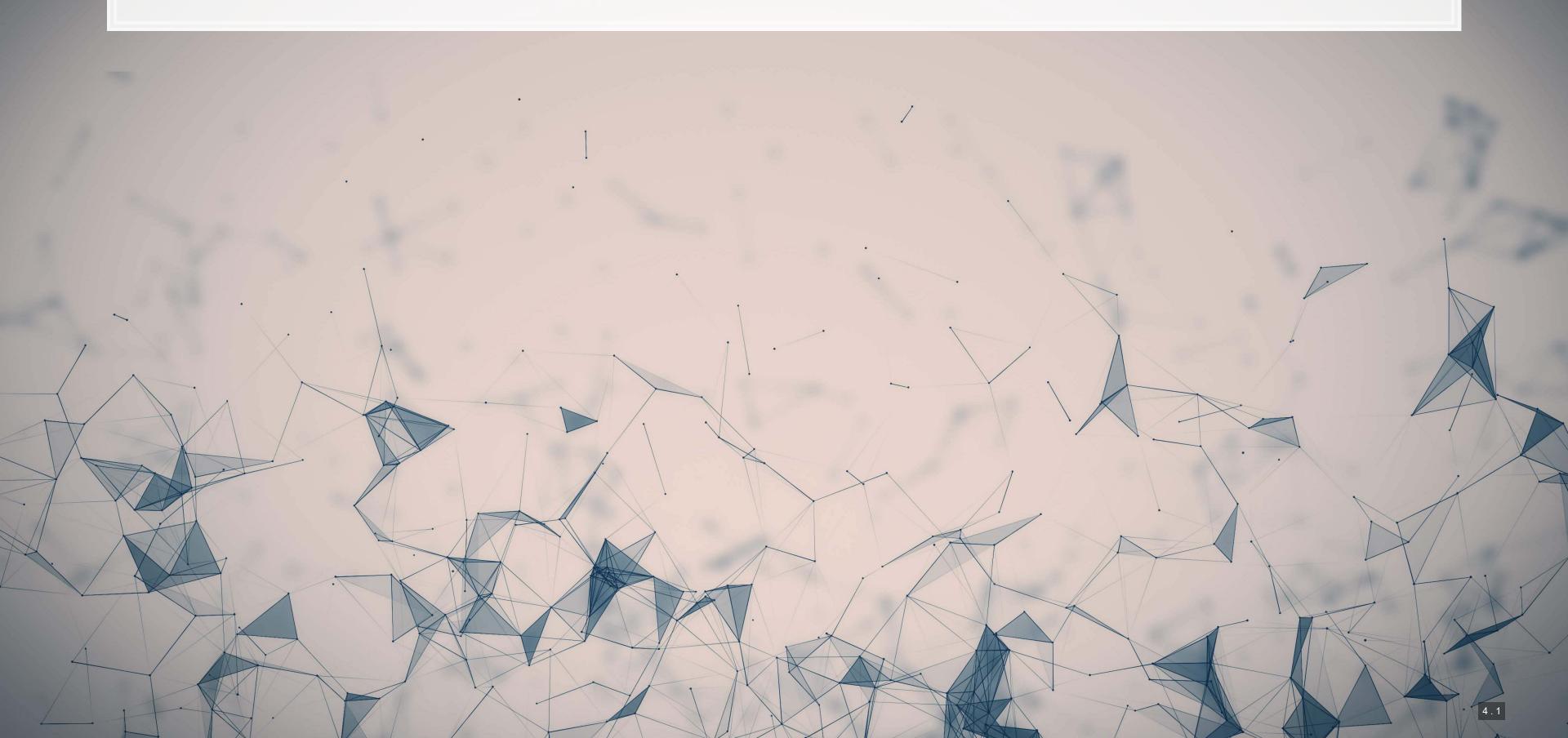
Example logit regression

Do holidays increase the likelihood that a department more than doubles its store's average weekly sales across departments?

```
# Create the binary variable from Walmart sales data
df$double <- ifelse(df$Weekly_Sales > df$store_avg*2,1,0)
fit <- glm(double ~ IsHoliday, data=df, family=binomial)
tidy(fit)</pre>
```

Holidays increase the odds... but by how much?

Logistic regression interpretation



A simple interpretation

• The model we just saw the following model:

 $logodds(Double\ sales) = -3.45 + 0.54 Is Holiday$

- There are two ways to interpret this:
 - 1. Coefficient by coefficient
 - 2. In total

Interpretting specific coefficients

$$logodds(Double\ sales) = -3.45 + 0.54 Is Holiday$$

- Interpreting specific coefficients is easiest done manually
- Odds for the IsHoliday coefficient are exp (0.54) = 1.72
 - This means that having a holiday modifies the baseline (i.e., non-Holiday) odds by 1.72 to 1
 - Where 1 to 1 is considered no change
 - Baseline is 0.032 to 1

```
# Automating the above:
exp(coef(fit))
```

(Intercept) IsHolidayTRUE ## 0.03184725 1.71367497

Interpretting in total

- It is important to note that log odds are additive
 - So, calculate a new log odd by plugging in values for variables and adding it all up
 - Holiday: -3.45 + 0.54 * 1 = -2.89
 - No holiday: -3.45 + 0.54 * 0 = -3.45
- Then calculate odds and log odds like before
 - With holiday: exp(-2.89) = 0.056
 - Without holiday: exp(-3.45) = 0.032
 - Ratio of holiday to without: 1.72!
 - This is the individual log odds for holiday

We need to specify values to calculate log odds in total

Converting to probabilities

We can calculate a probability at any given point using the log odds

$$Probability = rac{odds}{odds + 1}$$

- Probability of double sales...
 - With a holiday: 0.056 / (0.056 + 1) = 0.052
 - Without a holiday: 0.032 / (0.032 + 1) = 0.031

These are easier to interpret, but require specifying values for each model input to calculate

Using predict() to simplify it

- predict () can calculate log odds and probabilities for us with minimal effort
 - Specify type="response" to get probabilities

```
test_data <- as.data.frame(IsHoliday = c(0,1))
predict(model, test_data) # log odds

## [1] -3.44 -2.90

predict(model, test_data, type="response") #probabilities

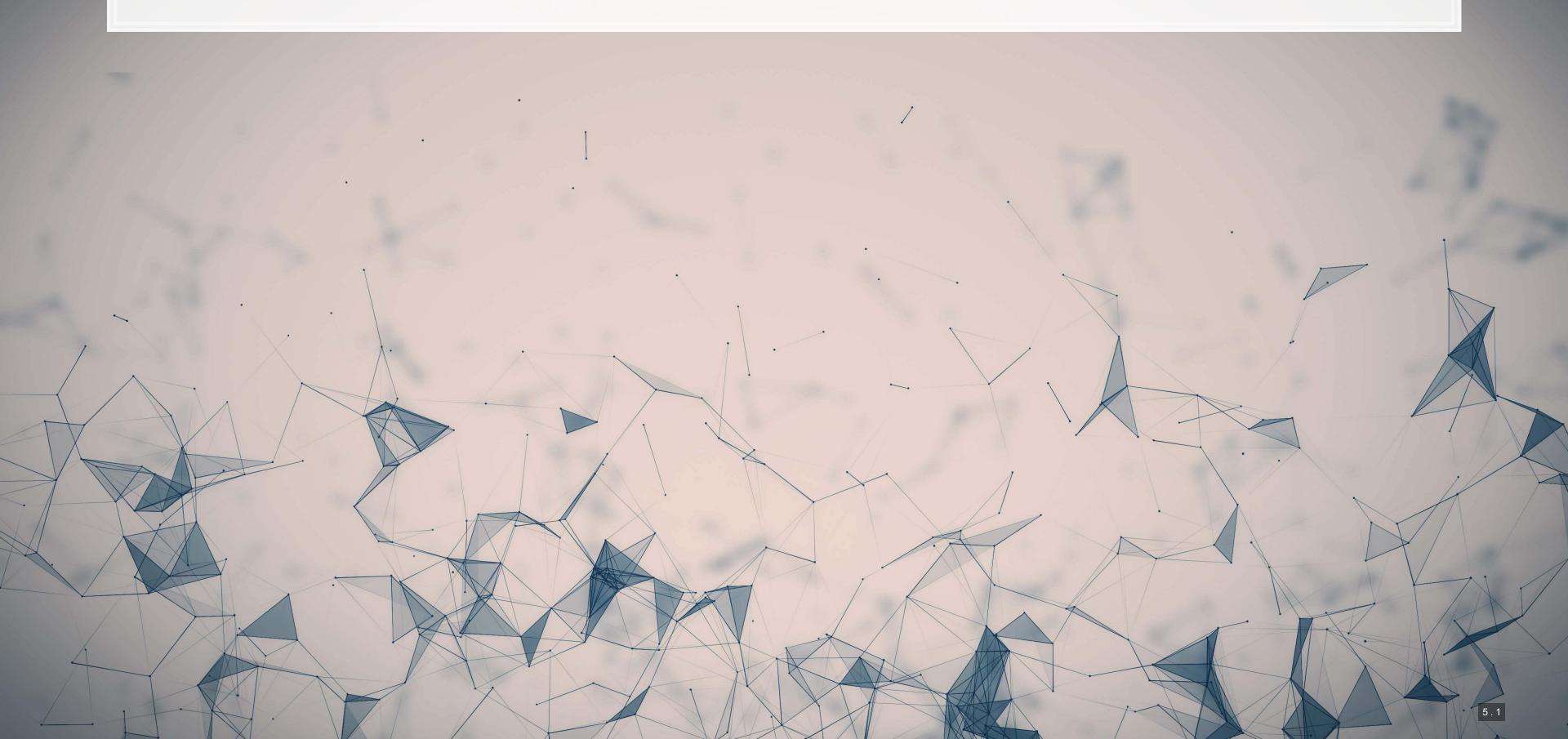
## [1] 0.03106848 0.05215356
```

- Here, we see the baseline probability is 3.1%
- The probability of doubling sales on a holiday is higher, at 5.2%

R practice: Logit

- A continuation of last week's practices answering:
 - Is Walmart more likely to see a year over year decrease in quarterly revenue during a recession?
- Practice using mutate() and glm()
- Do exercises 1 and 2 in today's practice file
 - R Practice
 - Shortlink: rmc.link/420r4

Logistic regression interpretation redux



What about more complex models?

- Continuous inputs in the model
 - What values do we pick to determine probabilities?
- Multiple inputs?
 - We can scale up what we did, but things get messy
 - Mathematically, the inputs get interacted within the inner workings of logit...
 - So the impact of each input depends on the values of the others!

Consider this model

```
model2 <- glm(double ~ IsHoliday + Temperature + Fuel_Price, data=df, family=binomial)
summary(model2)</pre>
```

```
R
```

Odds and probabilities

```
# Odds
exp(coef(model2))
     (Intercept) IsHolidayTRUE
                                  Temperature
                                                  Fuel Price
                                                  0.7\overline{3}40376
       0.1692308
                                    0.9892316
                      1.4483570
# Typical September days
hday sep <- mean(predict(model2, filter(df, IsHoliday, month==9), type="response"))
no hday sep <- mean(predict(model2, filter(df, !IsHoliday, month==9), type="response"))
# Typical December days
hday dec <- mean(predict(model2, filter(df, IsHoliday, month==12), type="response"))</pre>
no hday dec <- mean(predict(model2, filter(df, !IsHoliday, month==12), type="response"))</pre>
html_df(data.frame(Month=c(9,9,12,12),
                   IsHoliday=c(FALSE, TRUE, FALSE, TRUE),
                   Probability=c(no_hday_sep, hday_sep, no_hday_dec, hday_dec)))
```

Month	IsHoliday	Probability			
9	FALSE	0.0266789			
9	TRUE	0.0374761			
12	FALSE	0.0398377			
12	TRUE	0.0586483			

A bit easier: Marginal effects

Marginal effects tell us the *average* change in our output for a change of 1 to an input

- The above definition is very similar to how we interpret linear regression coefficients
 - The only difference is the word *average* the effect changes a bit depending on the input data
- Using margins, we can calculate marginal effects
- There are a few types that we could calculate:
 - An Average Marginal Effect tells us what the average effect of an input is across all values in our data
 - This is the default method in the package
 - We can also specify a specific value to calculate marginal effects at (like with our probabilities last slides)

Marginal effects in action

```
# Calculate AME marginal effects
library(margins)
m <- margins(model2)
m</pre>
```

```
## Temperature Fuel_Price IsHoliday
## -0.0003377 -0.009644 0.01334
```

- A holiday increase the probability of doubling by a flat 1.33%
 - Not too bad when you consider that the probability of doubling is 3.23%
- If the temperature goes up by 1°F (0.55°C), the probability of doubling changes by -0.03%
- If the fuel price increases by 1 USD for 1 gallon of gas, the probability of doubling changes by -0.96%

margins niceties

We can get some extra information about our marginal effects through summary ():

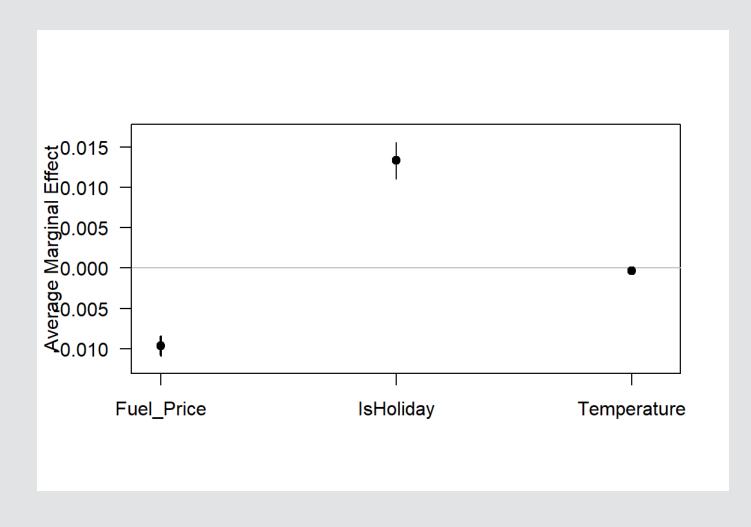
```
summary(m) %>%
  html_df()
```


factor	AME	SE	Z	р	lower	upper
Fuel_Price	-0.0096438	0.0006163	-15.64800	0	-0.0108517	-0.0084359
IsHoliday	0.0133450	0.0011754	11.35372	0	0.0110413	0.0156487
Temperature	-0.0003377	0.0000149	-22.71255	0	-0.0003668	-0.0003085

- Those p-values work just like with our linear models
- We also get a confidence interval
 - Which we can plot!

Plotting marginal effects

plot(m, which=summary(m) \$factor)



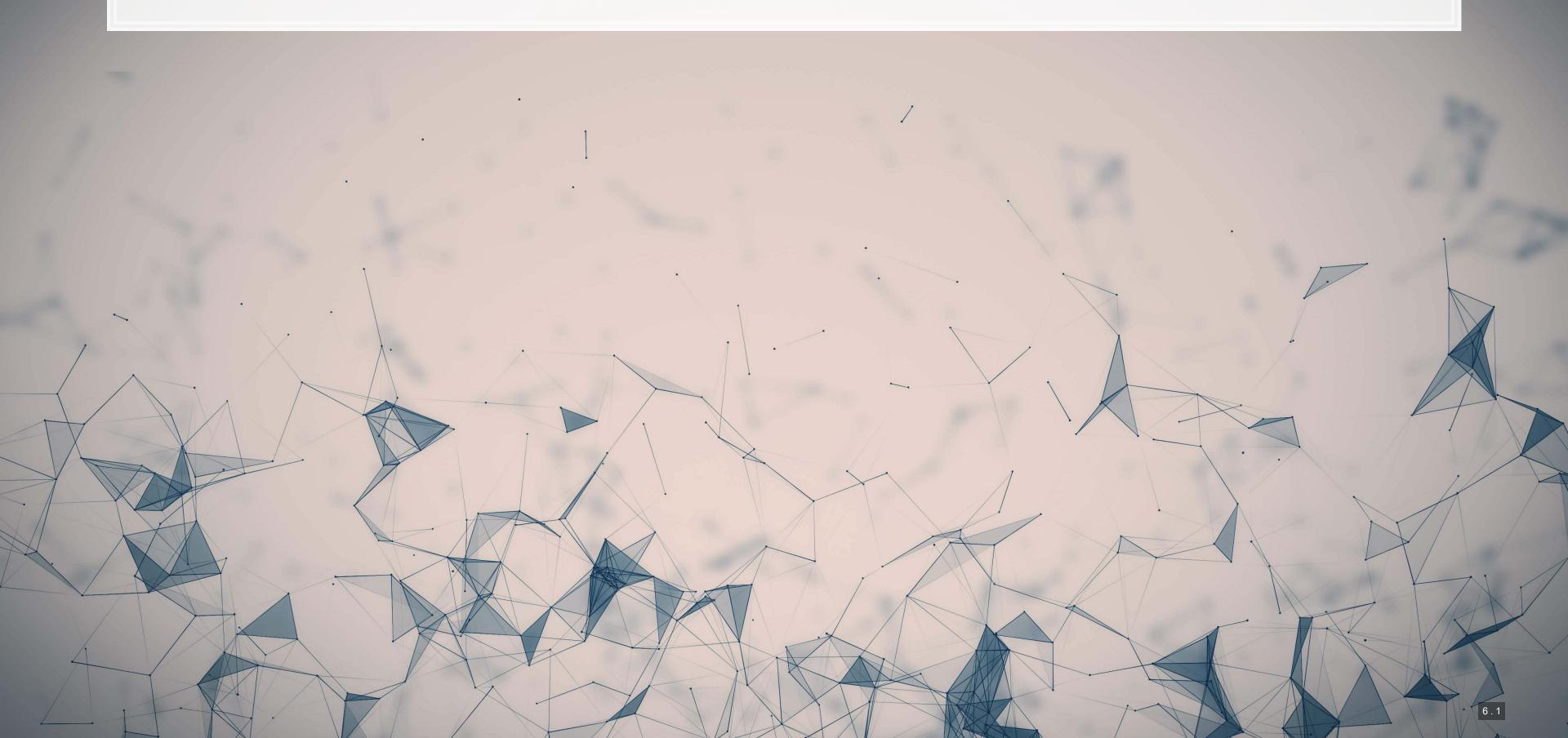
Note: The which... part is absolutely necessary at the moment due to a bug in the package

Marginal effects at a specified value

factor	IsHoliday	AME	SE	Z	р	lower	upper
Fuel_Price	FALSE	-0.0093401	0.0005989	-15.59617	0	-0.0105139	-0.0081664
Fuel_Price	TRUE	-0.0131335	0.0008717	-15.06650	0	-0.0148420	-0.0114250
Temperature	FALSE	-0.0003271	0.0000146	-22.46024	0	-0.0003556	-0.0002985
Temperature	TRUE	-0.0004599	0.0000210	-21.92927	0	-0.0005010	-0.0004188

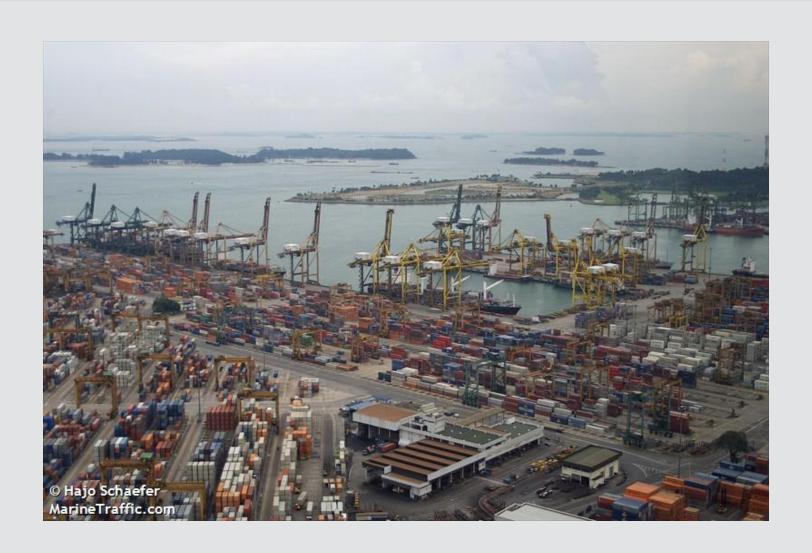
factor	Temperature	AME	SE	Z	р	lower	upper
IsHoliday	0	0.0234484	0.0020168	11.62643	0	0.0194955	0.0274012
IsHoliday	25	0.0184956	0.0015949	11.59704	0	0.0153697	0.0216214
IsHoliday	50	0.0144798	0.0012679	11.42060	0	0.0119948	0.0169648
IsHoliday	75	0.0112693	0.0010161	11.09035	0	0.0092777	0.0132609
IsHoliday	100	0.0087305	0.0008213	10.62977	0	0.0071207	0.0103402

Today's Application: Shipping delays



The question

Can we leverage global weather data to predict shipping delays?



Formalization

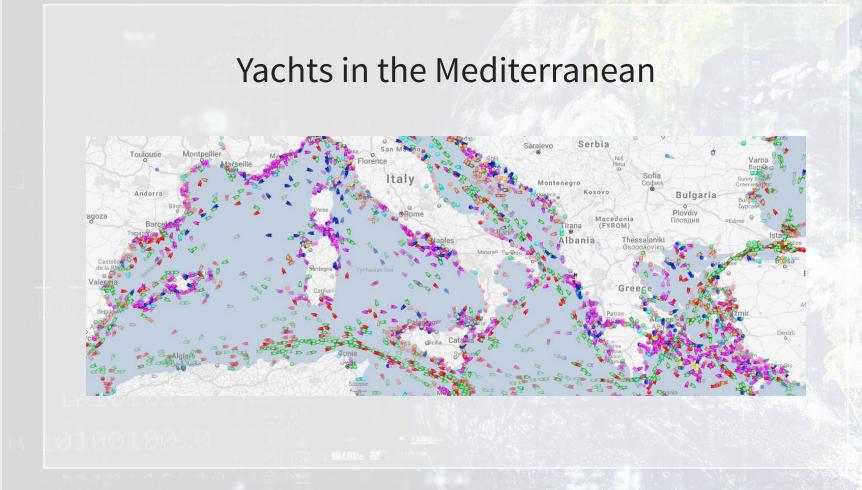
- 1. Question
 - How can predict naval shipping delays?
- 2. Hypothesis (just the alternative ones)
 - 1. Global weather data helps to predict shipping delays
- 3. Prediction
 - Use Logistic regression and z-tests for coefficients
 - No hold out sample this week too little data

A bit about shipping data

- WRDS doesn't have shipping data
- There are, however, vendors for shipping data, such as:

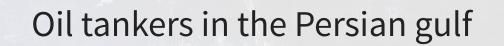
- They pretty much have any data you could need:
 - Over 650,000 ships tracked using ground and satellite based AIS
 - AIS: Automatic Identification System
 - Live mapping
 - Weather data
 - Fleet tracking
 - Port congestion
 - Inmarsat support for ship operators

What can we see from naval data?



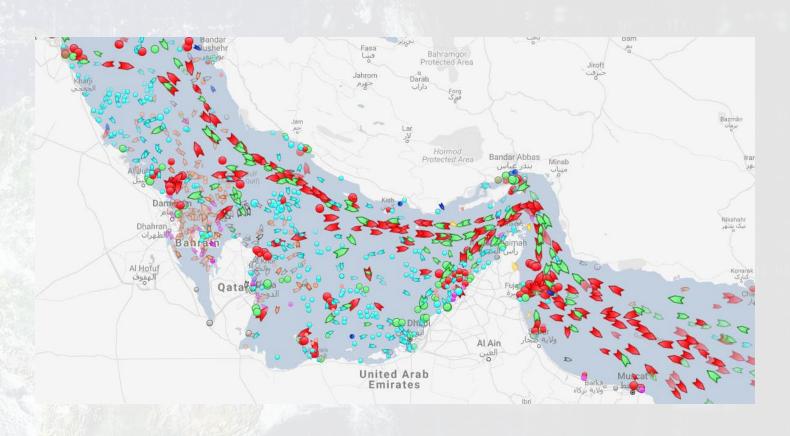
1000

4040



.0011000

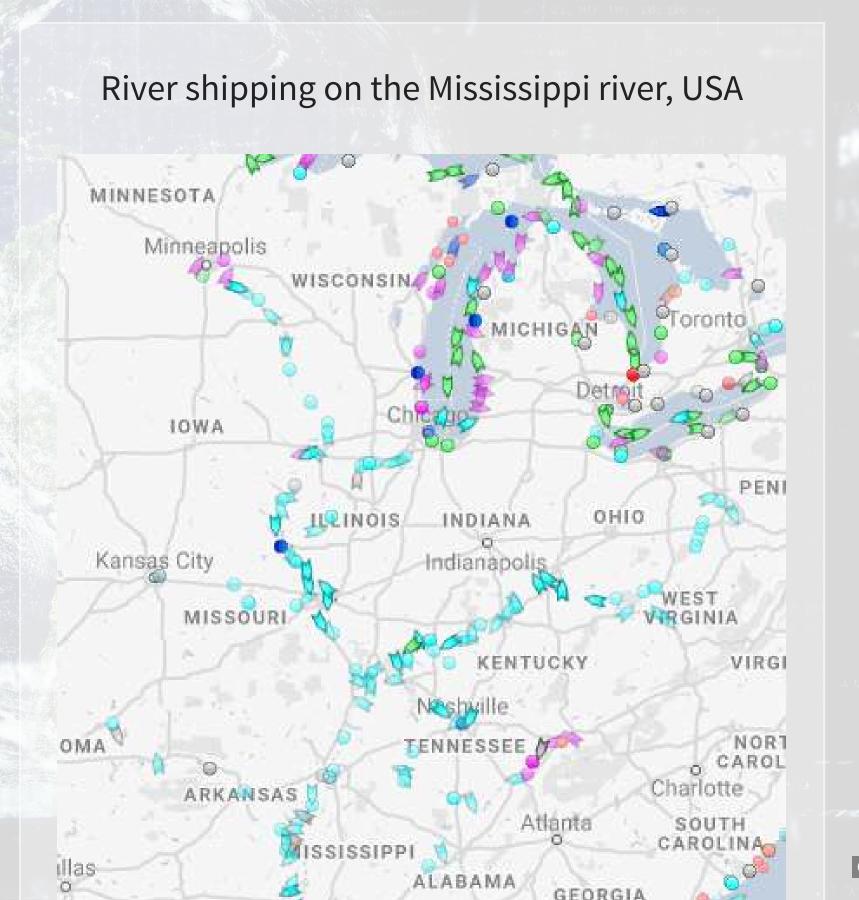
0000



What can we see from naval data?

1000

生活生的

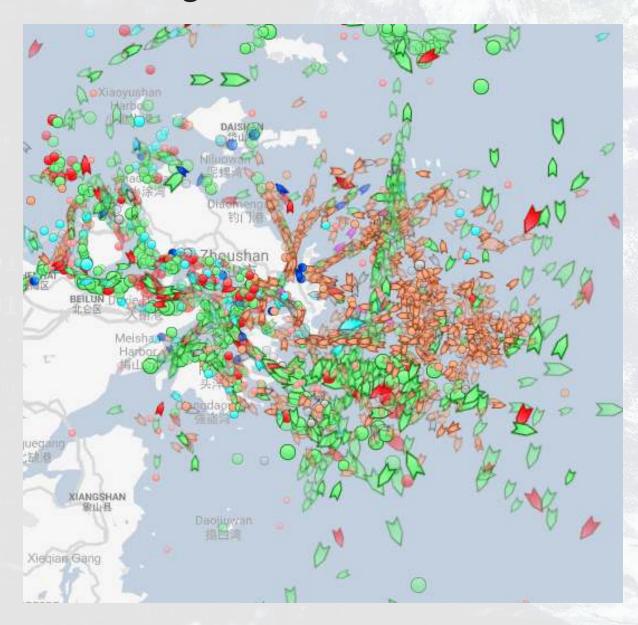


0011000

(2)(2)(2)(4)

What can we see from naval data?

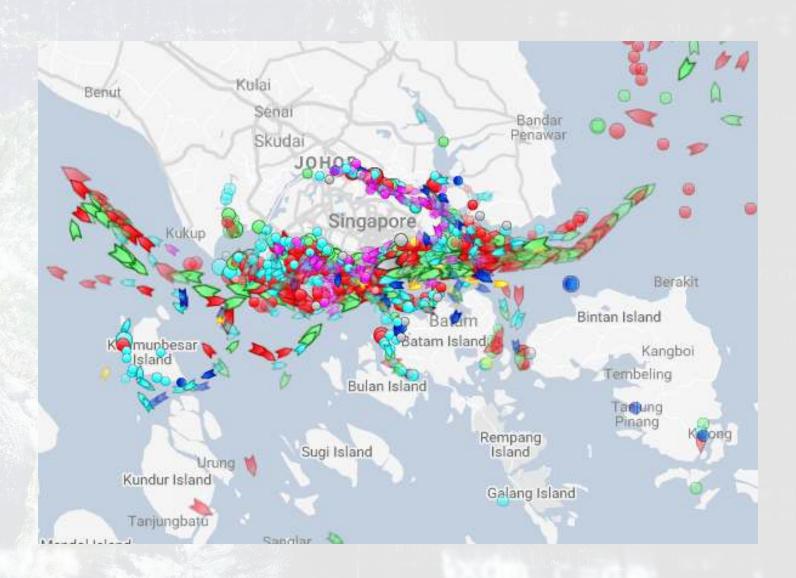
Busiest ports by containers and tons (Shanghai & Ningbo-Zhoushan, China)



1000

作品生意

Busiest port for transshipment (Singapore)



0011000

(2)(2)(2)(6)

Examining Singaporean owned ships Singaporean owned container and tanker ships, August 31, 2018 Port Cargo Tanker TYPHOON

1000

生四年均

.0011000

0000

Code for last slide's map

- plot geo() is from plotly
- add markers () adds points to the map
- layout () adjusts the layout

00000

 \circ \circ \circ \circ \circ \circ

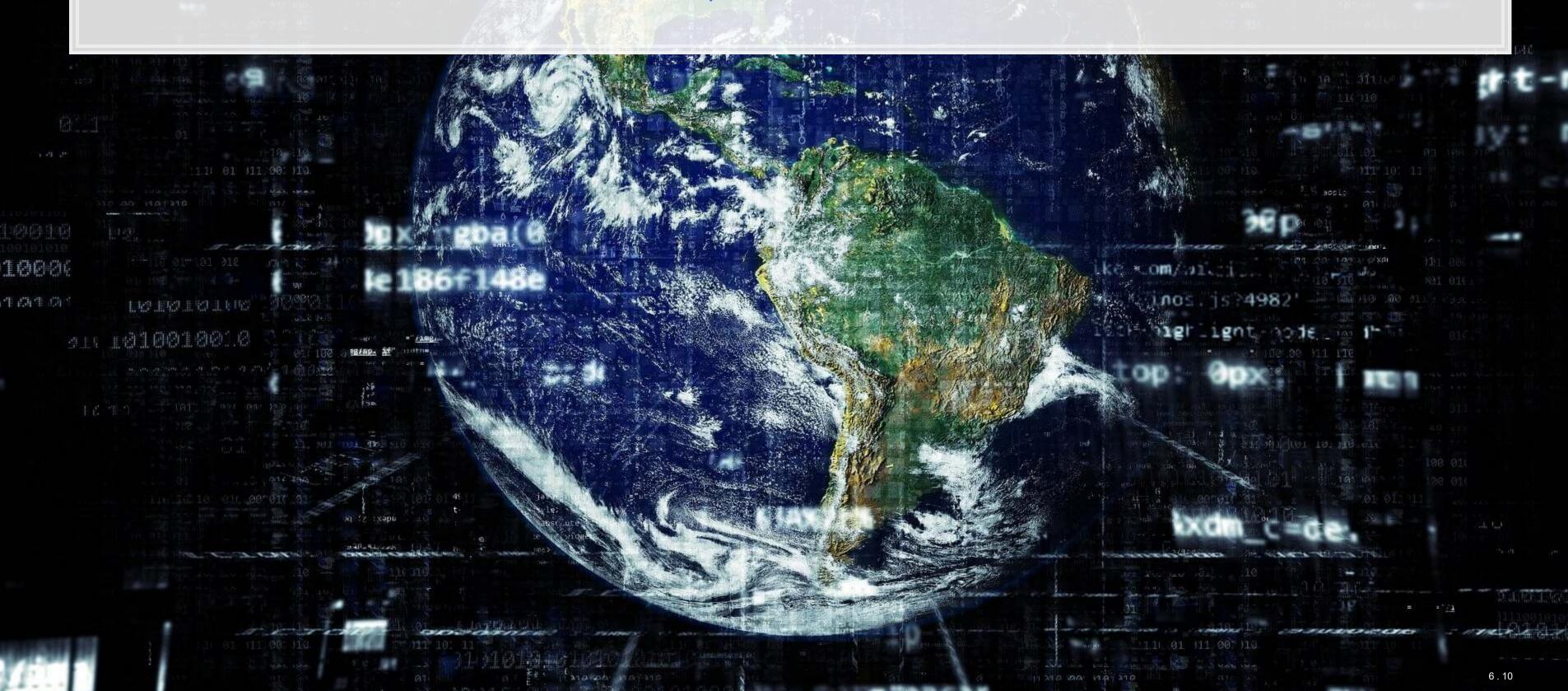
- Within geo, a list, the following makes the map a globe
 - projection=list(type="orthographic")

Singaporean ship movement

0011000

(OCHE)

Link to ship movement animation



Code for last slide's map

world1 contains the map data

00000

 \circ \circ \circ \circ \circ \circ

- geom_sf() plots map data passed to ggplot()
- geom_point() plots ship locations as longitude and latitude
- ggplotly() converts the graph to html and animates it
 - Animation follows the frame aesthetic

0

R

What might matter for shipping? {data-background="../Backgrounds/group.jpg" class="default present-not"}+

What observable events or data might provide insight as to whether a naval shipment will be delayed or not?

Typhoon Jebi



- link
- Nullschool plot

.0011000 (age) Typhoons in the data Singaporean container/tanker ships, September 4, 2018, evening • Typhoon Jebi 1000 1010

Code for last slide's map

This map is made the same way as the first map

Typhoons in the data using leaflet

Code for last slide's map

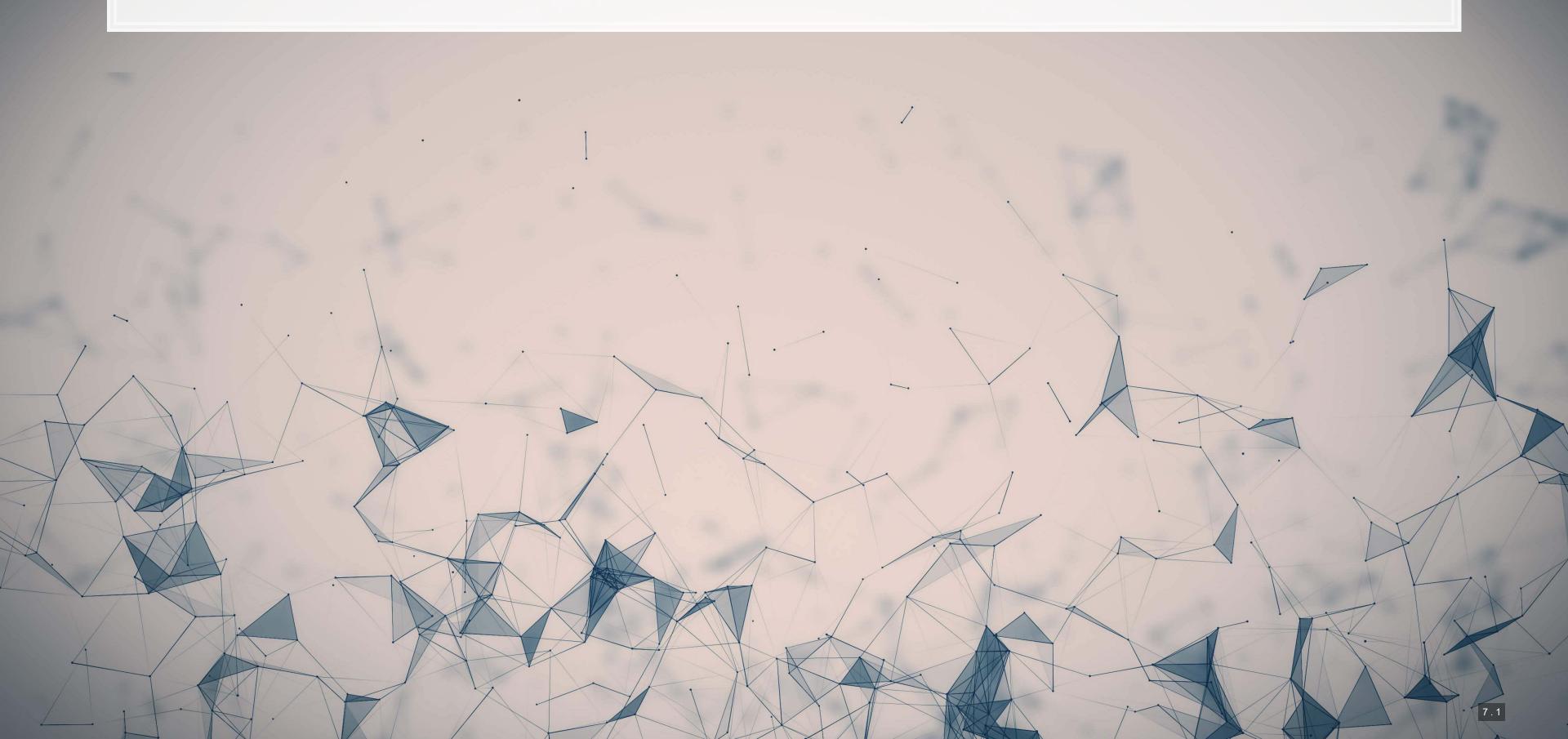
```
R
library(leaflet)
library(leaflet.extras)
# typhoon icons
icons <- pulseIcons(color='red',</pre>
 heartbeat = ifelse(typhoon Jebi$intensity vmax > 150/1.852, 0.8,
   ifelse(typhoon$intensity vmax < 118/1.852, 1.6, 1.2)),
 iconSize=ifelse(typhoon Jebi$intensity vmax > 150/1.852, 5,
   ifelse(typhoon Jebi$intensity vmax < 118/1.852, 2, 3)))
# ship icons
shipicons <- iconList(</pre>
 ship = makeIcon("../Figures/ship.png", NULL, 18, 18)
leaflet() %>%
 addTiles() %>%
 setView(lng = 136, lat = 34, zoom=4) %>%
 addPulseMarkers(data=typhoon Jebi[seq(1,nrow(typhoon Jebi),5),], lng=~lon,
                  lat=~lat, label=~date, icon=icons) %>%
 addCircleMarkers(data=typhoon Jebi[typhoon Jebi$intensity vmax > 150/1.852,],
```

- pulseIcons(): pulsing icons from leaflet.extras
- iconList(): pulls icons stored on your computer
- leaflet():start the map; addTiles() pulls from OpenStreetMap
- setView(): sets the frame for the map
- addPulseMarkers(): adds pulsing markers
- addCircleMarkers():adds circular markers

R Practice on mapping

- Practice mapping typhoon data
 - 1 map using plotly
 - 1 map using leaflet
- Practice using plotly and leaflet
 - No practice using ggplot2 as sf is missing on DataCamp light
 - And sf can be tough to install for anyone on a Mac
- Do exercises 3 and 4 in today's practice file
 - R Practice
 - Shortlink: rmc.link/420r4

Predicting delays due to typhoons



0011000

0000

- If the ship will report a delay of at least 3 hours some time in the next 12-24 hours
- What we have:

1000

4040

9111010010018

- Ship location
- Typhoon location
- Typhoon wind speed

We need to calculate distance between ships and typhoons

Distance for geo

- There are a number of formulas for this
 - Haversine for a simple calculation
 - Vincenty's formulae for a complex, incredibly accurate calculation
 - Accurate within 0.5mm
- Use distVincentyEllipsoid() from geosphere to get a reasonably quick and accurate calculation
 - Calculates distance between two sets of points, x and y, structured as matrices
 - Matrices must have longitude in the first column and latitude in the second column
 - Provides distance in meters by default

```
library(geosphere)
x <- as.matrix(df3[,c("lon","lat")]) # ship location
y <- as.matrix(df3[,c("ty_lon","ty_lat")]) # typhoon location

df3$dist_typhoon <- distVincentyEllipsoid(x, y) / 1000</pre>
```

Clean up

Some indicators to cleanly capture how far away the typhoon is

Do typhoons delay shipments?

```
## Call:
## glm(formula = delayed ~ typhoon 500 + typhoon 1000 + typhoon 2000,
      family = binomial, data = df3)
  Deviance Residuals:
                1Q Median
  -0.2502 \quad -0.2261 \quad -0.2261 \quad -0.2261 \quad 2.7127
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.65377
                          0.02934 - 124.547
                                              <2e-16 ***
## typhoon 500
               0.14073
                          0.16311
                                       0.863
                                              0.3883
## typhoon 1000 0.20539
                            0.12575
                                       1.633
                                               0.1024
## typhoon 2000 0.16059
                           0.07106
                                       2.260
                                              0.0238 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
  (Dispersion parameter for binomial family taken to be 1)
      Null deviance: 14329 on 59184 degrees of freedom
```

It appears so!

R

Interpretation of coefficients

```
odds1 <- exp(coef(fit1))
odds1

## (Intercept) typhoon_500 typhoon_1000 typhoon_2000
## 0.02589334 1.15111673 1.22800815 1.17420736</pre>
```

Ships 1,000 to 2,000 km from a typhoon have a 17% increased odds of having a delay

```
m1 <- margins(fit1)
summary(m1)

## factor AME SE z p lower upper
## typhoon_1000 0.0052 0.0032 1.6322 0.1026 -0.0010 0.0115
## typhoon_2000 0.0041 0.0018 2.2570 0.0240 0.0005 0.0076
## typhoon_500 0.0036 0.0042 0.8626 0.3883 -0.0046 0.0117
```

• Ships 1,000 to 2,000 km from a typhoon have an extra 0.41% chance of having a delay (baseline of 2.61%)

What about typhoon intensity?

- Hong Kong's typhoon classification: Official source
 - 1. 41-62 km/h: Tropical depression
 - 2. 63-87 km/h: Tropical storm
 - 3. 88-117 km/h: Severe tropical storm
 - 4. 118-149 km/h: **Typhoon**
 - 5. 150-184 km/h: Severe typhoon
 - 6. 185+km/h: Super typhoon

```
##
## (-1,41] (41,62] (62,87] (87,117] (117,149] (149,999]
## 3398 12039 12615 11527 2255 21141
```

Typhoon intensity and delays

```
A tibble: 10 x 5
                         estimate std.error statistic p.value
   term
                                      <dbl>
   <chr>
                            <dbl>
                                                <dbl> <dbl>
 1 (Intercept)
                                     0.0290 -126.
                         -3.65
 2 typhoon 500:Weak
                         -0.00879
                                     0.213
                                              -0.0413 0.967
 3 typhoon 500:Moderate
                        0.715
                                     0.251
                                                    0.00430
 4 typhoon 500:Super
                         -8.91
                                   123.
                                              -0.0726 0.942
 5 typhoon 1000:Weak
                          0.250
                                     0.161
                                                      0.121
 6 typhoon 1000:Moderate 0.123
                                     0.273
                                               0.451 0.652
 7 typhoon 1000:Super
                         -0.0269
                                     0.414
                                              -0.0648 0.948
 8 typhoon 2000:Weak
                          0.182
                                     0.101
                                               1.80
                                                    0.0723
 9 typhoon 2000: Moderate 0.0253
                                     0.134
                                               0.189 0.850
10 typhoon 2000:Super
                          0.311
                                     0.136
                                               2.29
                                                      0.0217
```

Moderate storms predict delays when within 500km

Super typhoons predict delays when 1,000 to 2,000km away

Interpretation of coefficients

m2 <- margins(fit2)
summary(m2) %>%
 html_df()

factor	AME	SE	z	р	lower	upper
Moderate	0.0007378	0.0006713	1.0990530	0.2717449	-0.0005779	0.0020535
Super	-0.0050241	0.0860163	-0.0584087	0.9534231	-0.1736129	0.1635647
typhoon_1000	0.0035473	0.0036186	0.9802921	0.3269420	-0.0035450	0.0106396
typhoon_2000	0.0039224	0.0017841	2.1985908	0.0279070	0.0004257	0.0074191
typhoon_500	-0.0440484	0.6803640	-0.0647424	0.9483791	-1.3775373	1.2894405
Weak	0.0009975	0.0005154	1.9353011	0.0529534	-0.0000127	0.0020077

- Delays appear to be driven mostly by 2 factors:
 - 1. A typhoon 1,000 to 2,000 km away from the ship
 - 2. Weak typhoons

R

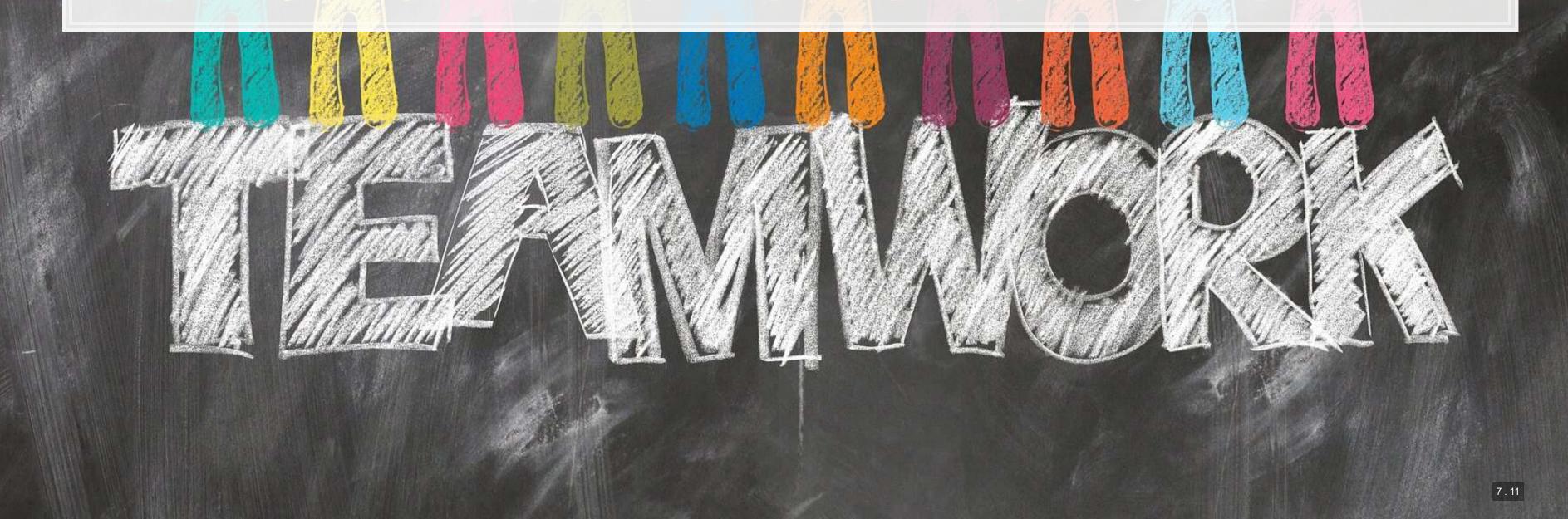
Interpretating interactions

factor	Weak	AME	SE	Z	р	lower	upper
typhoon_1000	1	0.0073057	0.0053682	1.360938	0.1735332	-0.0032157	0.0178271
typhoon_2000	1	0.0067051	0.0031225	2.147328	0.0317671	0.0005850	0.0128251
typhoon_500	1	-0.0458116	0.7052501	-0.064958	0.9482075	-1.4280764	1.3364531
factor	Moderate	AME	SE	Z	р	lower	upper
typhoon_1000	1	0.0059332	0.0078245	0.7582856	0.4482800	-0.0094025	0.0212688
typhoon_2000	1	0.0044871	0.0039453	1.1373050	0.2554108	-0.0032457	0.0122198
typhoon_500	1	-0.0311946	0.6847130	-0.0455586	0.9636620	-1.3732074	1.3108182
factor	Super	AME	SE	Z	р	lower	upper
typhoon_1000	1	0.0030638	0.0111295	0.2752891	0.7830941	-0.0187495	0.0248772
typhoon_2000	1	0.0102513	0.0041568	2.4661549	0.0136572	0.0021041	0.0183985
typhoon_500	1	-0.2241250	3.1608062	-0.0709076	0.9434713	-6.4191913	5.9709413

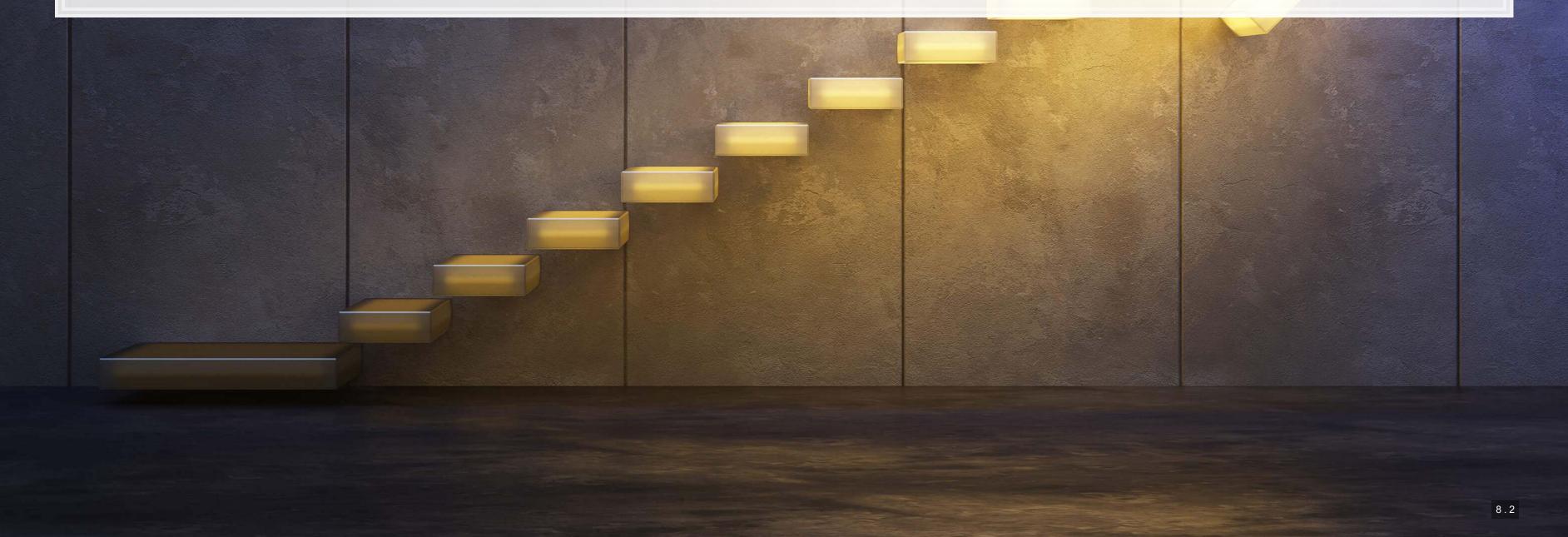
What might matter for shipping?

What other observable events or data might provide insight as to whether a naval shipment will be delayed or not?

- What is the reason that this event or data would be useful in predicting delays?
 - I.e., how does it fit into your mental model?



- For next week:
 - Second individual assignment
 - Finish by 2 classes from now
 - Submit on eLearn
 - Think about who you want to work with for the project



Packages used for these slides

- broom
- geosphere
- kableExtra
- knitr
- leaflet
- leaflet.extras
- lubridate
- magrittr

- margins
- maps
- maptools
- plotly
- revealjs
- rgeos
- sf
- tidyverse

Custom code

```
# styling for plotly maps
geo <- list(</pre>
 showland = TRUE,
 showlakes = TRUE,
 showcountries = TRUE,
 showocean = TRUE,
 countrywidth = 0.5,
 landcolor = toRGB("grey90"),
 lakecolor = toRGB("aliceblue"),
 oceancolor = toRGB("aliceblue"),
 projection = list(
   type = 'orthographic', # detailed at https://plot.ly/r/reference/#layout-geo-projection
   rotation = list(
    lon = 100,
    lat = 1,
    roll = 0
 lonaxis = list(
   showgrid = TRUE,
   gridcolor = toRGB("gray40"),
   gridwidth = 0.5
 lataxis = list(
   showgrid = TRUE,
   gridcolor = toRGB("gray40"),
   gridwidth = 0.5
```