ACCT 420: Project Example

Project Example

Dr. Richard M. Crowley

rcrowley@smu.edu.sg http://rmc.link/

Weekly revenue prediction at Walmart

The question

How can we predict weekly departmental revenue for Walmart, leveraging our knowledge of Walmart, its business, and some limited historical information?

- Predict weekly for 115,064 (Store, Department, Week) tuples
 - From 2012-11-02 to 2013-07-26
- Using [incomplete] weekly revenue data from 2010-02-015 to 2012-10-26
 - By department (some weeks missing for some departments)

More specifically...

- Consider time dimensions
 - What matters:
 - Time of the year?
 - Holidays?
 - Do different stores or departments behave differently?
- Wrinkles:
 - Walmart won't give us testing data
 - But they'll tell us how well the algorithm performs
 - We can't use past week sales for prediction because we won't have it for most of the prediction...

The data

- Revenue by week for each department of each of 45 stores
 - Department is just a number between 1 and 99
 - We don't know what these numbers mean
 - Date of that week
 - If the week is considered a holiday for sales purposes
 - Super Bowl, Labor Day, Black Friday, Christmas
- Store data:
 - Which store the data is for, 1 to 45
 - Store type (A, B, or C)
 - We don't know what these letters mean
 - Store size
- Other data, by week and location:
 - Temperature, gas price, sales (by department), CPI, Unemployment rate, Holidays

Walmart's evaluation metric

- Walmart uses MAE (mean absolute error), but with a twist:
 - They care more about holidays, so any error on holidays has 5 times the penalty
 - They call this WMAE, for weighted mean absolute error

$$WMAE = rac{1}{\sum w_i} \sum_{i=1}^n w_i \left| y_i - \hat{y}_i
ight|$$

- n is the number of test data points
- \hat{y}_i is your prediction
- y_i is the actual sales
- w_i is 5 on holidays and 1 otherwise

```
wmae <- function(actual, predicted, holidays) {
  ids <- !is.na(actual) & !is.na(predicted) & !is.na(holidays)
     sum(abs(actual[ids]-predicted[ids])*(holidays[ids]*4+1)) / (length(actual[ids]) + 4*sum(holidays[ids]))
}</pre>
```

Before we get started...

- The data isn't very clean:
 - Markdowns are given by 5 separate variables instead of 1
 - Date is text format instead of a date
 - CPI and unemployment data are missing in around a third of the testing data
 - There are some (week, store, department) groups missing from our training data!

We'll have to fix these

Also...

- Some features to add:
 - Year
 - Week
 - A unique ID for tracking (week, firm, department) tuples
 - The ID Walmart requests we use for submissions
 - Average sales by (store, department)
 - Average sales by (week, store, department)

Load data and packages

```
library(tidyverse) # we'll extensively use dplyr here
library(lubridate) # Great for simple date functions
library(broom)
weekly <- read.csv("../../Data/WMT_train.csv", stringsAsFactors=FALSE)
weekly.test <- read.csv("../../Data/WMT_test.csv", stringsAsFactors=FALSE)
weekly.features <- read.csv("../../Data/WMT_features.csv", stringsAsFactors=FALSE)
weekly.stores <- read.csv("../../Data/WMT_stores.csv", stringsAsFactors=FALSE)</pre>
```

- weekly is our training data
- weekly.test is our testing data no Weekly Sales column
- weekly.features is general information about (week, store) pairs
 - Temperature, pricing, etc.
- weekly.stores is general information about each store

Cleaning

R

```
preprocess data <- function(df) {</pre>
  # Merge the data together (Pulled from outside of function -- "scoping")
 df <- inner join(df, weekly.stores)</pre>
 df <- inner join(df, weekly.features[,1:11])</pre>
  # Compress the weird markdown information to 1 variable
  df$markdown <- 0</pre>
  df[!is.na(df$MarkDown1),]$markdown <- df[!is.na(df$MarkDown1),]$MarkDown1</pre>
 df[!is.na(df$MarkDown2),]$markdown <- df[!is.na(df$MarkDown2),]$MarkDown2</pre>
 df[!is.na(df$MarkDown3),]$markdown <- df[!is.na(df$MarkDown3),]$MarkDown3</pre>
 df[!is.na(df$MarkDown4),]$markdown <- df[!is.na(df$MarkDown4),]$MarkDown4</pre>
 df[!is.na(df$MarkDown5),]$markdown <- df[!is.na(df$MarkDown5),]$MarkDown5</pre>
  # Fix dates and add useful time variables
 df$date <- as.Date(df$Date)</pre>
 df$week <- week(df$date)</pre>
 df$year <- year(df$date)</pre>
 df
```

```
df <- preprocess_data(weekly)
df_test <- preprocess_data(weekly.test)</pre>
```

Merge data, fix markdown, build time data

What this looks like

df[91:94,] %>%
 select(Store, date, markdown, MarkDown3, MarkDown4, MarkDown5) %>%
 html_df()

000000

	Store	date	markdown	MarkDown3	MarkDown4	MarkDown5
91	1	2011-10-28	0.00	NA	NA	NA
92	1	2011-11-04	0.00	NA	NA	NA
93	1	2011-11-11	6551.42	215.07	2406.62	6551.42
94	1	2011-11-18	5988.57	51.98	427.39	5988.57

df[1:2,] %>% select(date, week, year) %>% html_df()

date	week	year
2010-02-05	6	2010
2010-02-12	7	2010

Q 0-

R

Cleaning: Missing CPI and Unemployment

Apply the (year, Store)'s CPI and Unemployment to missing data

000000

0

Cleaning: Adding IDs

- Build a unique ID
 - Since Store, week, and department are all 2 digits, make a 6 digit number with 2 digits for each
 - sswwdd

 \circ \circ \circ \circ \circ \circ

- Build Walmart's requested ID for submissions
 - ss dd YYYY-MM-DD

```
# Unique IDs in the data

df$id <- df$Store *10000 + df$week * 100 + df$Dept

df_test$id <- df_test$Store *10000 + df_test$week * 100 + df_test$Dept

# Unique ID and factor building

#swd <- c(df$id, df_test$id) # Pool all IDs

#swd <- unique(swd) # Only keep unique elements

#swd <- data.frame(swd=swd) # Make a data frame

#swd$swd <- factor(swd$id) # Extract factors for using later

# Add unique factors to data -- ensures same factors for both data sets

#df <- left_join(df,swd)

#df_test <- left_join(df_test,swd)
```

df_test\$Id <- paste0(df_test\$Store,'_',df_test\$Dept,"_",df_test\$date)</pre>

R

What the IDs look like

R

html_df(df_test[c(20000,40000,60000),c("Store","week","Dept","id","Id")])

Store	week	Dept	id	Id
8	27	33	82733	8_33_2013-07-05
15	46	91	154691	15_91_2012-11-16
23	52	25	235225	23_25_2012-12-28

Add in (store, department) average sales

```
R
  Calculate average by store-dept and distribute to df test
 df <- df %>%
  group_by(Store, Dept) %>%
  mutate(store avg=mean(Weekly Sales, rm.na=T)) %>%
  ungroup()
 df sa <- df %>%
  group by (Store, Dept) %>%
   slice(1) %>%
  select(Store, Dept, store avg) %>%
  ungroup()
 df_test <- left_join(df_test, df_sa)</pre>
   Joining, by = c("Store", "Dept")
 # 36 observations have messed up department codes -- ignore (set to 0)
 df test[is.na(df test$store avg),]$store avg <- 0</pre>
 # Calculate multipliers based on store avg (and removing NaN and Inf)
 df$Weekly mult <- df$Weekly Sales / df$store avg</pre>
 df[!is.finite(df$Weekly mult),]$Weekly mult <- NA</pre>
                                                                                               000000000000
                               00000
                                                                                    20
```

0

Add in (week, store, dept) average sales

```
# Calculate mean by week-store-dept and distribute to df_test

df <- df %>%
    group_by(Store, Dept, week) %>%
    mutate(naive_mean=mean(Weekly_Sales, rm.na=T)) %>%
    ungroup()

df_wm <- df %>%
    group_by(Store, Dept, week) %>%
    slice(1) %>%
    ungroup() %>%
    sungroup() %>%
    select(Store, Dept, week, naive_mean)

df_test <- df_test %>% arrange(Store, Dept, week)

df_test <- left_join(df_test, df_wm)
```

```
## Joining, by = c("Store", "Dept", "week")
```


ISSUE: New (week, store, dept) groups

- This is in our testing data!
 - So we'll need to predict out groups we haven't observed at all

```
##
## FALSE TRUE
## 113827 1237
```

- Fix: Fill with 1 or 2 lags where possible using ifelse() and lag()
- Fix: Fill with 1 or 2 leads where possible using ifelse() and lag()
- Fill with store avg when the above fail

0 0 0 0 0 0

Code is available in the code file – a bunch of code like:

```
df_test <- df_test %>%
  arrange(Store, Dept, date) %>%
  group_by(Store, Dept) %>%
  mutate(naive_mean=ifelse(is.na(naive_mean), lag(naive_mean), naive_mean)) %>%
  ungroup()
```

Cleaning is done

- Data is in order
 - No missing values where data is needed
 - Needed values created

```
df %>%
  group_by(week, Store) %>%
  mutate(sales=mean(Weekly_Sales)) %>%
  slice(1) %>%
  ungroup() %>%
  ggplot(aes(y=sales, x=week, color=factor(Store))) +
  geom_line() + xlab("Week") + ylab("Sales for Store (dept average)") +
  theme(legend.position="none")
```


Tackling the problem

First try

• Ideal: Use last week to predict next week!

No data for testing...

• First instinct: try to use a linear regression to solve this

We have this

What to put in the model?

First model

```
# A tibble: 8 x 5
                                          std.error statistic
                                                               p.value
    term
                                estimate
                                   <dbl>
   <chr>
                                               <dbl>
                                                         <dbl>
                                                                   <dbl>
## 1 (Intercept)
                                         0.0370
                             1.24
                                                        33.5 4.10e-245
## 2 factor(IsHoliday)TRUE
                             0.0868
                                         0.0124
                                                         6.99 2.67e- 12
## 3 factor(markdown > 0)TRUE 0.0531
                                         0.00885
                                                         6.00 2.00e- 9
## 4 markdown
                             0.000000741 0.000000875
                                                         0.847 3.97e- 1
## 5 Temperature
                             -0.000763
                                         0.000181
                                                        -4.23 2.38e- 5
## 6 Fuel Price
                                         0.00823
                             -0.0706
                                                        -8.58 9.90e- 18
                                                        -0.944 3.45e- 1
## 7 CPI
                             -0.0000837 0.0000887
## 8 Unemployment
                             0.00410
                                         0.00182
                                                         2.25 2.45e- 2
```

```
glance(mod1)
```

R

Prep submission and check in sample WMAE

```
R
# Out of sample result
df_test$Weekly_mult <- predict(mod1, df_test)</pre>
df_test$Weekly_Sales <- df_test$Weekly_mult * df_test$store_avg
# Required to submit a csv of Id and Weekly_Sales
write.csv(df_test[,c("Id","Weekly_Sales")],
          "WMT_linear.csv",
          row.names=FALSE)
# track
df_test$WS_linear <- df_test$Weekly_Sales</pre>
# Check in sample WMAE
df$WS linear <- predict(mod1, df) * df$store_avg</pre>
w <- wmae(actual=df$Weekly_Sales, predicted=df$WS_linear, holidays=df$IsHoliday)</pre>
names(w) <- "Linear"</pre>
wmaes <- c(w)
wmaes
```

```
## Linear
## 3073.57
```

Visualizing in sample WMAE

Back to the drawing board...

Second model: Including week

```
# A tibble: 60 x 5
                                                   p.value
                     estimate std.error statistic
      term
     <chr>
                        <dbl>
                                  <dbl>
                                            <dbl>
                                                      <dbl>
                                 0.0452
   1 (Intercept)
                      1.00
                                            22.1 3.11e-108
   2 factor (week) 2
                     -0.0648
                                 0.0372
                                            -1.74 8.19e- 2
   3 factor (week) 3
                      -0.169
                                 0.0373
                                            -4.54 5.75e-
                      -0.0716
   4 factor (week) 4
                                 0.0373
                                            -1.92 5.47e-
   5 factor (week) 5
                      0.0544
                                 0.0372
                                            1.46 1.44e- 1
   6 factor (week) 6
                      0.161
                                 0.0361
                                            4.45 8.79e- 6
   7 factor (week) 7
                      0.265
                                 0.0345
                                            7.67 1.72e- 14
                      0.109
                                 0.0340
   8 factor(week)8
                                             3.21 1.32e- 3
  9 factor(week)9
                      0.0823
                                 0.0340
                                             2.42 1.55e- 2
                      0.101
## 10 factor(week)10
                                 0.0341
                                             2.96 3.04e- 3
  # ... with 50 more rows
```

glance(mod2)


```
A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value
                                                  df logLik
                                                                  AIC
                                                                          BIC
    <dbl>
                  <dbl> <dbl>
                                  <dbl> <dbl> <dbl>
                                                        <dbl>
                                                                <dbl>
  0.00501
                                                  59 -894728. 1.79e6 1.79e6
                0.00487 2.02
                                  35.9
                                             0
... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
```

Prep submission and check in sample WMAE

```
R
# Out of sample result
df_test$Weekly_mult <- predict(mod2, df_test)</pre>
df_test$Weekly_Sales <- df_test$Weekly_mult * df_test$store_avg
# Required to submit a csv of Id and Weekly_Sales
write.csv(df_test[,c("Id","Weekly_Sales")],
          "WMT linear2.csv",
          row.names=FALSE)
# track
df_test$WS_linear2 <- df_test$Weekly_Sales</pre>
# Check in sample WMAE
df$WS linear2 <- predict(mod2, df) * df$store_avg</pre>
w <- wmae(actual=df$Weekly_Sales, predicted=df$WS_linear2, holidays=df$IsHoliday)</pre>
names(w) <- "Linear 2"</pre>
wmaes <- c(wmaes, w)</pre>
wmaes
```

```
## Linear Linear 2
## 3073.570 3230.643
```

Visualizing in sample WMAE

Visualizing in sample WMAE by Store

Visualizing in sample WMAE by Dept

Back to the drawing board...

Third model: Including week x Store x Dept

• •

Third model: Including week x Store x Dept

• Use fixest's feols() - it really is more efficient!

```
# A tibble: 5 x 5
                            std.error statistic p.value
                 estimate
  <chr>
                    <dbl>
                                <dbl>
                                                   <dbl>
              -0.00000139 0.000000295
1 markdown
                                          -4.73 2.24e- 6
                          0.000243
2 Temperature 0.00135
                                          5.55 2.83e- 8
                          0.00905
3 Fuel Price
              -0.0637
                                          -7.04 1.92e-12
                                      1.87 6.13e- 2
                          0.000800
               0.00150
5 Unemployment -0.0303
                          0.00386
                                          -7.85 4.14e-15
```

```
glance(mod3)
```


Prep submission and check in sample WMAE

```
R
# Out of sample result
df_test$Weekly_mult <- predict(mod3, df_test)</pre>
df_test$Weekly_Sales <- df_test$Weekly_mult * df_test$store_avg
# Replace NA values with store average
df test <- df test %>%
 mutate(Weekly Sales = ifelse(is.na(Weekly Sales), naive mean, Weekly Sales))
# Required to submit a csv of Id and Weekly Sales
write.csv(df test[,c("Id","Weekly Sales")],
          "WMT FE.csv",
          row.names=FALSE)
# track
df_test$WS_FE <- df_test$Weekly_Sales</pre>
# Check in sample WMAE
df$WS FE <- predict(mod3, df) * df$store avg</pre>
w <- wmae(actual=df$Weekly_Sales, predicted=df$WS_FE, holidays=df$IsHoliday)
names(w) <- "FE"</pre>
```

```
## Linear Linear 2 FE
## 3073.570 3230.643 1552.190
```

Visualizing in sample WMAE

Warning: Removed 6 rows containing missing values (geom_point).

- What problems might there be for our testing sample?
 - What is different from testing to training?
- Can we fix them?
 - If so, how?

- Walmart provided this data back in 2014 as part of a recruiting exercise
 - Details here
 - Discussion of first place entry
 - Code for first place entry
 - Discussion of second place entry
- This is what the group project will be like
 - 4 to 5 group members tackling a real life data problem
 - You will have training data but testing data will be withheld
 - Submit on Kaggle

Project deliverables

- 1. Kaggle submission
- 2. Your code for your submission, walking through what you did
- 3. A 15 minute presentation on the last day of class describing:
 - Your approach
- 4. A report discussing
 - Main points and findings
 - Exploratory analysis of the data used
 - Your model development, selection, implementation, evaluation, and refinement
 - A conclusion on how well your group did and what you learned in the process

- broom
- fixest
- kableExtra
- knitr

000

- lubridate
- magrittr
- revealjs

000

000000

tidyverse

00

0

4.4

0000